Saturday, July 13, 2024

Both Paris Agreement thresholds clearly crossed

The NASA temperature anomaly vs. 1904-1924 shows that the temperature has been above 1.5°C for the past twelve months, as illustrated by the image below. The red line shows the trend (one-year Lowess Smoothing) associated with the rapid recent rise.


Note that the 1904-1924 base is not pre-industrial. When using a genuinely pre-industrial base, the temperature anomaly has over the past twelve months also been above the 2°C threshold that politicians at the 2015 Paris Agreement pledged wouldn't be crossed.

[ from earlier post ]

The above image, from an earlier post, shows that the February 2024 temperature was 1.76°C above 1885-1915, potentially 2.75°C above pre-industrial (bright yellow inset right). The image was created by Sam Carana for Arctic-news.blogspot.com with an April 2024 data.giss.nasa.gov screenshot. The red line (6 months Lowess smoothing) highlights the steep rise that had already taken place by then.

Global temperatures

The image below shows the temperature through July 18, 2024. Temperatures in 2024 look set to exceed 2023 temperatures again, after briefly staying below 2023 temperatures earlier in July 2024, and after record high temperatures for the time of year for most days in 2024.

The image below shows that, after briefly dipping below 2023 sea surface temperatures, 2024 sea surface temperatures (60°S-60°N) are back at record high levels for the time of year again.

Global sea ice extent takes a tumble

Higher temperatures result in more loss of sea ice, as illustrated by the image below that shows that the global sea ice extent remained at a record low for the time of year on July 18, 2024, following the record low for the time of year reached the day before. 


Higher temperatures come with feedbacks, as illustrated by the image below, from an earlier post.


As sea ice disappears, feedbacks accelerate the loss, e.g.: 
• Albedo feedback #1 (water is less reflective than ice)
• Emissivity feedback #23 (water is less efficient than ice in emitting in the far-infrared region of the spectrum) 
• Clouds feedback #25 (warmer water comes with less low-level clouds that reflect sunlight back into space). 

[ click on images to enlarge ]
Deformation of the Jet Stream is a feedback that can speed up the flow of ocean heat toward the Arctic Ocean. 

Deformation of the Jet Stream enables strong winds to develop over the North Atlantic, which can at times strongly accelerate the speed at which hot water is flowing toward the Arctic Ocean along path of the Gulf Stream.

A deformed Jet Stream can temporarily speed up this flow, causing huge amounts of ocean heat to get abruptly pushed into the Arctic Ocean in the path of the Gulf Stream.

The image on the right shows hot water getting pushed along the path of the Gulf Stream from the Gulf of Mexico toward the Arctic Ocean. The image shows sea surface temperatures as high as 32.9°C on July 15, 2024.

Higher temperatures also come with greater risk of forest fires (feedback #9). The image below, adapted from Copernicus, shows a biomass burning aerosols forecast for July 22, 2024.


Forest fires contribute to the temperature rise in multiple ways, including:
• forest fires cause emissions that cause more heat to be trapped; 
• forest fires contributed to the 2023 global net land carbon dioxide sink to be the weakest since 2003
• forest fires reduce soil moisture content, which in turn reduces health and growth of vegetation and makes the land more vulnerable to erosion; 
• forest fires cause emissions of black carbon that darkens the surface, resulting in less sunlight getting reflected back into space.

The study into the carbon sources and sinks refers to itself as an "analysis of the global carbon budget", which can give the wrong impression that it was healthy and sustainable to cause carbon emissions as long as emissions were "compensated" by carbon taken up by land and ocean "sinks". Similarly, the IPCC refers to a "carbon budget" as if there was an amount of carbon to be divided among polluters and to be consumed for decades to come. Instead, action is needed to reduce concentrations of carbon both in oceans and in the atmosphere. On land, the soil carbon content needs to increase, which can be achieved by methods such as pyrolysis of biowaste and adding the resulting biochar to the soil, which will reduce fire hazards, sequester carbon and support the presence of moisture & nutrients in the soil and the health & growth of vegetation, as discussed at the Climate Plan group and the biochar group.

For more on feedbacks, see the feedbacks page

After an astonishing rise in 2023, sea surface temperature anomalies fell for six months in the Northern Hemisphere, but they are rising again, threatening to cause dramatic sea ice loss over the next few months and destabilize sediments at the seafloor, resulting in huge amounts of methane erupting and abruptly entering the atmosphere.


The image below, adapted from the Danish Metereological Institute, indicates that Arctic sea ice volume is at a record low for the time of year, as it has been for most of the year. At the same time, Arctic sea ice extent is not the lowest on record for the time of year; in June 2024, Arctic sea ice extent was 3% below average, close to the values observed most years since 2010, according to Copernicus. The implication is that sea ice must be very thin. 


The image below, adapted from the University of Bremen, shows Arctic sea ice thickness on July 19, 2024. 

The above images shows that most of the thicker Arctic sea ice has melted, i.e. the latent heat buffer has virtually disappeared. This and further feedbacks and events (e.g. high sunspots) may cause temperatures to keep rising, even while La Niña is expected to prevail in Aug-Oct 2024. The screenshot below, from an earlier post, further illustrates the danger.


Climate Emergency Declaration

The situation is dire and the precautionary principle calls for rapid, comprehensive and effective action to reduce the damage and to improve the situation, as described in this 2022 post, where needed in combination with a Climate Emergency Declaration, as discussed at this group.



Links

• NASA - datasets and images
https://data.giss.nasa.gov

• Copernicus - Climate Pulse


• Copernicus - aerosol forecasts

• Low latency carbon budget analysis reveals a large decline of the land carbon sink in 2023 - by Piyu Ke et al. 
https://arxiv.org/abs/2407.12447
• Arctic Data archive System - National Institute of Polar Research - Japan
https://ads.nipr.ac.jp/vishop

• NOAA - Office of Satellite and Product Operations (OSPO)
• NOAA - National Centers for Environmental Information - Climate at a Glance - Global Time Series
https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/time-series/nhem/ocean/1/0/1850-2024

• Feedbacks

• Danish Meteorological Institute - Arctic sea ice volume and thickness 
https://ocean.dmi.dk/arctic/icethickness/thk.uk.php

• University of Bremen - Arctic sea ice
https://seaice.uni-bremen.de/start

• Sunspots
https://arctic-news.blogspot.com/p/sunspots.html

• NOAA - Climate Prediction Center - ENSO: Recent Evolution, Current Status and Predictions 

Thursday, July 11, 2024

The predicament of climate scientists on the road to a super tropical Earth

 by Andrew Glikson

As temperatures in large parts of the Earth are soaring (cf. 52.3°C in Delhi, flames engulf large regions in California, tornadoes ravage the Gulf of Mexico states, severe drought starve populations in southern Africa and climate extremes continue to taking over large parts of the Earth. Much like oncologists advising patients and their families of a terminal illness, so do climate scientists agonizing while reporting the advent of dangerous warming as temperatures rise and tipping points are broken. But while climate change has become more than evident, there is a heavy price to be paid by those who try to alert the public.
Figure 2. Global temperature relative to 1880-1920 based on the GISS analysis (Hansen et al., 2024).

One of the glaring misconceptions, which ignores the dispersal of greenhouse gases throughout the atmosphere, is as if their global effects depend on the country from which the carbon is extracted. Further, politically originated stigmas labels scientists as some kind of “alarmists” or “Cassandras”. A threat of institutional penalties affects scientist’s jobs. Along with the dominion of vested pro-carbon interests these factors drive humanity blind toward the Sixth Mass Extinction of Species.


In private conversations, many climate scientists express far greater concern at the progression and consequences of global warming than they do in public.


A number of prominent climate scientists representing the scientific consensus on climate change, as documented by the IPCC, have tried their best to convey the message in public forums, but were mostly shunned by conservative media. At the same time many climate scientists tend to regard the IPCC-based climate consensus as too optimistic. An article titled When the End of Human Civilization Is Your Day Job (Richardson, 2015) states … “Among many climate scientists, gloom has set in. Things are worse than we think, but they can’t really talk about it … Climate scientists have been so distracted and intimidated by the relentless campaign against them that they tend to avoid any statements that might get them labelled “alarmists”, instead retreating into a world of charts and data.“

As stated by Noam Chomsky: “It’s interesting that these public climate debates leave out almost entirely a third part of the debate, namely a very substantial number of scientists, competent scientists, who think that the scientific consensus is much too optimistic. A group of scientists at MIT came out with a report about a year ago describing what they called the most comprehensive modelling of the climate that had ever been done. Their conclusion, which was unreported in public media as far as I know, was that the major scientific consensus of the international commission is just way off, it’s much too optimistic … their own conclusion was that unless we terminate use of fossil fuels almost immediately, it’s finished. We’ll never be able to overcome the consequences. That’s avoided in the debate.”

Antarctica is losing ice at an average rate of more than 150 billion tons per year, and Greenland is losing more than 270 billion tons per year, adding to sea level rise. Some glaciologists and Arctic scientists consider the accelerated rate of glacial melt in Greenland and West Antarctica may result in little remaining ice over these terrains toward the end of the century, leading to sea level rise on the scale of many meters, with catastrophic consequences for coastal and river valley population centres.

The Arctic Ocean contains vast amounts of carbon accumulated during the Pleistocene ice ages. The greenhouse effect of methane traps up to 100 times more heat in the atmosphere than carbon dioxide within a 5 year period, and 72 times more within a 20 year period. Atmospheric levels of greenhouse gases – carbon dioxide, methane, and nitrous oxide – continued their climb during 2023 according to the latest measurements from NOAA and CIRES scientists. The current CO₂ growth rate threatens an irreversible shift in the state of the Earth climate through looming tipping points, including transient cooling events induced by flow of cold ice melt water into the oceans from Greenland and Antarctica; Glikson (2019).

Figure 4. Carbon dioxide at Mauna Loa, Hawaii.


There is little evidence that climate science had much of an effect on the outcome of the Paris Agreement. The warming target of +1.5°C has already been breached over the continents or is masked by the reflective albedo of transient sulphur aerosols. At the current growth rate of ~3 ppm/year CO₂ will rise closer to the stability threshold of the polar ice sheets.

Little encouragement can be gained from the non-binding promises emerging from climate conferences, which James Hansen described as a “fraud”.

While the implications of the global climate emergency have reached the defence establishment, the world continues to spend near to $2.4 trillion each year on the military instead on the protection of life.

As the portents for a major mass extinction of species are rising – who will defend life on Earth?


A/Prof. Andrew Y Glikson
Earth and climate scientist


Andrew Glikson
Books:

The Asteroid Impact Connection of Planetary Evolution
https://www.springer.com/gp/book/9789400763272
The Archaean: Geological and Geochemical Windows into the Early Earth
https://www.springer.com/gp/book/9783319079073
The Plutocene: Blueprints for a Post-Anthropocene Greenhouse Earth
https://www.springer.com/gp/book/9783319572369
The Event Horizon: Homo Prometheus and the Climate Catastrophe
https://www.springer.com/gp/book/9783030547332
Climate, Fire and Human Evolution: The Deep Time Dimensions of the Anthropocene
https://www.springer.com/gp/book/9783319225111
Evolution of the Atmosphere, Fire and the Anthropocene Climate Event Horizon
https://www.springer.com/gp/book/9789400773318
From Stars to Brains: Milestones in the Planetary Evolution of Life and Intelligence
https://www.springer.com/us/book/9783030106027
Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia
https://www.springer.com/us/book/9783319745442
The Fatal Species: From Warlike Primates to Planetary Mass Extinction
https://www.springer.com/gp/book/9783030754679
The Trials of Gaia. Milestones in the evolution of Earth with reference to the Antropocene
https://www.amazon.com.au/Trials-Gaia-Milestones-Evolution-Anthropocene/dp/3031237080




Monday, July 8, 2024

Temperature rise threatens to accelerate even more

Global temperature

[ from earlier post ]

The above image, from an earlier post, shows that the February 2024 temperature was 1.76°C above 1885-1915, potentially 2.75°C above pre-industrial (bright yellow inset right). The image was created by Sam Carana for Arctic-news.blogspot.com with an April 2024 data.giss.nasa.gov screenshot. The red line (6 months Lowess smoothing) highlights the steep rise that had already taken place in early 2023. 

The image below, created with Climate Reanalyzer content, shows that June 2024 was substantially hotter than June 2023, which is significant since we're not in an El Niño anymore. Moreover, monthly temperatures are also rising.



According to Copernicus, the global-average temperature for the past 12 months (July 2023 – June 2024) has been more than 1.5°C above the 1850-1900 average. Carlo Buontempo, Director of the Copernicus Climate Change Service (C3S), adds: "June marks the 13th consecutive month of record-breaking global temperatures, and the 12th in a row above 1.5°C with respect to pre-industrial. This is more than a statistical oddity and it highlights a large and continuing shift in our climate." Note that anomalies from a genuinely pre-industrial base could be much higher, as the image at the top discusses.

Carbon dioxide growth

CO₂ at Mauna Loa was 426.91 ppm in June 2024, 3.23 ppm above June 2023, close to the 3.36 ppm growth in 2023, which is the highest annual growth on record up to now, as illustrated by the compilation image below, created with NOAA content


Furthermore, CO₂ in June is typically lower than it is in May, but it was (slightly) higher in June 2024 than it was in May 2024.

Sea surface temperatures

On July 9, 2024, sea surface temperatures were back at about 21°C again. For more than a year, sea surface temperatures have been at around 21°C, much higher than in previous years, as illustrated by the image below. 


Feedbacks and further developments

Higher temperatures come with feedbacks, as illustrated by the image below, from an earlier post.


[ from earlier post ]

Deformation of the Jet Stream enables strong winds to develop over the North Atlantic, which can at times strongly accelerate the speed at which hot water is flowing toward the Arctic Ocean along path of the Gulf Stream.

A deformed Jet Stream combined with high sea surface temperatures can temporarily speed up this flow, by strengthening storms and hurricanes along the path of the Gulf Stream, resulting in huge amounts of ocean heat to get abruptly pushed into the Arctic Ocean.

The image below shows sea surface temperatures as high as 32.5°C on July 11, 2024, with hot water getting pushed along the path of the Gulf Stream from the Gulf of Mexico toward the Arctic Ocean. 


The danger is that such feedbacks and further developments will accelerate the temperature rise even more. Critical in this respect is the condition of Arctic sea ice. 

Arctic sea ice decline

The image below, adapted from the Danish Metereological Institute, indicates that Arctic sea ice volume is at a record low for the time of year, as it has been for most of the year. At the same time, sea ice extent is still relatively large; Arctic sea ice extent was 3% below average in June 2024, close to the values observed most years since 2010, according to Copernicus. The implication is that sea ice must be very thin. 

The combination image below, from an earlier post and adapted from the University of Bremen, indicates that most of the thicker sea ice has melted in the course of June 2024, and that the latent heat buffer may be gone soon.


Latent heat buffer

Sea ice constitutes a buffer that consumes ocean heat; the temperature of the water will not rise as long as there is ice, but once all ice has melted, further heat will raise the temperature of the water. 


The amount of energy absorbed by melting ice is as much as it takes to heat an equivalent mass of water from zero to 80°C. 

[ The Buffer has gone, feedback #14 on the Feedbacks page ]
Loss of the latent heat buffer threatens to strongly heat up the Arctic Ocean, and this increases the danger that further heat will reach methane hydrates at the seafloor of the Arctic Ocean, causing them to get destabilized resulting in eruption of methane from these hydrates and from free gas underneath that was previously sealed by the hydrates. 

Climate Emergency Declaration

The situation is dire and the precautionary principle calls for rapid, comprehensive and effective action to reduce the damage and to improve the situation, as described in this 2022 post, where needed in combination with a Climate Emergency Declaration, as discussed at this group.


Links

• Climate Reanalyzer
https://climatereanalyzer.org

• Copernicus: June 2024 marks 12th month of global temperature reaching 1.5°C above pre-industrial 
https://climate.copernicus.eu/copernicus-june-2024-marks-12th-month-global-temperature-reaching-15degc-above-pre-industrial

• Pre-industrial
https://arctic-news.blogspot.com/p/pre-industrial.html 

• Carbon dioxide keeps rising in June 2024 
https://arctic-news.blogspot.com/2024/07/carbon-dioxide-keeps-rising-in-june-2024.html

• Did the climate experience a Regime Change in 2023? 
https://arctic-news.blogspot.com/2024/04/did-the-climate-experience-a-regime-change-in-2023.html

• NOAA - Global Monitoring Laboratory - Carbon Cycle Greenhouse Gases




Saturday, July 6, 2024

Carbon dioxide keeps rising in June 2024


The above image shows a trend (magenta), based on NOAA August 2008 through June 2024 data (black) and added on a canvas that is 31.42-year wide. If this trend continues, the clouds tipping point could get crossed in early 2036 due to the rise in carbon dioxide (CO₂) alone.
[ from earlier post ]
Rising CO₂ emissions could originate from many sources, the more so as more sinks turn into sources. 
[ from earlier post ]
Despite the many warnings and despite pledges by politicians to act decisively, the concentration of carbon dioxide in the atmosphere is growing rapidly. Until now, the annual peak was typically reached in May, but this year the June average was (slightly) higher than the May average, ominously pointing at an even higher growth than the record growth in 2023. 

Over the past twelve months, CO₂ concentrations have at times been recorded of well over 430 parts per million (ppm) at Mauna Loa, Hawaii, as illustrated by the image below.


The clouds tipping point is at 1200 ppm CO₂e (carbon dioxide equivalent), so it could be crossed even earlier than in 2036 when also taking into account more methane, nitrous oxide, etc.

As illustrated by the above image, from an earlier post, a polynomial trend added to NOAA globally averaged marine surface monthly mean methane data from April 2018 to November 2022 points at 1200 ppm CO₂e (carbon dioxide equivalent) getting crossed in 2027 due to a rise in methane alone.

As discussed in an earlier post, peak daily average methane is approaching 2000 parts per billion (ppb) at Mauna Loa, Hawaii. A methane concentration of 2000 ppb corresponds - at a Global Warming Potential (GWP) of 200 - with 400 ppm CO₂e. Together with a daily peak CO₂ concentration of 430 ppm, this adds up to a joint CO₂e of 830 ppm, i.e. only 370 ppm away from the clouds tipping point.

This 370 ppm CO₂e could be added almost instantly by a burst of seafloor methane less than the size of the methane that is currently in the atmosphere (about 5 Gt). There is plenty of potential for such an abrupt release, given the rising ocean heat and the vast amounts of carbon and methane contained in vulnerable sediments at the seafloor of the Arctic Ocean, as also discussed in earlier posts such as this one and at the threat page.


[ image from the Extinction page ]
There are many further developments such as tipping points and feedbacks that should be taken into account. The above image, from an earlier post, illustrates the mechanism of how multiple feedbacks can accelerate the heating up of the atmosphere.

Several feedbacks can also constitute tipping points. Decline of Arctic sea ice comes with loss of albedo and loss of the Latent Heat Buffer, and the joint loss can abruptly and dramatically increase temperatures in the Arctic Ocean.

Further increase of heat in the Arctic Ocean can in turn cause the Seafloor Methane Tipping Point to get crossed, resulting in destabilization of methane hydrates contained in sediments at the seafloor of the Arctic Ocean, as discussed in many earlier posts such as this one.

Self-amplifying feedbacks and crossing of tipping points, as well as further developments (such a as loss of the aerosol masking effect and sunspots reaching a peak) could all contribute to cause a temperature rise from pre-industrial of over 10°C, in the process causing the clouds tipping point to get crossed that can push up the temperature rise by a further 8°C.

Altogether, the temperature rise may exceed 18°C from pre-industrial by as early as 2026, as illustrated by the image on the right, from the extinction page.

Climate Emergency Declaration

The situation is dire and the precautionary principle calls for rapid, comprehensive and effective action to reduce the damage and to improve the situation, as described in this 2022 post, where needed in combination with a Climate Emergency Declaration, as discussed at this group.



Links

• NOAA - Global Monitoring Laboratory - Carbon Cycle Gases, trends in CO2

• NOAA - Global Monitoring Laboratory - Carbon Cycle Gases, Mauna Loa, Hawaii, U.S.
https://gml.noaa.gov/dv/iadv/graph.php?code=MLO&program=ccgg&type=ts

• The Clouds Feedback and the Clouds Tipping Point
https://arctic-news.blogspot.com/p/clouds-feedback.html

• Albedo
https://arctic-news.blogspot.com/p/albedo.html

• Feedbacks in the Arctic
https://arctic-news.blogspot.com/p/feedbacks.html

• Jet Stream
https://arctic-news.blogspot.com/p/jet-stream.html

• Latent Heat
https://arctic-news.blogspot.com/p/latent-heat.html

• Cold freshwater lid on North Atlantic
https://arctic-news.blogspot.com/p/cold-freshwater-lid-on-north-atlantic.html

• Sunspots
https://arctic-news.blogspot.com/p/sunspots.html

• Pre-industrial
https://arctic-news.blogspot.com/p/pre-industrial.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Transforming Society
https://arctic-news.blogspot.com/2022/10/transforming-society.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Climate Emergency Declaration
https://arctic-news.blogspot.com/p/climate-emergency-declaration.html



Wednesday, July 3, 2024

Feedbacks

Water vapor feedback

There are numerous self-amplifying feedbacks that accelerate the temperature rise. One of them is the water vapor feedback. Just the temperature rise itself will cause more water vapor to be in the atmosphere.

[ from Moistening Atmosphere ]
The February 2024 temperature was 1.76°C above 1885-1915, which could be as much as 2.75°C above the pre-industrial temperature.

A 2.75°C rise corresponds with almost ⅕ more water vapor in the atmosphere, as the extinction page points out. 

The increase in water vapor in the atmosphere is a self-amplifying feedback, since water vapor is a powerful greenhouse gas, accelerating the temperature rise, as illustrated by the image on the right.

As illustrated by the image below, created with NOAA data, surface precipitable water reached 26.741 kg/m² in June 2024.


As the above image also illustrates, surface precipitable water reached a record high of 27.139 kg/m² in July 2023, and was much higher for each of the first six months in 2024 than for the same months in 2023. 

More emissions of greenhouse gases (from earlier post)

As temperatures rise, due to stronger emissions of carbon dioxide, methane and nitrous oxide, there will be a corresponding extra amount of water vapor in the atmosphere.   

Studies such as by Hubau (2020) warn that the uptake of carbon into Earth’s intact tropical forests peaked in the 1990s. Thawing permafrost can cause huge emissions of carbon dioxide, methane and nitrous oxide. Studies now warn that the Arctic has also changed from sink to source.

A study by Del Vecchi et al. (2024) suggests that a gradual thawing of Arctic permafrost could release between 22 billion and 432 billion tons of carbon dioxide by 2100 if current greenhouse gas emissions are reined in — and as much as 550 billion tons if they are not.

An analysis by Ramage et al. (2024) concludes that Arctic terrestrial permafrost now emits more greenhouse gases than it stores, and the trend is likely to accelerate as temperatures keep rising in the Arctic. The highest carbon dioxide emissions over the 2000-2020 period came from inland rivers and wildfires. The non-permafrost wetlands exhaled the most methane, and dry tundra released the most nitrous oxide.

The prospect of further releases looks dire. The analysis gives estimates that the upper three meters of permafrost region soils store 1,000 Gt of soil organic carbon, while deeper deposits could store an additional amount of as much as 1,000 Gt C. The analysis concludes that the permafrost region is the largest terrestrial carbon and nitrogen pool on Earth.

Note that the joint CO₂e of emissions in this analysis only covers part of global emissions, e.g. the analysis excludes emissions from Arctic subsea permafrost and from oceans in general, from many mountain areas and from the Southern Hemisphere. The study also appears to have excluded emissions caused by anthropogenic disturbances such as clear-cutting, logging and fracking activities in the region, while calculations typically use a low global warming potential (GWP) for methane (100-year horizon).

Miesner et al. (2023) warn that an additional 2822 Gt of organic carbon is stored in subsea Arctic shelf permafrost and Huang et al. (2024) warn that the top two meters of soil globally holds about 2300 Gt of inorganic carbon, which has been left out of environmental models, and 23 Gt of this carbon may be released over the next 30 years.

The transition from sink to source of the region is an important feedback of the temperature rise that is not fully reflected in many climate models. According to the IPCC, 14–175 Gt CO₂e (in carbon dioxide and methane) gets released per 1°C of global warming, which is likely to underestimate the situation by downplaying many feedbacks. Despite the dire situation, the IPCC keeps promoting less effective policies such as support for biofuel and tighter fuel efficiency standards, as discussed in earlier posts such as this 2022 one.

Further feedbacks

The image below illustrates the mechanism of how multiple feedbacks accelerate the heating up of the atmosphere.


Feedback #1: albedo loss (loss of reflectivity) as sea ice melts due to rising temperatures and due to the ice getting covered by soot, dust, algae, meltpools and rainwater pools;

Feedback #14: loss of the latent heat buffer - as sea ice disappears, heat can no longer be consumed by the process of melting, and the heat will instead go into increasing the temperature;

Feedback #16: eruptions of seafloor methane - as more heat reaches the seafloor of the Arctic Ocean, sediments and hydrates contained in them destabilize, resulting in methane releases;

Feedback #25: extra water vapor feedback - rising temperatures will result in more water vapor in the atmosphere (7% more water vapor for every 1°C warming), further amplifying the temperature rise, since water vapor is a potent greenhouse gas;

Feedback #19: distortion of the Jet Stream as the temperature difference narrows between the Arctic and the Tropics, in turn causing further feedbacks to kick in stronger, such as hot air moving into the Arctic and cold air moving out, and more extreme weather events bringing heavier rain and more intense heatwaves, droughts and forest fires that cause black carbon to settle on the sea ice;

Feedback #28: freshwater lid on the North Atlantic - melting of sea ice and glaciers and thawing of the permafrost results in meltwater accumulating in the North Atlantic, where it forms a cold freshwater lid on top of the water; this lid grows further due to more rain falling on top of this lid. This results in less evaporation and transfer of heat from the North Atlantic to the atmosphere, and more ocean heat getting carried by the Gulf Stream underneath the sea surface into the Arctic Ocean.

There is interaction between feedbacks; the image's focus is on illustrating the mechanism, rather than the proportional contribution or the order of feedbacks over time. Sea ice decline comes with both loss of albedo and loss of the latent heat buffer, each of which will accelerate the temperature rise of the water of the Arctic Ocean, thus contributing to the threat that hydrates contained in sediments at the seafloor of the Arctic Ocean will be destabilized, which in turn threatens to cause eruption of huge amounts of methane. 

A further danger lies in changes occurring to wind and ocean current patterns; the temperature rise will cause stronger wind, waves and storms, as well as deformation of the Jet Stream. In addition, the temperature rise causes loss of reflectivity of clouds and more ocean stratification, exacerbated by more freshwater accumulating at the surface of oceans, due to stronger ice melting, due to heavier runoff from land and rivers and due to changes in wind patterns and ocean currents and circulation. In the North Atlantic, there is the additional danger that formation of a freshwater lid will cause huge amounts of ocean heat to be pushed into the Arctic Ocean and enter the atmosphere as sea ice disappears. 

Further developments

Furthermore, developments such as rising emissions from industry, transport, land use, forest fires and waste fires, ocean acidification and reductions in sulfur emissions can all contribute to further acceleration of the temperature rise.

Climate Emergency Declaration

The situation is dire and the precautionary principle calls for rapid, comprehensive and effective action to reduce the damage and to improve the situation, as described in this 2022 post, where needed in combination with a Climate Emergency Declaration, as discussed at this group.



Links

• Moistening Atmosphere
https://arctic-news.blogspot.com/p/moistening-atmosphere.html

• Did the climate experience a Regime Change in 2023?

• NOAA - Physical Sciences Laboratory
https://psl.noaa.gov

• Arctic Sea Ice Alert

• Will there be Arctic sea ice left in September 2023?
• Feebacks in the Arctic
https://arctic-news.blogspot.com/p/feedbacks.html

• Jet Stream
https://arctic-news.blogspot.com/p/jet-stream.html

• Latent Heat
https://arctic-news.blogspot.com/p/latent-heat.html

• Cold freshwater lid on North Atlantic
https://arctic-news.blogspot.com/p/cold-freshwater-lid-on-north-atlantic.html

• Arctic Ocean Feedbacks
https://arctic-news.blogspot.com/2017/01/arctic-ocean-feedbacks.html

• Arctic sea ice set for steep decline
https://arctic-news.blogspot.com/2024/03/arctic-sea-ice-set-for-steep-decline.html

• Transforming Society
https://arctic-news.blogspot.com/2022/10/transforming-society.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Climate Emergency Declaration
https://arctic-news.blogspot.com/p/climate-emergency-declaration.html