Showing posts with label Laptev Sea. Show all posts
Showing posts with label Laptev Sea. Show all posts

Sunday, June 16, 2019

High Temperatures over the Arctic


Melt extent over Greenland was well over 40% on June 12, 2019.

The surface melt map that day (on the right) shows many coastal areas for which data are missing, as indicated by the grey color.

As the June 13, 2019, NASA Worldview satellite image (underneath, right) shows, snow and ice in many coastal areas has melted away.

Four nullschool images are added below. The first one shows air temperatures over Greenland as high as 22.7°C or 72.9°F on June 13, 2019, at 1000 mb. Also note the high temperatures visible over East Siberia and the East Siberian Arctic Shelf (ESAS).

A second nullschool image shows that a temperature of 0.9°C or 33.5°F was recorded at the North Pole on June 15, 2019. Temperatures above the melting point of ice have been recorded at the North Pole for some time now.

The third nullschool image shows that temperatures as high as 30.5°C or 86.8°F are forecast for June 19, 2019, near Tiksi, which is on the coast of Siberia where the Lena River flows into the Laptev Sea and the Arctic Ocean.

What causes this? As the Arctic is heating up faster than the rest of the world, the path of the jet stream is changing. On June 19, 2019, the jet stream is forecast to move from Siberia to the Laptev Sea at speeds as high as 192 km/h or 119 mph.

The satellite image shows smoke from fires getting pushed by strong winds over the Laptev Sea on June 16, 2019. Smoke settling on ice makes it darker, further speeding up the melting.
[ Temperatures over Greenland as high as 22.7°C or 72.9°F on June 13, 2019, at 1000 mb ]
[ Temperature of 0.9°C or 33.5°F at the North Pole on June 15, 2019 ]
[ temperatures as high as 30.5°C or 86.8°F are forecast for June 19, 2019, near Tiksi, Siberia ]
[ jet stream is forecast to move from Siberia to the Laptev Sea as fast as at 192 km/h or 119 mph June 19, 2019 ]
[ fires getting pushed by strong winds on June 16, 2019, over the Laptev Sea (at bottom of image)  ]
In conclusion, temperatures over the Arctic are high. Changes to the jet stream due to the rapid heating of the Arctic are causing hot air to move deep into the Arctic, including over the Laptev Sea all the way to the North Pole, while high temperatures in Siberia are warming up the water of rivers, causing warm water to flow into the Arctic Ocean.  

The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.





Sunday, November 2, 2014

Methane Erupting From East Siberian Arctic Shelf

Methane is erupting in huge amounts from the seafloor of the Arctic Ocean, as illustrated by the images below, showing methane over the East Siberian Arctic Shelf on October 31, 2014.

The top image on the right shows methane at an altitude of 19,820 feet (6,041 m), on October 31, 2014, pm, as captured by the MetOp1 satellite.

The middle image shows the location of the seas north of Siberia, and shows methane over the Arctic Ocean close to sea level, for reference.

The bottom image is an animation, starting at an altitude close to sea level and rising over 25 frames to an altitude of 19,820 feet (6,041 m).

As altitude increases, the methane can be seen emerging from the Laptev Sea at first, then spreading over further parts of the Arctic Ocean.

The yellow color indicates that methane is present at levels of 1950 ppb or higher.

High CO2 levels over Arctic Ocean

As in the previous post, an image has been added (below) showing recent carbon dioxide levels. Close to ground level (or rather sea level), mean CO2 level increased to 402 ppm on November 1, 2014 am, as measured by the MetOp-1 satellite.


The image below shows a comparison between CO2 (left) and methane (right).

[ Image added later, Ed. Click on image to enlarge ]
Above images indicate that large amounts of methane are broken down at higher latitudes on the Northern Hemisphere, especially over the Arctic Ocean.

Large methane eruptions from the seafloor of Arctic Ocean continue

The two images below [added later, ed.] further confirm the huge size of the methane erupting from the seafloor of the Arctic Ocean. The image directly below shows that levels as high as 2362 ppb were recorded on November 5, 2014 p.m.by the MetOp-1 satellite at an altitude of 14,385 ft (4,384 m) altitude. The image also shows that the methane is predominantly visible over the Arctic Ocean, further confirming that this is indeed the cause of the continued high methane levels.


The recent methane eruptions from the seafloor of the Arctic Ocean also appear to be pushing up methane levels at Mauna Loa, Hawaii, as measured by NOAA on November 6, 2014, as illustrated by the combination image below showing daily averages (left) and hourly averages (right).


Methane eruptions from Arctic Ocean seafloor look set to continue for months to come

As oceans keep warming, the Gulf Stream
will keep moving ocean heat into the Arctic Ocean, and ever more methane threatens to erupt from the seafloor of the Arctic Ocean.

The image on the right shows the huge sea surface temperature anomalies off the coast of North America and in the Arctic. Heat in the North Atlantic will take some time to travel to the Arctic Ocean, so this heat has yet to arrive there and contribute to cause further methane eruptions.

Nations are ignoring the growing dangers and keep each seeking a bigger share of a 'carbon budget', but in reality there is no carbon budget to divide. Instead, there is a huge debt built up by a joint failure of nations to act on pollution.

Increased methane eruptions from the seafloor of the Arctic Ocean threaten to further accelerate warming in the Arctic, in turn resulting in ever more methane being released, as illustrated in the image below, from an earlier post.

Methane in historic perspective

The image below shows that global methane levels have risen from 723 ppb in 1755 to 1839 ppb in 2014, a rise of more than 254%. Growth did flatten down for a few years in the early 2000s, but the overall rise does not appear to slow down.

The right-end of this graph is shown in greater detail on the image below, which also has a trendline extended to the year 2021, against a background of methane levels measured by the MetOp-1 satellite on November 2, 2014, p.m.

Note that the image used as background in the plot area has different axis labels, i.e. latitude for the vertical axis and longitude for the horizontal axis. The image below gives the levels associated with the colors on the background image, with yellow indicating levels of 1950 parts per billion (ppb) and higher.


Remember that the level of 723 ppb in 1755 was not a paleo-historic low, but instead was the high peak of a Milankovitch Cycle. The image below further illustrates this point.


And so does the image below, by Reg Morrison.


Comprehensive and effective action needed

The situation is dire and calls for comprehensive and effective action. The Climate Plan seeks emission cuts, removal of pollution from soils, oceans and atmosphere, and further action, as illustrated by the image below, from an earlier post.




Tuesday, September 30, 2014

Warm water extends from Laptev Sea to North Pole

The NOAA NESDIS image below shows sea surface temperature anomalies of well over 1ºC extending to the North Pole.


The image below gives a world view, showing SST anomalies at the top end of the scale in the Laptev Sea.


The top end of the scale on the above image is 5ºC (or 9ºF).



The visualizations above and below uses a much higher scale. Even this higher-end scale doesn't appear to fully capture the dire situation we are in.


Above image shows warm water entering the Arctic Ocean through the Bering Strait and from the North Atlantic. For months to come, the Gulf Stream will keep pushing warm water into the Arctic Ocean (i.e. water that is warmer than the water in the Arctic Ocean). It takes some time (i.e. months) for the warm water from the north Atlantic to arrive in the Arctic Ocean.

Last year, methane emissions started to become huge in October and this lasted for some six months. The image below, from an earlier post, shows methane eruptions from the seafloor of the Arctic Ocean on October 16/17, 2013.


The image below, from another earlier post, shows methane eruptions from the seafloor of the Arctic Ocean on October 31, 2013.


The image below, from yet another earlier post, shows methane levels as high as 2662 parts per billion on November 9, 2013.


This year, there is even more ocean heat present, especially in the north Atlantic and the north Pacific. On September 29, 2014, methane levels as high as 2641 parts per billion were recorded and it looks like worse is yet to come.


The video below, Sea floor methane hydrate climate hazard, is an extract produced by Peter Carter from a presentation by Miriam Kastner, uploaded 7 August 2008 at Youtube.



The situation is dire and calls for comprehensive and effective action, as discussed at the Climate Plan blog.


Saturday, February 22, 2014

Massive Methane Concentrations over the Laptev Sea

High methane concentrations (2351 ppb at 19,819 ft altitude) are recorded on February 21, 2014. Analysis shows that these concentrations are the result of massive methane eruptions from the seafloor of the Arctic Ocean.

[ click on image to enlarge ]
The bottom-left inset on above image shows methane readings on February 21st, 2014, p.m. only and only for 7 layers with altitudes from 469 mb to 586 mb. At 469 mb (19,819 ft), a reading of 2351 ppb was recorded, i.e. 31% higher than the highest mean that day (which was 1796 ppb at 586 mb).

Much of the methane showing up over Asia on the main image does not show up at altitudes where 2300+ ppb levels were recorded that day, indicating that these high readings were indeed caused by releases from the seafloor of the Arctic Ocean.

The methane may have been released from areas closer to the North Pole. The methane may have traveled underneath the sea ice and entered the atmosphere over the Laptev Sea where the sea ice is thin or fractured enough to allow the methane to pass through the ice.

The Naval Research Laboratory image below shows the sea ice thickness as at February 21st, 2014.


On the other hand, the sea ice is not much thinner at the Laptev Sea, compared to areas closer to the North Pole, so the methane may well have originated from the Laptev Sea, which could indicate further destabilization of methane hydrates in the area, which is very worrying given the large quantities of methane estimated to be contained in sediments there in the form of free gas and hydrates. In addition, the Laptev Sea is very shallow, resulting in much of the releases from the seafloor there entering the atmosphere without getting decomposed by microbes in the water.

The situation may be even worse than this, as no methane data have shown up for the past few days at the NOAA website. We'll keep monitoring the situation and add updates later.

Update 1.: The image below shows the situation on February 22nd, 2014, when a peak reading of 2383 ppb was recorded (at 469 mb, or 19,819 ft altitude). This peak reading is about ⅓ higher than the highest mean that day (which was 1795 ppb at 586 mb).


Above image shows that the highest concentrations have moved somewhat closer to the North Pole along the faultline crossing the Arctic Ocean. Also, very high methane concentrations are showing up again over Baffin Bay.

This supports this post's earlier conclusion, i.e. that methane hydrate destabilization is taking place closer to the North Pole and that the methane enters the atmosphere where the sea ice is sufficiently thin or fractured to allow the methane to pass through.

The image below shows what appears to have set off this destablization, i.e. an earthquake with a magnitude of 5 on the Richter Scale in the Greenland Sea on February 20th, 2014.

[ click on image to enlarge ]
The image below shows the massive methane eruptions from the seafloor of the Arctic Ocean over February 21st and 22nd.


Update 2.: The image below shows methane readings as at February 23rd, 2014.



The image indicates that methane is being released over a large distance along the faultline crossing the Arctic Ocean. Note that the image only shows the methane that has entered the atmosphere, not the methane underneath the sea ice. Much methane may also have been released closer to Greenland along the faultline, but couldn't penetrate the sea ice at the location where it was released and therefore moved inderneath the sea ice with currents along the edges of Greenland, to enter the atmosphere where the sea ice was sufficiently thin or fractured in Baffin Bay, as well as in Hudson Bay and also along the east coast of Greenland (opposite Iceland).

The image below shows the combined methane concentrations for February 21-23, 2014, with peak readings added for each day.

[ click on image to enlarge ]
Note that, compared to the above image, the top image at "The Biggest Story of 2013" shows more methane and also shows a higher peak (2399 ppb on December 29th, 2013). So, the situation may look less threatening now, but the story remains the same, with further indications that much of the methane showing up over Baffin Bay, over Hudson Bay, and over Fram Strait (all the way down to the southern tip of Greenland) may actually originate from areas along the Gakkel Ridge fault line. The releases that started in full back in early October 2013 are still continuing, and the situation again indicates that large releases can be triggered by earthquakes.

What may have saved the day is a sudden drop in sea surface temperature anomalies along the faultline that crosses the Arctic Ocean, as illustrated by the Climate Reanalyzer image below that compares the situation on February 18 (left) with the situation on February 24 (right). The image also shows the huge sea surface temperature anomalies off the east coast of North America. Much of this warm water will be carried along with the Gulf Stream and reach the Arctic Ocean later this year.


The drop in sea surface temperature along the faultline looks to have been caused by a drop in surface temperature anomalies, as illustrated by the map of February 25th, 2014 (left on the image below). The situation may not last long, though, as illustrated by the forecast for February 27th, 2014 (on the right).


Also note that very low temperature are forecast for February 27th all along the east coast of North America. As the image below shows, people in some parts of Greenland may enjoy the same temperatures as people in the deep south of the United States on Febuary 27th, 2014.



As illustrated by above image, the weather is getting more extreme and there is a clear pattern, i.e. the Arctic has been warmer than it used to be and temperatures in the Arctic are rising several times faster than global temperatures. This decreases the temperature difference beteen the areas to the north and to the south of the Jet Stream, which in turn decreases the speed at which the Jet Stream circumnavigates the globe, resulting in the Jet Stream becoming more wavier and increasing opportunities for cold air to descend from the Arctic and for warm air to enter the Arctic. In short, the situation in the Arctic is getting worse, increasing the danger of large methane releases from the Arctic seafloor. This spells bad news for the future and calls for comprehensive and effective action as discussed at the Climate Plan blog.

Thursday, November 21, 2013

High Methane Levels all over Arctic Ocean

High levels of methane were recorded all over the Arctic Ocean on November 19, 2013, as illustrated by the image below. The image also shows that most methane was present over the fault line that crosses the Arctic Ocean (as also indicated on the inset).

[ Click on image to enlarge ]
A recent post described that more methane may actually be present closer to the North Pole than IASA images may indicate. This because measurements can be obscured by clouds. If no data are recorded over a certain area, no methane levels will show up on images for the respective area. This was the case on November 17, 2013, when the Arctic Ocean was quite cloudy, and little or no data were recorded for the center of the Arctic Ocean.

On November 19, 2013, the sky was much clearer, resulting in a lot of data from the center of the Arctic Ocean, as also illustrated by the image below.

In conclusion, high methane levels can actually be present all over the Arctic Ocean, even when images only show high levels in some areas.

An earlier post described how the sea ice can act as a shield, especially when the ice is more than one meter thick.

How does this rhyme with the above image? The November 19, 2013, Naval Research Laboratory image on the right shows that the sea ice was meters thick in some locations where methane shows up on the top image.

So, is methane actually rising from the seafloor of the entire Arctic Ocean, perforating even the thickest ice and entering the atmosphere all across the Arctic Ocean? Or, if thick sea ice does act as a shield, how did methane appear all over the Artic Ocean in such huge quantities?

The images on the right indicate that the methane may actually only rise from the seafloor in a few locations.

As the top image on the right says, the Coriolis Effect can make methane over the Laptev Sea end up over Canada a few days later. So, methane may not be perforating the sea ice in the north of Canada, but may instead originate from elsewhere in the Arctic.

The animation underneath shows methane readings from November 9 to 19, 2013, with each of the 20 frames covering a period of 24 hours and with frames following each other up 12 hours after each other. As the animation shows, it looks like methane is predominantly entering the atmosphere at specific locations, most notably along the fault line that crosses the Arctic Ocean.

It may well be that this methane ends up all the way in Baffin Bay, to the left of Greenland. Since the Greenland ice sheet is 3 kilometers (1.9 miles) thick, this may form a natural barrier that keeps the methane there, also helped by winds rising vertically from Baffin Bay to well above Greenland's mountains. Methane may also be traveling under the sea ice, all the way from the Gakkel Ridge and the Laptev Sea right to Baffin Bay.

On the other hand, it could also be that hydrates underneath the sea bed of Baffin Bay itself have become destabilized and that, since the ice over Baffin Bay is rather thin, methane has no problem perforating the ice and is entering the atmosphere there in huge quantities.

Either way, the end-conclusion is that the methane that is now showing up all over the Arctic Ocean, is rising from the seafloor, due to destabilization of sediments that hold huge amounts of methane in the form of free gas and hydrates. As warming in the Arctic continues to accelerate, the danger is that this will cause more methane to rise from the seafloor and that the methane itself will contribute to warming in the Arctic, in a deadly spiral set to cause abrupt climate change at a devastating scale.



Tuesday, November 19, 2013

Arctic Methane Release and Rapid Temperature Rise are interlinked

The image below shows methane readings on November 17, 2013 p.m.

[ click on image to enlarge ]
Very high methane readings are present over the Laptev Sea, the East Siberian Sea and the Beaufort Sea. The situation may be even worse than what it seems at first glance. The pointed shape in the Laptev Sea doesn't imply low methane levels in that area. The IASI (Infrared Atmospheric Sounding Interferometer) instrument measuring methane only covers a certain width. The pointed shapes that show up on above image and the bottom inset, are areas where no measurements were taken, resulting from the way the polar-orbiting satellite circum-navigates the globe, as pictured on the top inset. These pointed shapes are visible as light-grey areas on the image below.

Additionally, no data were available for the areas colored darker grey on above image. At lower altitudes, this absence of data can be due to mountains in the area. It can also be that measurements are obscured by clouds, in which case no data are visible for the respective area; again, this doesn't imply that no methane was present there.

So, while there are no data for some areas in the Laptev Sea on Nov. 17, the conclusion must noretheless be that methane was actually present at very high levels all the way from the Laptev Sea to the East Siberian Sea. This conclusion is supported by data from earlier days, e.g. as shown in this post.

Therefore, the situation in the Laptev Sea is worse that it looks at first glance and levels may actually have been even higher on Nov. 17 than the peak reading of 2304 ppb that was recorded on that day. Similarly, more methane may actually be present closer to the North Pole than is showing up on above images.

Why methane is rising from the Arctic seabed

For some time now, huge amounts of methane have been released from the seabed of the Arctic Ocean, reaching the atmosphere at levels of up to 2662 ppb (on November 9, 2013). What caused this? Before examining this further, let's first go back to what was said in an earlier post about warm water off the coast of North Anmerica.

A dust storm approaches Stratford, Texas, in 1935. From: Wikipedia: Dust Bowl
During the 1930s, North America experienced a devastating drought affecting almost two-thirds of the United States as well as parts of Mexico and Canada. The period is referred to as the Dust Bowl, for its numerous dust storms.

Rapid creation of farms and use of gasoline tractors had caused erosion at massive scale.

Extensive deep plowing of the virgin topsoil of the Great Plains in the preceding decade had removed the natural deep-rooted vegetation that previously kept the soil in place and trapped moisture even during periods of drought and high winds.

So, when the drought came, the dust storms emerged. But what caused the drought?

A 2004 study concludes that the drought was caused by anomalous tropical sea surface temperatures (SST) during that decade and that interactions between the atmosphere and the land surface increased its severity (see image above right with SST anomalies).

As the above chart shows, SST anomalies in the days of the Dust Bowl were not greater than 1°C. It is in this context that the current situation in the Arctic must be seen. In 2013, SST anomalies of 5°C or more showed up in virtually all areas in the Arctic Ocean where the sea ice disappeared; some areas are exposed to sea surface temperature anomalies even higher than 8°C (14.4°F), as discussed in the post Arctic Ocean is turning red.


As the above Naval Research Laboratory image shows, strong winds can push a lot of sea ice out of the Arctic Ocean. The resulting absence of sea ice can disrupt vertical sea currents that would otherwise cool the seabed. Furthermore, strong winds can boost warming of the seabed of the Arctic Ocean by mixing warm surface water down the vertical water column. Such feedbacks have been discussed in earlier posts such as the Diagram of Doom. Changes that take place in the Arctic can also cause extreme weather patterns elsewhere, as discussed in an earlier post on changes to the Polar Jet Stream.

Indeed, events can be closely interlinked and the world is now stumbling from one extreme weather event into another. Moreover, things look set to get worse every year. And this can in turn make things even worse in the Arctic. Water off the coast of North America, after reaching 'Record Warmest' temperatures in July 2013, proceeded to travel to the Arctic Ocean, where it is now warming up the seabed.
NOAA: part of the Atlantic Ocean off the coast of North America reached record warmest temperatures in July 2013
Below, Malcolm Light explains:

Pollution clouds pouring eastwards off the coast of Canada and the United States are the main culprits in heating the Gulf Stream as this region has the highest oceanic evaporation on Earth.


While the mean speed of the Gulf Stream is 4 miles per hour (6.4 km/hour or 1.78 metres/second), the water slows down as it travels north.

In the much wider North Atlantic Current, which is its North Eastern extension, water flows at about 0.51 metres/second (3.5 times slower), while the West Spitzbergen (Svalbard) current flows at about 0.35 metres/second (5 times slower).

Consequently, it will take quite some time for the summer-heated Gulf Stream waters to reach the Laptev Sea.

In addition, because the Gulf Stream does a closed circuit in the tropical Atlantic, passing close to West Africa (Canary Current) and returning back to the Gulf along the hurricane tracks (North Equitorial Current), it is able to continuously feed hot water into the North Atlantic Current over a very long time period.

This explains why methane is continuously boiling off the subsea methane hydrates from the Eurasian Basin and Laptev Sea during September to November this year and will continue to be emitted past January 2014.

How much will temperatures rise?

The atmospheric temperature increase in Australia this year (0.22oC) indicates that in 10 years it will exceed 2.2oC and in 30 to 40 years, 6.6oC to 8.8oC.

This is the same as the predicted temperature increase from the Arctic methane build up and will lead to total global deglaciation and our extinction by the middle of this century.

There is in addition a delayed carbon dioxide and methane temperature anomaly of 12oC to 20oC.  The 20oC  methane delayed temperature anomaly is the same as the temperature anomaly of the hot clouds that have been blowing around the Arctic this year, indicating that the Arctic has almost caught up with the methane delayed global warming heating.

The stage is therefore set for a giant firestorm, drought and sea level rise mostly caused by the uncontrolled build up of methane in the atmosphere due to the carbon dioxide induced global warming destabilization of the Arctic permafrost and subsea methane hydrates.

So, what to do?

The power, prestige and massive economy of the United States have been built on cheap and abundant fossil fuels and Canada is now trying to do the same. Will the US and Canada, in the short time frame we have left (3 decades), be able to eliminate their extreme carbon footprints? Note that Australia, Saudi Arabia and the United Arab Emirates have similar extreme carbon footprints as well. An additional problem is that reducing emissions from coal-fired power plants will also reduce sulfur emissions that currently mask the full wrath of global warming.

A Comprehensive Climate Plan must include ways to reduce methane levels

What we have got to do is eliminate as much of the atmospheric methane by whatever means we are able to devise,  to bring its concentration down to about 750 ppb. This level will eliminate the methane delayed temperature anomaly and give the massive industrial nations a little leaway to get their houses in order.

All the scientific expenditure and ingenuity of the major industrial nations should be engaged in developing methods of breaking down atmospheric methane without burning it. Methods of increasing the tropospheric and stratospheric hydroxyl concentrations and using radio - laser systems such as the Alamo - Lucy projects and their applications to HAARP must be developed and tested with the utmost urgency as should local methods of converting carbon dioxide and methane via catalysts into other products. We have to get rid of this methane monster before it devours us all. A French group of scientists and engineers have started work on the Alamo-Lucy projects in Europe. If we fail to reduce the fast growing methane content of the atmosphere in the next few decades we are going to go the same way as the dinosaurs.

I cannot emphasise more, how serious humanity’s predicament is and what we could do to try to prevent our certain extinction if we continue down the present path we are following. If we compare ourselves to the Titanic we are only moments away from hitting the iceberg.


Three more images are added to further illustrate Malcolm Light's words. The above image highlights how much temperatures have been rising in the Arctic over the past few decades. In above image, anomalies are visualized by latitude, but are averaged by longitude globally, masking even higher anomalies that can be experienced at specific areas along the same longitude. At times, some areas in the Arctic do already experience anomalies of over 20°C, as also shown by the image below. 

Finally, the image below, from a post at the methane-hydrates blog



All this calls for comprehensive and effective action, as described at the Climate Plan blog


Related

- Causes of high methane levels over Arctic Ocean

- Climate Plan

- Horrific amounts of methane over Laptev Sea

- Methane Levels going through the Roof

- Unfolding Methane Catastrophe

- Methane Release caused by Earthquakes

- Temperature Rise

- North Hole

- The LUCY project

- The Alamo Project