Sunday, February 17, 2019

Global New Deal

What are your ideas for a Global New Deal? Discuss the points below!

• 100% clean, renewable energy ASAP
• support vegan-organic food
• support reforestation/afforestation
• support clean building material
• support solid state cooling
• ban single-use plastic
• turn biowaste into biochar
• enhance mineral weathering
• brighten marine clouds
• more (discuss it, see below!)

Thursday, February 14, 2019

Dictator knocking at the door

Dictator knocking at the door
For more than a decade, I've been calling for polluting emissions to be cut by 80% by 2020. Yes, I know, it's almost 2020 now and growth in greenhouse gas levels is accelerating. We're running out of time to make the necessary changes.

There's a dictator knocking at the door. The dictator is saying that he will stop emissions. He plans to do so by taking entire cities by storm. He is not going to ask you for permission first, he is not out to negotiate and he does not plan to take any prisoners.

The Dictator is called Climate Change

That dictator is not a person, but he does have a name. That dictator is called Climate Change and he is real.

For some time, he has been knocking at your door louder and louder. He plans to come in now. He has already entered your life and he is out to destroy the world as you know it.

He plans to keep the lights switched off and stop the pumps working that now make water come out of your taps. He plans to ruin the roads used by delivery trucks that now keep the shelves in the shops stocked.

Action is needed urgently. If you keep waiting until the year 2020, before starting to reduce your emissions, the dictator will do it for you. He will stop some emissions, but the pollution will not stop and the temperature will not come down.

Temperature rise

Why will temperatures not come down? Some emissions contain sulfates that have until now hidden the full wrath of global warming. As these sulfates fall out of the air, there will be severe additional warming.

By how much could temperatures rise? How fast? Temperatures could rise by as much as 10°C or 15°F in a matter of years, due to a combination of warming elements as depicted in the image on the right.


Pollution will not stop either. As fires, storms and flooding keep destroying entire cities, more pollution will occur and more toxic materials will be left behind. As society comes to a stop, nobody will come to clean things up. Nuclear power plants may melt down without anyone even showing up to make an effort to cool the spent fuel rods.


The dictator plans to close everything down and, without action, there will be even more pollution and even higher temperatures, with even more firestorms raging through forests and with heatwaves, cold-snaps and storms getting stronger and more extreme. People will have no food, water or medicine, while diseases go rampant and gangs and warlords loot and devastate the few liveable areas left.

We cannot afford to wait any longer with taking action. The dictator is knocking at the door right now and he's got one foot in the door already.

The video below, Countdown to Extinction, is a visualization of near-term human extinction by Ken Avidor.

The situation is dire and only comprehensive, effective and radical action right now can make a difference.

Sunday, February 10, 2019

CO₂ levels reach another record high

CO₂ levels just reached another record high. On February 9, 2019, an average daily CO₂ level of 414.27 ppm was recorded at Mauna Loa, Hawaii.

The image below shows hourly (red circles) and daily (yellow circles) averaged CO₂ values from Mauna Loa, Hawaii, for the last 31 days.

As the image shows, average hourly levels well above 414 ppm were recorded on January 21, 2019, but no daily average was recorded for that day. February 9, 2019, was the first time an average daily CO₂ level above 414 ppm was formally recorded and such levels have not been reached earlier over the past 800,000 years, as illustrated by the image below.

CO₂ levels can be expected to keep rising further this year to reach a maximum level in April/May 2019.

How much can CO₂ levels be expected to grow over the next decade? 

A recent Met Office forecast expects annual average CO₂ levels at Mauna Loa to be 2.75 ppm higher in 2019 than in 2018. The image below shows NOAA 1959-2018 CO₂ growth data (black) and uses this Met Office forecast used for 2019 (brown). The growth figures for 2018 and 2019 are spot on a trend that is added in line with an earlier analysis.

Strong CO₂ growth is forecast for 2019, due to a number of factors including rising emissions, the added impact of El Niño and less uptake of carbon dioxide by ecosystems. A recent study warns that global warming will enhance both the amplitude and the frequency of eastern Pacific El Niño events and associated extreme weather events. Another recent study warns that, while the terrestrial biosphere now absorbs some 25% of CO₂ emissions by people, the rate of land carbon uptake is likely to fall with reduced soil moisture levels in a warmer world. Furthermore, fire hazards can be expected to grow due to stronger winds and higher temperatures, each of which constitutes a factor on their own, while they jointly also increase two further factors, i.e. drying out of soils, groundwater and vegetation, and the occurrence of more lightning to ignite fires and to also cause more ground-level ozone that further deteriorates vegetation health. 

The warming impact of CO₂ can therefore be expected to increase over the next decade, given also that the warming impact of CO₂ reaches a peak ten years after emission. The earlier analysis furthermore warns about strong growth in CO₂ emissions due to fires in forests and peatlands, concluding that CO₂ emissions could cause an additional global temperature rise of 0.5°C over the next ten years.

Rise in methane is accelerating

Methane levels are also rising and this rise is accelerating, as illustrated by the image below.

The graph shows July 1983 through October 2018 monthly global methane means at sea level, with added trend. Note that higher methane means can occur at higher altitude than at sea level. On Sep 3, 2018, methane means as high as 1905 ppb were recorded at 307 mb, an altitude at which some of the strongest growth in methane has occurred, as discussed in earlier posts such as this one.

What does the historic record tell us? 

A 10°C higher temperature is in line with such high greenhouse gas levels, as illustrated by the graph below, based on 420,000 years of ice core data from Vostok, Antarctica, from an earlier post.

Tipping points

The threat is that a number of tipping points are going to be crossed, including the buffer of latent heat, loss of albedo as Arctic sea ice disappears, methane releases from the seafloor and rapid melting of permafrost on land and associated decomposition of soils, resulting in additional greenhouse gases (CO₂, CH₄, N₂O and water vapor) entering the Arctic atmosphere, in a vicious self-reinforcing cycle of runaway warming.

A 10°C rise in temperature by 2026?

Above image shows how a 10°C or 18°F temperature rise from preindustrial could eventuate by 2026 (from earlier post).

The situation is dire and calls for comprehensive and effective action, as described at the Climate Plan.


• NOAA Mauna Loa CO2 annual mean growth rates 1959-2018

• NOAA  monthly global methane means at sea level
• Faster CO₂ rise expected in 2019

• Increased variability of eastern Pacific El Niño under greenhouse warming, by Wenju Cai et al.

• El Niño events will intensify under global warming, by Yoo-Geun Ham

• Large influence of soil moisture on long-term terrestrial carbon uptake, by Julia Green et al.

• 2018 Continues Record Global Ocean Warming, by Lijing Cheng et al.

• Blue Ocean Event

• What Does Runaway Warming Look Like?

• Extinction

• Climate Plan

Thursday, February 7, 2019

Extinction Alert

Above image confirms an earlier analysis that it was 1.73°C (or 3.11°F) warmer than preindustrial in 2018. The image also shows that it could become 1.85°C (or 3.33°F) warmer in 2019.

This according to the non-linear trend (red line) that follows from the data and also follows the data better than the blue linear trend, which also follows from the data, but is out of line with the recent temperature rise.

Data are adjusted for a number of reasons. The first reason is a baseline issue. At the Paris Agreement, nations pledged to ensure that the temperature rise would not cross 1.5°C above preindustrial. Accordingly, data should reflect a 1750 baseline. The default baseline for the NASA Land+Ocean Temperature index (L-OTI) is 1951-1980. The above image features two maps, one showing the 2018 temperature rise compared to 1951-1980 (left) and another map showing the 2018 temperature rise compared to 1885-1915 (right). The difference is 0.25°C. In other words, using 1900 as a baseline would require a 0.25°C adjustment.

That figure of 0.25°C is conservative, firstly because 2018 was a La Niña year. Furthermore, as above image illustrates, the period from 1900 to 1920 was almost 0.3°C below 1951-1980. Anyway, this conservative figure of 0.25°C is used in this analysis. Additional adjustment of the data is needed, in order to reflect a 1750 baseline. The total baseline adjustment could add up to as much as 0.55°C, as discussed in an earlier post.

Furthermore, the large grey area in the Arctic on above map on the right reflects a lack of measurements in the Arctic that go back to 1900. Simply excluding those data would downplay the temperature rise, since temperatures have been rising faster in the Arctic than in the rest of the world. An additional adjustment of 0.1°C therefore seems appropriate.

Finally, NASA L-OTI data are for air temperatures over land and for sea surface water temperatures for oceans. To get an idea how much the temperature of the atmosphere has risen close to the surface, it makes more sense to use air surface temperature over oceans, rather than sea surface water temperatures, resulting in another additional adjustment of 0.1°C.

The total adjustment adds up to 0.75°C, resulting in the graph below.

The final step in this analysis is a projection into the future. In the image at the top, the trend is extended to the year 2033, but the vertical axis doesn't go beyond 5°C warming. Why 5°C? A recent study looked at plant temperature tolerances and concluded that extinction will already occur far earlier than when upper tolerance levels were reached for individual species, since "loss of one species can make more species disappear (a process known as ‘co-extinction’), and possibly bring entire systems to an unexpected, sudden regime shift, or even total collapse. There was a small group of species with large tolerance limits and remarkable resistance to environmental change, but even they could not survive co-extinctions. In fact, their extinction was abrupt and happened far from their tolerance limits and close to global biodiversity collapse at around 5°C of heating."

Importantly, the image at the top doesn't even depict the worst-case scenario, in the sense that the non-linear trend merely follows from the data, i.e. it doesn't take into account tipping points such as abrupt disappearance of the Arctic sea ice or sudden eruptions of methane from the seafloor of the Arctic Ocean.

A rapid 5°C rise could occur if an influx of warm salty water triggered methane eruptions from the seafloor of the Arctic Ocean. Combined with snow and ice loss, it could rapidly raise temperatures by 1.5°C, which increases water vapor. If cloud feedback is strongly positive, water vapor feedback can lead to 3.5 times as much warming, so these warming elements alone could cause 5°C warming within years. And then, of course, there are further warming elements.

The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.


• Co-extinctions annihilate planetary life during extreme environmental change, by Giovanni Strona and Corey Bradshaw (2018)

• National Aeronautics and Space Administration (NASA), Goddard Institute for Space Studies (GISS), Surface Temperature Analysis, Land+Ocean Temperature index (L-OTI)

• As El Niño sets in, will global biodiversity collapse in 2019?

• How much warmer is it now?

• How much warming have humans caused?

• IPCC seeks to downplay global warming

• Climate Plan

• Extinction