Showing posts with label Paris Agreement. Show all posts
Showing posts with label Paris Agreement. Show all posts

Friday, March 13, 2020

2°C crossed

It's time to stop denying how precarious the situation is.

Remember the Paris Agreement? In 2015, politicians pledged to hold the global temperature rise to well below 2°C above pre-industrial levels and pledged they would try and limit the temperature rise to 1.5°C above pre-industrial levels. Well, an analysis by Sam Carana shows that it was already more than 1.5°C above pre-industrial when the Paris Agreement was reached.

In Sam Carana's analysis, the year 1750 is used as the baseline for pre-industrial. The analysis shows that we meanwhile have also crossed the 2°C threshold (in February 2020) and that the temperature rise looks set to rapidly drive humans and eventually most if not all species on Earth into extinction.

Yet, our politicians refuse to act!

Accelerating temperature rise

Indeed, there are indications that the recent rise is part of a trend that points at even higher temperatures in the near future, as also discussed at this analysis page. Polynomial trends can highlight such acceleration better than linear trends. The 1970-2030 polynomial trend in the image below is calculated over the period from 1880 through to February 2020. The trend points at 3°C getting crossed in 2026.

In above image, the January 2020 and February 2020 anomalies are above the trend. This indicates that the situation might be even worse.

A polynomial trend calculated over a shorter period can highlight short-term variation such as associated with El Niño events and can highlight feedbacks that might otherwise be overlooked. The 2010-2022 trend in the image below is calculated with 2009-Feb.2020 data. The trend indicates that 2°C was crossed in February 2020, and looks set to keep rising and cross 3°C in 2021, more specifically in January next year, which is less than a year away.

Such a steep rise is in line with unfolding developments that are causing the aerosol masking effect to fall away, such as a decrease in industrial activity due to COVID-19 fears. The image below shows a potential rise of 18°C or 32.4°F from 1750 by the year 2026.

Above image was posted more than a year ago and illustrates that much of this potentially huge temperature rise over the next few years could eventuate as a result of a reduction in the cooling now provided by sulfates. In other words, a steep temperature rise could result from a decline in industrial activity that is caused by fears about the spread of a contagious virus, as also discussed in the video at an earlier post.

The situation is dire and calls for immediate, comprehensive and effective action, as described in the Climate Plan.


• Analysis: Crossing the Paris Agreement thresholds

• A rise of 18°C or 32.4°F by 2026?

• How much warming have humans caused?

• Arctic Ocean January 2020

• Climate Plan

In the video below, Guy McPherson discusses the situation.

Sunday, November 24, 2019

The breach of the Paris Agreement

By Andrew Glikson
Earth and climate scientist
Australian National University

Since its inception the Paris Agreement has been in question due to, among other:
  • its broad definition, specifically holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels;
  • its non-binding nature; and 
  • accounting tricks by vested interests.
The goal assumes pre-determined limits can be placed on greenhouse gas levels and temperatures beyond which they would not continue to rise. Unfortunately these targets do not appear to take account of the amplifying positive feedback effects from land and oceans under the high cumulative greenhouse gas levels and their warming effects. Thus unfortunately the current high CO₂ levels of about 408 ppm and near-500ppm CO₂-equivalent (CO₂+methane+nitrous oxide) would likely continue to push temperatures upwards.

Significant climate science evidence appears to have been left out of the equation. The accord hinges on the need to reduce emissions, which is essential, but it does not indicate how further temperature rise can be avoided under the conditions of a high-CO₂ atmosphere, which triggers carbon release, unless massive efforts at sequestration (drawdown) of greenhouse gases are undertaken. Inherent in global warming are amplifying positive feedbacks, including albedo (reflection) decline due to the melting of ice and the opening of dark water surfaces, increased water vapor contents of the atmosphere in tropical regions which enhances the greenhouse effect, reduced sequestration of CO₂ by the warming oceans, desiccation of vegetation, fires, release of methane from permafrost and other processes. This means that even abrupt reductions in emissions may not be sufficient to stem global warming, unless accompanied by sequestration of greenhouse gases from the atmosphere to a lower level, recommended as below 350 ppm CO₂ by James Hansen, the leading climate scientist.

The world is on track to produce 50% more fossil fuels than can be burned before reaching the limit prescribed by the Paris Agreement, with currently planned coal, oil and gas outputs making the Paris Agreement goal impossible. Projected fossil fuel production in 2030 being more than is consistent with 2°C, and 120% more than that for 1.5°C.

Unbelievably, according to the International Monetary Fund, “In 2017 the world subsidized fossil fuels by $5.2 trillion, equal to roughly 6.5% of global GDP”, which is more than the total the world spends on human health. Such subsidies cannot possibly be consistent with the Paris Agreement. The pledge to end fossil fuel subsidies by 2025 by the G7 nations, with exceptions by the UK and Japan, may come too late as global CO₂ concentrations, already intersecting the stability limits of the Greenland and Antarctic ice sheets, are rising at a rate of 2 to 3 ppm per year, the highest in many millions of years.

Despite the scientific consensus regarding the anthropogenic origin of global warming, the world’s biggest fossil fuel corporations are taking a defiant stance against warnings that reserves of coal, oil and gas are already several times larger than can be burned if the world’s governments are to meet their pledge to tackle climate change. ExxonMobil said new reserves in the Arctic and Canadian tar sands must be exploited. Peabody Energy, the world’s largest private coal company, said global warming was “an environmental crisis predicted by flawed computer models”. Glencore Xstrata said that governments would fail to implement measures to cut carbon emissions. The World Bank and Bank of England have already warned of the “serious risk” climate action poses to trillions of dollars of fossil fuel assets.

Not to mention the risks to the living Earth and its billions of inhabitants!

The apparent neglect of scientific advice is not an isolated instance. It is not uncommon that climate reports are dominated by the views of economists, lawyers, bureaucrats and politicians, often overlooking the evidence presented by some of the world’s highest climate science authorities. Whereas the IPCC reports include excellent and comprehensive summaries of the peer-reviewed literature, the summaries for policy makers only partly represent the evidence and views of scientific authorities in the field, including those who have identified global warming in the first place.
Figure 2. from: James Hansen, data through June 2019

There exists a tendency in the media to report averages, such as average global temperature values, rather than the increasingly-common high zonal, regional and local anomalies.

For example, the annual mean global temperature rise of for 2018 is about one third the Arctic mean temperature rise (Fig. 2). Given that developments in the Arctic bear major consequences for climate change, the global mean  does not represent the seriousness of the climate crisis.

Another example is the way extremes weather events are reported as isolated instances, neglecting the rising frequency and intensity of hurricanes, storms, fires and droughts, indicated in frequency plots (Fig 3.).

Figure 3. Rise in geophysical, meteorological, hydrologocal and climatological events. Munich RE
It is not until international and national institutions take full account of what climate science is indicating that a true picture of the climate crisis will be communicated to the public.

Andrew Glikson
Dr Andrew Glikson
Earth and climate scientist
Australian National University

- The Archaean: Geological and Geochemical Windows into the Early Earth
- The Asteroid Impact Connection of Planetary Evolution
- Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia
- Climate, Fire and Human Evolution: The Deep Time Dimensions of the Anthropocene
- The Plutocene: Blueprints for a Post-Anthropocene Greenhouse Earth
- Evolution of the Atmosphere, Fire and the Anthropocene Climate Event Horizon
- From Stars to Brains: Milestones in the Planetary Evolution of Life and Intelligence

Saturday, October 13, 2018

IPCC keeps feeding the addiction

The IPCC just released its report Global Warming of 1.5°C. Things aren't looking good and instead of providing good advice and guidance, the IPCC bends over backward in efforts to keep feeding the addiction.

The Paris Agreement constitutes a joint commitment by all nations of the world to keep the temperature rise below 1.5°C. The IPCC should have honored this commitment by explaining that the situation is dire and by pointing at action to be taken to improve the situation.

Instead, the IPCC bends over backward to make it look as if temperatures were lower than they really are, in an effort to make it look as if there were carbon budgets to be divided, and polluters should be allowed to keep polluting until those budgets had run out. This is like saying that drug junkies who cause damage and are deeply in debt, should be handed over more OPM (other people's money, in this case the future of all people and other species).

In reality, there is no carbon budget to be divided, there is just a huge carbon debt to be repaid. The urgency and imperative to act is such that progress in one area cannot make up for delays elsewhere. The best policies should be implemented immediately, and everywhere across the world.

Use of terms such as trade-offs, net-outcomes, off-sets, carbon budgets and negative emissions is misguided and highly misleading. Policies based on giving and trading in permits to pollute are less effective than local feebates, i.e. polices that impose fees on sales of polluting products and then use the revenues to support rebates on the better alternatives sold locally.

Here are twelve instances where the IPCC is misleading:
  1. Changing the baseline set at the Paris Agreement
    While the Paris Agreement is clear that pre-industrial is to be used as baseline, the IPCC has instead chosen to use 1850-1900, a period when the Industrial Revolution had long started. This compromises the entire Paris Agreement and thus the integrity of us all. Temperatures may well have been 0.3°C higher in 1900 than in 1750, as depicted in above image in the light blue block. Add up the warming elements and it may well be that people have caused more than 2°C of warming already and that we're facing warming of more than 10°C by 2026.

  2. Misleading calculations and wording
    The IPCC suggests that warming caused by people is 1.0°C (±0.2°C), likely to reach 1.5°C between 2030 and 2052. To reach these numbers, the IPCC used misleading calculations in efforts to downplay how dangerous the situation is, as discussed further below. As an example of misleading wording, the IPCC says it has high confidence that 1.5°C won't be reached until 2030 if warming continues to increase at the current rate of 0.2°C per decade. Sure, if warming was 1.0°C and if it was indeed warming at 0.2°C per decade and if that warming would continue at 0.2°C per decade, yes, then it would take 25 years for warming to reach 1.5°C. But the reality is that warming is already far more than 1.0°C and that it is accelerating. That makes it misleading to associate high confidence with the suggestion that warming will not reach 1.5°C until 2030. The use of a straight line (linear trend) is misleading in the first place, since warming is accelerating. The use of a straight line is even more misleading when such a straight line is then used to make projections into the future and qualifications such as high confidence are added.

  3. Ignoring the importance of peaks
    Daily and monthly peaks are obviously higher than annual averages, and it's those high peaks that kill, making it disrespectful toward past and future victims of extreme weather events to average that away. NASA records show that, in February 2016, it was on average 1.67°C warmer than in 1900 (i.e. a 30-year period centered around 1900), while the higher latitudes North had anomalies up to 10.8°C. On land, the average anomaly in February 2016 was 2.26°C. And this is before adding 0.3°C for the rise before 1900, and before further adjustments as discussed below. Conservatively, the magenta block at the top of above image shows a rise of 1.63°C.

  4. Cherry-picking the baseline period
    For a baseline of a 30-year period around the year 1900, the temperature rise to 2016/2017 was 1.22°C, NASA records show. When adding another 0.3°C rise for the rise before 1900, warming was well above 1.5°C in 2016/2017. However, the IPCC conveniently selects an 1850-1900 baseline, a period when it was relatively warm, i.e. warmer than in 1750 and warmer also than in 1900. It was warmer from 1850 to 1900 due to increasing livestock numbers and forests clearing, while huge amounts of wood were burned, all contributing to large emissions of black carbon, brown carbon, methane, CO, etc., which caused additional warming during this period. So, this period was relatively warm. There was little impact yet of the sulfur aerosols that started coming with burning fossil fuel from 1900. Choosing this baseline period enabled the IPCC to beef up the temperature for the baseline and then draw a linear trend from 1850-1900 that looks flatter.

  5. Changing the data
    The U.K. Met Office's HadCRUT dataset goes back to 1850. The IPCC used this dataset, but actually changed the data, by averaging the data with datasets that showed a similar rise for the years after 1900, but that showed higher warming for 1880-1900. This enabled the IPCC to further beef up the average temperature for the period 1850-1900 and then draw a linear trend from 1850-1900 that looks even flatter.

  6. Cherry-picking the type of data
    To further support its suggestions, the IPCC uses water surface data for ocean temperature, but uses air data for temperatures over land. When selecting datasets with more consistency and using air temperatures globally, the temperature rise is 0.1°C higher.

  7. Not using new techniques to estimate values for missing data
    The IPCC chooses not to use new techniques to estimate temperatures where data are missing. Less data are available for the Arctic, and this is precisely where temperatures have risen much faster than in the rest of the world. When values for missing data are included, the temperature rise is another 0.1°C higher.

  8. Leaving out 2016
    The IPCC suggests there was a temperature rise of 0.2°C per decade in the years up to 2015, as if the high temperatures in 2016 didn't occur. The IPCC then uses that 0.2°C rise to make projections into the future, conveniently skipping the high temperatures in 2016. Failure to properly address acceleration of future warming is further discussed in the point below.

  9. Failure to properly address dangerous developments
    The IPCC fails to point out that carbon dioxide reaches a maximum in warming the atmosphere some 10 years after emission, which means that the full wrath of global warming due to the very high emissions of carbon dioxide over the past decade is yet to come. While temperatures could rise very rapidly over the coming decade, the IPCC keeps talking about carbon budgets, without properly addressing tipping points such as the decline of the snow and ice cover that will result in huge albedo losses, jet stream changes, more and more extreme weather events, and more. The IPCC fails to point out the danger of destabilization of sediments containing methane in the form of hydrates and free gas. Furthermore, the IPCC fails to properly address the aerosol warming that will occur as sulfur emissions decrease and other aerosols increase such as black carbon, brown carbon, etc. The IPCC fails to mention the water vapor feedback, i.e. the increase of water vapor in the atmosphere that will occur as a result of these developments. Since water vapor itself is a potent greenhouse gas, this will speed up the temperature rise even further. These developments could lead to a potential global temperature rise (from 1750) of more than 10°C by 2026, as illustrated in the image at the top.

  10. There is no carbon budget left
    Instead of pointing at the dangers, as it should have done, the IPCC makes it look as if there was a remaining carbon budget that should be divided among polluters, as if they should continue polluting the world. It should be obvious that there is no such budget. Instead, there's only a huge and very dangerous carbon debt. There is no room for trade-offs or offsets, and terms such as negative emissions are also inappropriate. All efforts should be made to cut emissions, including ending current subsidies for fossil fuel and livestock, while at the same time great effort should be taken to remove carbon from the atmosphere and oceans. And even then, it's questionable whether any humans will be able to survive the coming decade, which will be critically dangerous for all species on Earth.

  11. Suggesting polluting pathways
    The pathways suggested by the IPCC keep fossil fuel in the picture for many years, while highlighting non-solutions such as BECCS. The IPCC makes it look as if coal-fired power plants could continue to operate, by burning more biomass and capturing carbon. The IPCC makes it look as if transport could continue to use internal combustion engines, by burning more biofuel. Instead, clean & renewable energy has many benefits, including that it's more economic, so air capture powered by such facilities would make more sense than BECCS. Furthermore, electric vehicles should be supported now, rather than in the year 2050. It makes sense to stop fossil fuel subsidies, and to support better diets, to plant more vegetation and to support ways to add carbon and nutrients to soils and oceans, such as with biochar and ground rocks. Many technologies have been proposed, e.g. refrigerators and freezers are now made that do not use gases for cooling. The IPCC should not have used pathways that are wrong in the first place. Instead, the IPCC should have pointed at the policies that can best facilitate the necessary transitions, because the scientific evidence is overwhelming and it's the right thing to do.

  12. Not pointing at the best and much-needed policy tools
    The IPCC report fails to point out that imposing fees on polluting products is the most effective policy instrument, the more so when the revenues are used to support rebates on better alternatives supplied locally.
The situation is dire and calls for comprehensive and effective action, as described at the Climate Plan.

Prof. Peter Wadhams and Stuart Scott discuss the IPCC Global Warming of 1.5ºC report

Extended version of above video

Paul Beckwith on baseline, methane and more

Stuart Scott talks with Prof. Peter Wadhams on Arctic sea ice

Magnificent work by Stefanie Steven

[ budget ]
Proper analysis would have pointed at what the best action is to improve the situation.

However, the IPCC does not do that. Instead, the IPCC keeps stating that there was a carbon budget to be divided and consumed, while advocating non-solutions such as BECCS and while hiding the full extent of how threatening the situation is.

A quick word count of the IPCC report Global Warming of 1.5°C (SPM) shows paragraphs full of words such as budget (1st image right) and of non-solutions such as BECCS (2nd image right).

At the same time, it fails to mention biochar, meat or local feebates. It fails to mention the huge threat of feedbacks and tipping points such as methane hydrates and Arctic sea ice, instead making it look as if all that could only pose potential problems over longer timescales.

This is indicative of how much the IPCC is part of the problem and part and parcel of the wilful destruction of life itself that is taking place so obviously all around us.

The IPCC (Intergovernmental Panel on Climate Change) might as well change its name to IPCD (Intergovernmental Panel on Climate Destruction).

It's not as if people weren't warned.
The danger was described back in 2007: Total Extinction.
The mechanism was depicted back in 2011: Runaway Global Warming.
And still, in 2018, the IPCC sadly keeps on feeding the addiction.


• IPCC special report Global Warming of 1.5°C

• Paris Agreement

• How much warming have humans caused?

• Climate Plan

• Feedbacks

• Extinction

• Can we weather the Danger Zone?

• How much warmer is it now?

• 100% clean, renewable energy is cheaper

• Fridges and freezers that don't use gases

• Negative-CO2-emissions ocean thermal energy conversion

• 'Electrogeochemistry' captures carbon, produces fuel, offsets ocean acidification

• Olivine weathering to capture CO2 and counter climate change

• Biochar group at facebook

• Aerosols

• IPCC seeks to downplay global warming

• Blue Ocean Event

• What Does Runaway Warming Look Like?

• Ten Dangers of Global Warming

• AGU poster, AGU Fall Meeting 2011

Monday, April 2, 2018

How much warmer is it now?

The IPCC appears to be strongly downplaying the amount of global warming that has already occurred and that looks set to eventuate over the next decade or so, according to a leaked draft of the IPCC 'Special Report on 1.5°C above pre-industrial'. The 'First Order Draft of the Summary for Policy Makers' estimates that the global mean temperature reached approximately 1°C above pre-industrial levels around 2017/2018.

Let's go over the numbers step by step, by following the image below line by line (click on the image to enlarge it).

NASA's data for the two most recent years for which data are available (2016/2017) show a warming of 0.95°C when using a baseline of 1951-1980 and a warming of 1.23°C when using a baseline of 1890-1910 (left map on image below). In other words, using this earlier baseline results in an additional 0.28°C rise. When using an even earlier baseline, i.e. 1750 or preindustrial, it could be 1.53°C warmer, as discussed in an earlier post.

In other words, merely changing the baseline to preindustrial, as agreed to at the Paris Agreement, can show that we're already above the 1.5°C guardrail that the Paris Agreement had pledged we should not cross.

There's more! As a recent publication points out, most methods that calculate the global temperature use sea surface temperatures. However, doesn't it make more sense to calculate the temperature of the air just above the sea surface? Measuring air temperature at the surface is done in the case of temperatures over land, where one doesn't measure the temperature of the soil or rocks when telling people how warm it is. Since air surface temperatures are slightly higher than sea surface temperatures, the result of looking at air surface temperatures across the globe would be a temperature that is approximately 0.1°C warmer. Furthermore, many areas in the Arctic may not have been adequately reflected in the global temperature, e.g. because insufficient data were available. Since the Arctic has been warming much faster than the rest of the world, inclusion of those areas would add another 0.1°C to the rise. Adding this to the above 1.53°C rise makes that it's already 1.73°C (or 3.11°F) warmer than preindustrial.

Another question is over what period measurements should be taken when assessing whether thresholds have been crossed. When focusing on temperatures during specific months, the rise could be much higher than the annual average. So, does it make more sense to look at a monthly peak rather than at a long-term average?

When building a bridge and when calculating what load the bridge should be able to handle, it makes sense to look at peak traffic and at times when a lot of heavy trucks happen to be on the bridge. That makes a lot more sense than only looking at the average weight of cars driving over the bridge during a period of - say - one, two or thirty years.

Accordingly, the right panel of the top image shows numbers for February 2016 when temperature anomalies were particularly high. When looking at this monthly anomaly, we are already 2.37°C (or 4.27°F) above preindustrial, i.e. well above the 2°C guardrail that the Paris Agreement had pledged we should definitely not cross.

Should the temperature rise be calculated using a longer period? The IPCC appears to have arrived at its temperature rise estimate by using an extrapolation or near term predictions of future warming so that the level of anthropogenic warming is reported for a 30 year period centered on today.

The image below, from an earlier post, shows global warming for a 30-year period centered on January 2018, using NASA 2003 to January 2018 LOTI anomalies from 1951-1980, adjusted by 0.59°C to cater for the rise from preindustrial to 1951-1980, and with a polynomial trend added.

If above trendline is adjusted by a further 0.2°C, by shifting to air temperatures instead of sea surface temperatures, and by better reflecting Arctic temperatures, then the trendline looks set to cross the 2°C guardrail in 2018. So, will Earth cross 2°C in 2018?

Above images illustrate the importance of what's going to happen next. The temperature rise up until now may well be dwarfed by what's yet to come and the outlook may well be even worse than what most fear will eventuate. The image below, from an earlier post, shows a steep rise from 2016 to 2026, due to the combined impact of the warming elements listed in the left box of the image below.

Meanwhile, the rise in carbon dioxide levels appears to be accelerating, as illustrated by the images below.

Indeed, despite pledges made at the Paris Agreement to limit the temperature increase to 1.5°C above pre-industrial, the rise in CO₂ since preindustrial, i.e. 1750, still appears to be accelerating.

On March 18, 2018, the sea surface temperature near Svalbard (at the green circle) was 16.7°C or 62.1°F, i.e. 14.7°C or 26.4°F warmer than the daily average during the years 1981-2011.

On March 30, 2018, methane levels as high as 2624 parts per billion were recorded.

On April 1, 2018, methane levels as high as 2744 parts per billion were recorded.

The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.


• Climate Plan

• Extinction

• How much warming have humans caused?

• IPCC seeks to downplay global warming

• 2016 well above 1.5°C

• Interpretations of the Paris climate target, by Andrew Schurer et al.

Thursday, January 19, 2017

2016 well above 1.5°C

In December 2016, it was 6.58°C (11.84°F) warmer from latitude 83°N to the North Pole. In December 2016, the world as a whole was on average 0.82°C (1.47°F) warmer than in 1951-1980.

Temperatures are rising fast, and especially so over the Arctic Ocean. In February 2016, the world was 1.34°C (2.41°F) warmer than 1951-1980, while part of the Kara Sea was 11.3°C (20.34°F) warmer than 1951-1980, as the image on the right illustrates.

The 1951-1980 period is the default baseline used by NASA. When comparing the current temperature to years such as 1900 or 1750, the difference will be even larger, as illustrated by the image below.

In 2016, the global temperature was well above the 1.5°C (2.7°F) guardrail set by the Paris Agreement. This is illustrated by the different baselines used in image below (the use of different baselines was discussed in an earlier post), given that the Paris Agreement uses preindustrial levels as baseline.

[ click on images to enlarge ]
To some extent, the rise above 1.5°C was due to El Niño, as the trendline indicates, but the trend also indicates that temperatures will cross the 1.5°C mark in 2017 even if 2017 will be El Niño/La Niña-neutral.

Worryingly, another El Niño is actually forecast for 2017, as discussed in an earlier post.

Even more worrying is that rise of this trendline could well be too conservative.

Ocean temperatures are rising rapidly, as illustrated by the image on the right, and the rapid warming of the oceans is causing a dramatic fall in sea ice extent, as illustrated by the image below and as discussed in an earlier post.

The lack of sea ice spells trouble. Not only is snow and ice decline causing more sunlight to be absorbed (rather than getting reflected back into space as before), there are further feedbacks associated with this. As the temperature difference between the Arctic and the Equator decreases, changes are taking place to wind patterns that cause further acceleration of warming in the Arctic, as discussed in an earlier post. This in turn threatens to trigger huge amounts of methane to erupt abruptly from the seafloor.

Methane levels over the Arctic Ocean are much higher than over the rest of the world, as illustrated by the image below, showing the situation in the afternoon of January 17, 2017, with peaks reaching levels as high as 2406 ppb. Particularly worrying are the solid magenta-colored areas over the East Siberian Arctic Shelf, indicating methane levels above 1950 ppb.

When also taking into account further elements that could cause warming, a potential warming of 10°C (18°F) could eventuate by the year 2026, i.e. within about nine years from now, as discussed at the extinction page and as illustrated by the image below, from the Temperature page.

The situation is dire and calls for comprehensive and effective action, as described at the Climate Plan.


• Climate Plan

• Extinction

• Temperature

• Accelerating Warming of the Arctic Ocean

• Global sea ice extent falling off chart

• How much warming have humans caused?

Monday, October 17, 2016

Pursuing efforts?

Late last year at the Paris Agreement, nations pledged to hold the global average temperature rise to well below 2°C above pre-industrial levels and to pursue efforts to limit the temperature rise to 1.5°C above pre-industrial levels. On 5 October 2016, the threshold for entry into force of the Paris Agreement was achieved. The Paris Agreement will formally enter into force on 4 November 2016.

Meanwhile, as illustrated by above image, temperatures have been more than 1.5°C above pre-industrial levels for nine out of the past twelve months. For the months February and March 2016, the anomaly was actually quite close to the 2°C guardrail, while for station-only measurements, warming for February and March 2016 was well over the 2°C guardrail from pre-industrial levels.

The monthly warming in above image was calculated by using the NASA Global Monthly Mean Surface Temperature Change data (Land+Ocean) from 1880 through to September 2016, while adding 0.28°C to cater for the rise from 1900 to 1951-1980, and additionally adding 0.3°C to cater for the rise from pre-industrial to 1900.

[ click on image to enlarge ]
The 0.28°C adjustment (to cater for the rise from 1900 to 1951-1980) is illustrated by above graph, which has a polynomial trend added to the NASA Global Monthly Mean Surface Temperature Change (Land+Ocean) data from January 1880 through to September 2016.

As said, the top image has a further 0.3°C added to cater for the rise from pre-industrial to 1900, as discussed in an earlier post.

Above image shows sea surface temperature anomalies on the Northern Hemisphere, with a polynomial trend pointing at a doubling of ocean warming within one decade. Warming of the sea surface on the Northern Hemisphere threatens to speed up Arctic sea ice loss, as the Gulf Stream pushes ever warmer water toward the Arctic Ocean.

In addition, warming of the air over the Arctic Ocean occurs faster than elsewhere on Earth, as illustrated by above image and by the animation on the right.

This further speeds up the demise of the snow and ice cover, as illustrated by the images below.

Arctic sea ice extent on October 20, 2016, was at a record low for the time of the year, at only 6.15 million square km, as measured by the National Institute of Polar Research in Japan.

The images below show Arctic sea ice extent as measured by (left) and average Arctic sea ice extent (year to date, October 20, 2016), from a post by Torstein Viðdalr (right).

Average Arctic sea ice extent for the period October 22, 2015 to October 20, 2016 (blue line) was lower than it was for any other 365-day period since 1978, when satellites first started measuring sea ice extent.

The images below show Arctic sea ice thickness as measured by the National Institute of Polar Research in Japan (left) and as measured by the Naval Research Laboratory (right, new model).

[ click on image to enlarge ]

Albert Kallio comments (in italics):
The rapid growth of the sea ice has stopped because during the summer the surrounding ocean accumulated so much heat that it cannot yet freeze. Whilst the central Arctic Ocean around the North Pole saw a very rapid freezing as its broken sea ice cover quickly fused together in cold, autumn darkness breaking new records, it now has suddenly hit the opposite: a new all time record low for sea ice area for this time of season. This is because the ocean is still too warm for water to freeze around edges of the Arctic Ocean leading to all-time record low ice area that fell below or is at least in par with year 2012 low (the last record low ice year).

The image below (Arctic on the left, Antarctic on the right) was created by Daniel Kieve.
Daniel Kieve comments (in italics):
Both Arctic and Antarctic sea ice are now at record low extent for this time of year according to NSIDC data, with the Arctic sea ice over 2 million square kilometres lower than the average extent for 20th October. The Antarctic sea ice is at 2 standard deviations below the (30 year) average. At this time of year it's usually a time of rapid ice growth in the Arctic but it's stalled due to the continuance of anomalously warm air in parts of the Arctic and in particular the record warmth in the oceans that is encroaching more and more into the Arctic. This means next Summer the Arctic ice is more vulnerable than ever to collapse as the insolation reaches its peak in June and July.

Demise of the snow and ice cover in the Arctic further accelerates warming of the Arctic Ocean in a number of ways. Decline of sea ice extent makes that less sunlight gets reflected back into space and instead gets absorbed by the Arctic Ocean. Similarly, the decline of the snow and ice cover on land in the Arctic makes that more sunlight gets absorbed on land, which in turn make that warmer water from rivers flows into the Arctic Ocean. For more feedbacks, see the feedbacks page.

There's a growing danger is that further warming of the Arctic Ocean will trigger huge eruptions of methane from its seafloor. Ominously, on October 20, 2016, methane levels were as high as 2559 parts per billion, as illustrated by the image below, which also shows high methane levels over large parts of the Arctic Ocean.

The temperature rise resulting from such feedbacks has the potential to cause in mass extinctions (including humans) and destruction over the coming decade, as discussed at the extinction page.

The situation is dire and calls for comprehensive and effective action as described in the Climate Plan.


 Climate Plan

 How Much Warming Have Humans Caused?

 NASA GISS Surface Temperature Analysis (GISTEMP)

 81 Parties have ratified of 197 Parties to the Convention

 Paris Agreement

Saturday, May 28, 2016

How Much Warming Have Humans Caused?

How much did temperatures rise since 1900?

Differences in baseline (reference period) can result in dramatic differences in temperature rise. The U.K. Met Office HadCRUT4 dataset typically presents temperature anomalies relative to a 1961-1990 baseline. NASA typically uses a 1951-1980 baseline, but the NASA website allows for different baselines to be selected. When selecting a 1961-1990 baseline, the temperature of the past period of six months was 1.05°C (1.89°F) higher than this baseline, as illustrated by the NASA map in the left panel of the image below. But when compared to 1890-1910, the temperature of the past period of six months was 1.48°C (or 2.664°F) higher, as illustrated by the NASA map in the right panel of the image below.

A polynomial trend can reduce variability such as caused by volcanoes and El Niño events. The graph below was created with the NASA L-OTI monthly mean global surface temperature anomaly, which has a 1951-1980 baseline, and then with 0.29°C added, which makes the anomaly 0°C in the year 1900 for the added polynomial trend.

This gives an idea of how much temperatures have risen since the year 1900, with a rise for both February and March 2016 showing up that was more than 1.5°C, as also illustrated by the image below. The trend further points at temperature anomalies that will be more than 1.5°C (from 1900) within a decade and more than 2°C soon thereafter.

Temperature Rise before 1900

To see by how much temperatures have risen compared to pre-industrial levels, we need to go back further than 1900. The graph below shows that carbon dioxide concentrations have gone up and down between levels of roughly 180 ppm and 280 ppm over the past 800,000 years. Recently, carbon dioxide levels reached a peak of well above 400 ppm (411 ppm peak hourly average on May 11, 2016).

The image below, from an earlier post, shows how in the past, over the past 420,000 years, temperatures have gone up and down within a window of approximately 10°C (18°F), in line with cycles in the Earth orbit (Milankovitch cycles). Levels of carbon dioxide and methane have gone up and down accordingly, with carbon dioxide moving between 180 ppm and 280 ppm and methane roughly between 300 ppb and 700 ppb.

Meanwhile, carbon dioxide concentrations have been as high as 411 ppm (as discussed further above), i.e. a 131 ppm rise on top of the historic maximum of 280 ppm. The rise in methane concentrations is even steeper, as discussed at the Methane page.

Has the rise in greenhouse gases due to emissions by humans set the scene for a temperature rise of some 10°C (18°F) above 1750 levels, and how rapidly could such a temperature rise eventuate? Could warming caused by humans result in a temperature rise of more than 10°C (18°F) within a decade?

In its First Assessment Report, the IPCC explains that temperatures have come down since the Holocene peak, i.e. the natural maximum of the most recent Milankovitch cycle (image right, top panel). As the bottom panel shows, temperatures have risen since the 1600s. There has been a rise from the year 1750 to the year 1900 and there has been a further rise from the year 1900 onward up to recent times (the dotted line indicates the temperature at the year 1900).

The graph on the right, created by Jos Hagelaars, shows that temperatures started rising some 20,000 years ago, reaching a peak some 7000 years ago (in the blue part of the graph). For more detail, also see the comic added at the end of this post.

The graph underneath, based on work by Marcott et al., focuses on this blue part of the graph, while using a 1961-1990 baseline. Temperatures reached a peak some 7000 years ago, and then came down to reach a low a few hundred years ago.

The peak and the bottom temperatures (highlighted in red on image on the right below) for that period suggest there was a fall of more than 0.7°C.

So, a few hundred years ago, temperatures were falling and they would have kept falling, in line with the Milankovitch cycles, had there been no warming caused by humans.

From that bottom point, temperatures first rose by about 0.4°C, overwhelming the downward trend that would otherwise have taken temperatures down further, and then there was an additional rise of at least 1.05°C, when using a baseline of 1961-1990, indicating that humans caused a total of at least 1.45°C warming.

Lewis & Maslin (2015) suggest that, because CO2 began to rise from a low point in 1610, that year could be taken as the start of the Anthropocene. The image on the right also shows that the year 1750 was a low point for CO2 levels and temperature, i.e. well below the baseline of 1961-1990.

The image below shows Northern Hemisphere temperature reconstructions by Moberg et al.

The image on the right is from The wider fluctuations back in time reflect volcanic activity and greater uncertainty, while a simple fit shows a temperature rise of 1.5°C in the past 250 years (1750-2000), of which about 0.9°C occurred in the past 50 years.

Humans have caused even more warming?

The situation looks to be even worse than what the above figures may suggest. Indeed, the bottom low point in the Marcott graph would have been even lower had there been no warming by humans.
The fact that humans did cause substantial warming between 1800 and 1900 is illustrated by the graph below, from a recent post by Michael Mann, who adds that some 0.3°C greenhouse warming had already taken place between the year 1800 and the year 1900.

Some 0.3C greenhouse warming had already taken place by 1900, and some 0.2C warming by 1870
Further studies suggest that humans also caused substantial warming well before 1800, as illustrated by the image on the right. While this study focuses on Europe, it does suggest a rise from 1600 to 1800.

Another example of warming caused by humans before 1800 is presented in research by Dull et al., which suggests that burning of Neotropical forests increased steadily in the Americas, peaking at a time when Europeans arrived in the late fifteenth century. By 1650, some 95% of the indigenous population had perished. Regrowth of forests led to carbon sequestration of some 2 to 5 Pg C, thereby contributing to a fall in atmospheric carbon dioxide recorded in Antarctic ice cores from about 1500 through 1750.

Since at least the fourth century A.D., coal has
been burned in China. W. F. Ruddiman further points in a 2007 paper at human emissions from burning biomass and irrigation, livestock and human waste, and the resulting climate system feedbacks. As illustrated by the image on the right, this had already caused substantial warming prior to the industrial revolution.

In conclusion, substantial warming took place before 1900, making that temperatures were higher than what they would have been had humans caused no warming. Greenhouse gases emitted by people held off a temperature fall that would otherwise have naturally occurred, and they caused a temperature rise on top of that.

Paris Agreement

NASA data suggest that it was 1.48°C (or 2.664°F) warmer than in 1890-1910 for the period from November 2015 to April 2016. Note again that this 1890-1910 baseline is much later than pre-industrial times. The Paris Agreement had pledged to limit the temperature rise to 1.5°C above pre-industrial levels. On land on the Northern Hemisphere, it was 1.99°C (or 3.582°F) warmer (right map of the image below).

[ Temperature anomalies for the period from November 2015 to April 2016, see also comments ]
The above images only account for a half-year period (November 2015 to April 2016), so they are only indicative for what the total rise will be for the year 2016. Nonetheless, when taking into account warming caused by people before 1900, the year 2016 looks set to hit or even exceed the guardrails that the Paris Agreement had pledged would not be crossed. The situation looks even worse when considering that temperatures measured in ice cores already included a substantial amount of warming due to humans even before the start of the Industrial Revolution.

February 2016 was 1.67°C (3°F) warmer than 1890-1910
Again, at the Paris Agreement nations pledged to hold the increase in the global average temperature to well below 2°C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5°C above pre-industrial levels.

When looking at a single month, February 2016 was 1.67°C (3°F) warmer than 1890-1910 (see image right). When adding a mere 0.34°C to account for warming before 1900, total warming in February 2016 did exceed 2°C. Looking at it that way, the guardrails set in Paris in December 2015 were already crossed in February 2016.


So, what is the situation? On the one hand, there's the current observed temperature rise (∆O). This rise is typically calculated as the difference between the current temperature and the temperature at a given baseline.

However, this ∆O does not reflect the full impact of human emissions. Temperatures would have been lower had there been no emissions by humans. The full warming impact due to people's greenhouse gas emissions therefore is ∆E. This ∆E is higher than the often-used observed rise, since the baseline would have been lower without warming caused by humans, i.e. including the warming that was already caused before the year 1750.

At the same time, part of global warming caused by people is currently masked due the aerosol emissions (∆M). Such aerosol emissions result mainly from burning of fossil fuel and biomass. There's no doubt that such emissions should be reduced, but the fact remains that the current temperature rise may increase substantially, say, by half when the masking effect disappears.

Thus, the full (unmasked) current warming caused by humans is the sum of these two, i.e. ∆E + ∆M, and the sum could be well over 3°C.

In addition, there is a future temperature rise that's already baked into the cake (∆F). Some feedbacks are not yet very noticeable, since some changes take time to become more manifest, such as melting of sea ice and non-linear changes due to feedbacks that are only now starting to kick in. Furthermore, the full effect of CO2 emissions reaches its peak only a decade after emission, while even with the best efforts, humans are likely to still be causing additional emissions over the coming decade. All such factors could jointly result in a temperature rise greater than ∆E + ∆M together, i.e. ∆F could alone cause a temperature rise of more than 5°C within a decade.

In summary, total anthropogenic global warming warming (∆A) or all warming caused by humans (∆E + ∆M + ∆F) could be more than 10°C (18°F) within one decade, assuming that no geoengineering will take place within a decade.

[ image added later from this post, click on images to enlarge ]

The situation is dire and calls for comprehensive and effective action as described in the Climate Plan.

[ image from ]


• Climate Plan

• Feedbacks

• Extinction

• Methane Erupting From East Siberian Arctic Shelf

• Jos Hagelaars' graph, created with graphs by Shakun et al., Marcott et al. and more, is at:

• Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation, by Shakun et al.

• A Reconstruction of Regional and Global Temperature for the Past 11,300 Years, by Marcott et al.

• The Columbian Encounter and the Little Ice Age: Abrupt Land Use Change, Fire, and Greenhouse Forcing, by Dull et al., in:

• Arctic Climate Records Melting

• 2500 Years of European Climate Variability and Human Susceptibility, Ulf Büntgen et al. (2011)

• Paris Agreement

• February Temperature

• Defining the Anthropocene, Lewis & Maslin (2015)

• Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data, Anders Moberg et al. (2005)

• The early anthropogenic hypothesis: Challenges and responses, by W.F. Ruddiman (2007)

• Berkeley Earth, Summary Of Findings

• Reconciling divergent trends and millennial variations in Holocene temperatures, by Marsicek et al. (2018)

Reconciling divergent trends and millennial
variations in Holocene temperatures
Jeremiah Marsicek