Showing posts with label sea surface. Show all posts
Showing posts with label sea surface. Show all posts

Tuesday, August 15, 2023

Two Tipping Points

The image below, adapted from Climate Reanalyzer, shows that the World Sea Surface Temperature (60°South - 60°North) was at a record high of 21.1°C or 69.98°F for the third day in a row on August 23, 2023. As the image also shows, sea surface temperatures over the past few months have been much higher for the time of year than in any other year on record. 

The image below shows why this recent sea surface temperature rise is so worrying. The image below is based on NASA data for monthly mean global surface temperature anomalies (open ocean) vs 1901-1930. The ochre trend, based on January 1900-July 2023 data, indicates that the latent heat tipping point was crossed in 2021 and the seafloor methane tipping point may be crossed by the end of 2033. Both trends extend into the future for 15 years, but the red trend is based on July 2008-July 2023 data and better reflects El Niño and other variables, and this red trend indicates that the latent heat tipping point was crossed in 2023 and the seafloor methane tipping point may be crossed later this year.

[ click on images to enlarge ]

Sea ice constitutes a latent heat buffer, consuming incoming heat as it melts. While the ice is melting, all energy (at 334 J/g) goes into changing ice into water and the temperature remains at 0°C (273.15K or 32 °F). Once all ice has turned into water, all subsequent energy goes into heating up the water, and wil do so at 4.18 J/g for every 1°C the temperature of the water rises. 

[ sea ice thickness, from earlier post ]
Loss of this buffer is linked to subsequent destabilization of methane hydrates. So, there are two tipping points that are linked, and the latent heat tipping point gets crossed in the Arctic before the seafloor methane tipping point gets reached.

The situation is particularly precarious in the Arctic, as the North Atlantic Ocean is very hot and the Gulf Stream keeps pushing hot water toward the Arctic Ocean, while Arctic sea ice has become very thin. The image on the right, from Uni of Bremen, shows that on July 25, 2023, there was virtually no Arctic sea ice left that was more than 30 cm thick. 

The latent heat tipping point is the point where Arctic sea ice loss is such that further incoming ocean heat that was previously consumed as Arctic sea ice melted, instead gets absorbed by the Arctic Ocean. 

[ sea surface temperature anomaly ]
The image on the right, adapted from nullschool.net, shows that on August 2, 2023, most of the Arctic Ocean was showing surface temperatures above the daily average during 1981-2011, indicating that the latent heat tipping point was reached. The latent heat tipping point is estimated to correspond with an ocean temperature anomaly of 1°C above the long term average, 1901-1930 on the above image.

The image underneath, also from nullschool.net, shows the situation on August 20, 2023, when temperatures at the North Pole had been above zero for more than a day and temperatures were forecast to go below zero only twice briefly afterwards, for the period up to August 24, 2023 19:00 UTC (which is as far as the forecast went at the time. 

[ surface temperature ]
This is a further indication that the latent heat tipping point has been reached and that no more heat can be consumed by sea ice melting.

How much sea ice is left? What does the sea ice look like, near the North Pole? Satellite images can give a good impression, but clouds can obscure the view. A clearer view can be obtained by comparing images over several days. 

An animation can reveal how much, or rather how little sea ice is left, and to what extent water of the Arctic Ocean is visible. 

[ Satellite view, click on images to enlarge ]
The animation on the right is made with four NASA Worldview images, showing the situation on August 11, 15, 16 and 19, 2023. 

The second tipping point, the seafloor methane tipping point, occurs as more heat reaches the seafloor where it destabilizes hydrates contained in sediments at the seafloor.

This tipping point comes with multiple self-reinforcing feedback loops, such as explosive growth in methane volume setting off further destabilization, rapid rise of Arctic temperatures, loss of permafrost and loss of albedo, and release of further greenhouse gases.

Crossing of the seafloor methane tipping point will occur later than crossing of the latent heat tipping point, so the seafloor methane tipping point is estimated to correspond with a higher ocean temperature anomaly.

The current situation is particularly precarious in the Arctic, as the North Atlantic Ocean is very hot and the Gulf Stream keeps pushing hot water toward the Arctic Ocean, while Arctic sea ice has become very thin (image right) and the latent heat tipping point has been crossed.

As the temperature of the Arctic Ocean keeps rising, more heat can reach sediments located at the seafloor, since much of the Arctic Ocean is very shallow and sediments at the seafloor of the Arctic Ocean can contain vast amounts of methane.

The danger is that further heat will destabilize hydrates in these sediments, leading to explosive eruptions of methane, as its volume increases 160 to 180-fold when leaving the hydrates, and resulting in huge eruptions of methane both from the destabilizing hydrates and from methane that is present in the form of free gas underneath the hydrates.

[ from earlier post, click on images to enlarge ]

The above image, from an earlier post, illustrates that warnings have been given before about the danger of these two tipping points getting crossed in the Arctic. In the above image, the trends are based on annual sea surface temperature data for the Northern Hemisphere. The seafloor methane tipping point is estimated to get crossed when the ocean temperature anomaly on the Northern Hemisphere goes beyond 1.35°C above its long term average.

The Argo Float 7900549 compilation image below illustrates that the highest water temperatures in the Arctic Ocean can occur at a depth of approximately 100 meters. The image shows temperatures as high as 5°C at that altitude.


Stronger winds along the path of the Gulf Stream can at times speed up sea currents that travel underneath the surface. As a result, huge amounts of hot, salty water can travel from the Atlantic Ocean into the Arctic Ocean, abruptly pushing up temperatures and salinity levels at the bottom of the Arctic Ocean, which in many places is very shallow.


The above image shows details of Argo float 9701007, further illustrating the danger that heat can reach the seafloor. North of Norway, where the water is less than 400 m deep, temperatures higher than 5°C show up throughout the vertical water column, up to August 10, 2023, when temperatures above 11°C were recorded close to the sea surface. The colored inset also shows that greater mixing down of heat occurred from October to December 2022, as the sea ice started to return and seal off the surface, preventing heat transfer from ocean to atmosphere, as also discussed at FAQ #11.

Below is another image adapted from Climate Reanalyzer, showing that the sea surface temperature of the North Atlantic Ocean has for months been much higher for the time of year than it was in previous years on record. Eight causes behind this have been discussed in an earlier post. The image below shows the situation on August 28, 2023, with the North Atlantic sea surface temperature reaching a record high of 25.34°C or 77.61°F. 


The image below, adapted from NOAA, shows how the Gulf Stream is pushing ocean heat toward the Arctic Ocean, while sea surface temperatures show up as high as 33.6°C or 92.48°F on August 17, 2023. 


[ 2022 animation ]
Studies, some of them dating back more than two decades, show that over the shallow East Siberian Arctic Shelf (ESAS) winds at times can mix the water column from the top to the bottom. A 2005 study of the ESAS led by Igor Semiletov recorded water temperatures at the seafloor, in September 2000, of 4.7°C at 20m depth at one location and 2.11°C at 41m depth at another location, with salinity levels of 29.7‰ and of 31.7‰, respectively.

A deformed Jet Stream, in combination with a cyclone, could similarly result in strong winds abruptly pushing a huge amount of heat through the Bering Strait into the Arctic Ocean. 

The animation on the right shows how remnants of Typhoon Merbok were forecast to enter the Arctic Ocean through the Bering Strait from September 17 to 19, 2022.

The image below, adapted from Climate Reanalyzer, shows that the (2-meter) air temperature in the Arctic was 3.79°C on August 25, 2023, a record high for the time of year and 2.08°C higher than the 1979-2011 mean for that day.


The image below illustrates how incoming ocean heat that previously was consumed in the process of melting of the sea ice, is now causing the water of the Arctic Ocean to heat up, with more heat reaching the seafloor of the Arctic Ocean, which has seas that in many places are very shallow.

[ Latent heat loss, feedback #14 on the Feedbacks page ]
Further adding to the danger is that destabilization of methane hydrates can cause huge amounts of methane to erupt with great force in the form of plumes. Consequently, little of the methane can be broken down in the water by microbes, while there is very little hydroxyl in the atmosphere over the Arctic Ocean to break down the methane that enters the atmosphere.

Ominously, some very high methane levels were recorded recently at Barrow, Alaska, as illustrated by the NOAA images below.

The most recent monthly methane average recorded at Barrow, Alaska, is above 2080 parts per billion.

In the video below, Guy McPherson describes the dire situation.


Climate Emergency Declaration

A catastrophe of unimaginable proportions is unfolding. Life is disappearing from Earth and runaway heating could destroy all life. At 5°C heating, most life on Earth will have disappeared. When looking only at near-term human extinction, 3°C will likely suffice.

The situation is dire and is getting more dire every day, which calls for a Climate Emergency Declaration and implementation of comprehensive and effective action, as described in the Climate Plan with an update at Transforming Society.


Links

• Climate Reanalyzer - daily sea surface temperature
https://climatereanalyzer.org/clim/sst_daily

• Climate Reanalyzer - daily 2-meter air temperature
https://climatereanalyzer.org/clim/t2_daily

• NASA - GISS Surface Temperature Analysis
https://earth.nullschool.net

• NOAA - Barrow Atmospheric Baseline Observatory, United States
https://gml.noaa.gov/dv/iadv/graph.php?code=BRW&program=ccgg&type=ts

• Argo Float
https://fleetmonitoring.euro-argo.eu

• Remnants of Typhoon Merbok forecast to enter the Arctic Ocean through the Bering Strait from September 17 to 19, 2022.
Discussed at https://www.facebook.com/SamCarana/posts/10166948876390161, from:
https://arctic-news.blogspot.com/p/cold-freshwater-lid-on-north-atlantic.html

• The East Siberian Sea as a transition zone between Pacific-derived waters and Arctic shelf waters - by Igor Semiletov et al. (2005)
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2005GL022490

• Sea surface temperature at record high
https://arctic-news.blogspot.com/2023/03/sea-surface-temperature-at-record-high.html

• Record high North Atlantic sea surface temperature



Thursday, July 27, 2023

Record high North Atlantic sea surface temperature

On July 25, 2023, the North Atlantic sea surface reached a record high temperature of 24.9°C. The previous record was in early September 2022, when the temperature peaked at 24.89°C, according to NOAA scientist Xungang Yin and as illustrated by the image below. 

In previous years, a La Niña was suppressing temperatures, whereas El Niño is now pushing up temperatures. Arctic sea ice typically reaches its minimum extent about half September. We are facing huge sea ice loss over the coming weeks.

Temperatures are very high (and rising) and the following eight points contribute to this rise:

1. Emissions are high and greenhouse gas levels keep rising, and this is increasing Earth's Energy Imbalance. Oceans take up 89% of the extra heat.

2. El Niño is pushing up temperatures, whereas in previous years La Niña was suppressing temperatures. Moving from the bottom of a La Niña to the peak of a strong El Niño could make a difference of more than half a degree Celsius, as discussed in an earlier post.

In February 2016, when there was a strong El Niño, the temperature on land was 3.28°C (5.904°F) hotter than 1880-1896, and 3.68°C (6.624°F) hotter than February 1880 on land. Note that 1880-1896 is not pre-industrial, the difference will be even larger when using a genuinely pre-industrial base.

The above image, from an earlier post discussing extreme heat stress, adds a poignant punchline: Looking at global averages over long periods is a diversion, peak temperature rise is the killer!

[ click on images to enlarge ]
3. Sunspots in June 2023 were more than twice as high in number as predicted, as illustrated by the image on the right, from an earlier post and adapted from NOAA.

If this trend continues, the rise in sunspots forcing from May 2020 to July 2025 may well make a global temperature difference of more than 0.25°C, a recent analysis found.

4. A submarine volcano eruption near Tonga in January 2022 did add a huge amount of water vapor to the atmosphere, as discussed in an earlier post and also at facebook.

Since water vapor is a potent greenhouse gas, this further contributes to speeding up the temperature rise. A 2023 study calculates that the eruption will have a warming effect of 0.12 Watts/m² over the next few years.

5. Aerosol changes are also contributing to the temperature rise, such as less Sahara dust than usual and less sulfur aerosols that are co-emitted with fossil fuel combustion, which previously masked the full impact of greenhouse gases.

6. The Jet Stream is getting increasingly deformed as the temperature difference between the Arctic and the Tropics narrows, and this can strongly increase the intensity, duration and frequency of extreme weather events in the Northern Hemisphere. 

The image on the right shows North Atlantic sea surface temperatures as much as 8.2°C or 14.7°F higher than 1981-2011 (green circle) on July 24, 2023. The image also shows that the Jet Stream is very deformed and features many circular patterns that contribute to stronger heating up of the North Atlantic, especially along the path of the Gulf Stream where the Jet Stream has a strong presence.

Deformation of the Jet Stream can also lead to stronger heatwaves on land that extend over the Arctic Ocean, which in turn can also strongly heat up the water of rivers that end in the Arctic Ocean. The image on the right shows huge amounts of heat surrounding Arctic sea ice and also shows that on July 28, 2023, the sea surface was as much as 19.7°C or 35.4°F hotter than 1981-2011 at an area where the Ob River meets the Kara Sea (green circle).

7. 
AMOC (the Atlantic meridional overturning circulation) is slowing down, further contributing to more hot water accumulating in the North Atlantic. Instead of reaching the Arctic Ocean gradually, a huge part of this heat that is now accumulating in the
North Atlantic may abruptly be pushed into the Arctic Ocean by strong storms that gain strength as the Jet Stream gets increasingly deformed. This danger grows as more ocean heat is accumulating in the North Atlantic and this situation threatens to cause huge eruptions of methane from the seafloor. 

8. Increased stratification, as temperatures rise, combines with increased meltwater and with stronger evaporation over the North Atlantic and stronger precipitation further down the path of the Gulf Stream. This threatens to result in the formation of a freshwater lid on top of the North Atlantic, enabling more hot water to flow underneath this lid into the Arctic Ocean, further increasing the methane threat.


Arctic reaches record high air temperature

The Arctic reached a record high 2-meter air temperature of 5.81°C on July 27, 2023, almost 2°C higher than the daily mean for the period 1979-2000, as illustrated by the image below. Arctic sea ice typically reaches its minimum extent half September, when the temperature in the Arctic falls below 0°C and water at the surface starts refreezing. 


One danger is that, as more heat is reaching sediments at the seafloor of the Arctic Ocean, hydrates will be destabilized, resulting in eruption of huge amounts of methane from the seafloor.

As sea ice melts away, less sunlight gets reflected back into space, so more heat will reach the Arctic ocean and heat up the water, as discussed at the albedo page.

Furthermore, Arctic sea ice is already very thin, as illustrated by the image on the right. The thinner the sea ice, the less heat can be consumed in the process of melting the ice, as discussed at the latent heat page.

These are just three out of numerous developments that could unfold in the Arctic soon, such as tipping points getting crossed and feedbacks starting to kick in with greater ferocity, as discussed in an earlier post.

Latent heat loss, feedback #14 on the Feedbacks page

Feedbacks

Syee Weldeab et al., in a 2022 study, looked at the early part (128,000 to 125,000 years ago) of the penultimate interglacial, the Eemian, when meltwater from Greenland caused a weakening of the Atlantic meridional overturning circulation (AMOC). “What happens when you put a large amount of fresh water into the North Atlantic is basically it disturbs ocean circulation and reduces the advection of cold water into the intermediate depth of the tropical Atlantic, and as a result warms the waters at this depth,” he said. “We show a hitherto undocumented and remarkably large warming of water at intermediate depths, exhibiting a temperature increase of 6.7°C from the average background value,” Weldeab said.

Weldeab and colleagues used carbon isotopes (13C/12C) in the shells of microorganisms to uncover the fingerprint of methane release and methane oxidation across the water column. “This is one of several amplifying climatic feedback processes where a warming climate caused accelerated ice sheet melting,” he said. “The meltwater weakened the ocean circulation and, as a consequence, the waters at intermediate depth warmed significantly, leading to destabilization of shallow subsurface methane hydrates and release of methane, a potent greenhouse gas.”

Furthermore, more methane over the Arctic would push up temperatures locally over the Arctic Ocean as well as over permafrost on land. A 2020 study by Turetsky et al. found that Arctic permafrost thaw plays a greater role in climate change than previously estimated.

Ominously, some very high methane levels were recorded recently at Barrow, Alaska, as illustrated by the NOAA image below.
Further feedbacks can make the situation even more threatening. As an example, dissolved oxygen in oceans decreases as the temperature rises, further pushing up the temperature rise, as discussed, e.g., in a 2022 study by Jitao Chen et al. As the temperature rises, soil moisture content decreases, further pushing up temperatures, as discussed in an earlier post.

Conclusion

The situation is dire and is getting more dire every day, which calls for a Climate Emergency Declaration and implementation of comprehensive and effective action, as described in the Climate Plan with an update at Transforming Society.


Links

• N. Atlantic ocean temperature sets record high: US agency

• Nullschool
https://earth.nullschool.net

• Climate Reanalyzer - sea surface temperature
https://climatereanalyzer.org/clim/sst_daily

• Copernicus
https://climate.copernicus.eu

• University of Bremen - Arctic sea ice
https://seaice.uni-bremen.de/start

• A Prehistoric Climate Feedback Loop - Paleoclimatologist uncovers an ancient climate feedback loop that accelerated the effects of Earth's last warming episode (news release)
Evidence for massive methane hydrate destabilization during the penultimate interglacial warming - by Syee Weldeab et al. (study, 2022)

• Marine anoxia linked to abrupt global warming during Earth’s penultimate icehouse - by Jitao Chen et al. (2022)

• Carbon release through abrupt permafrost thaw - by Merritt Turetsky et al. (2020)
• NOAA - Global Monitoring Laboratory - Barrow, Alaska
https://gml.noaa.gov/dv/iadv/graph.php?code=BRW&program=ccgg&type=ts


• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Will there be Arctic sea ice left in September 2023?
• Dire situation gets more dire every day
https://arctic-news.blogspot.com/2023/07/dire-situation-gets-more-dire-every-day.html

• Transforming Society
https://arctic-news.blogspot.com/2022/10/transforming-society.html

• Climate Emergency Declaration
https://arctic-news.blogspot.com/p/climate-emergency-declaration.html





Friday, June 30, 2023

Arctic sea ice under threat - update 5

The NASA Worldview satellite image below shows Arctic sea ice on June 29, 2023, with the North Pole on the left. 


The animation below shows that, while clouds can obscure a closer look, sea ice is clearly very thin with the thickest ice breaking up near the top of Greenland, some 750 km from the North Pole. 


The Uni of Bremen image below shows Arctic sea ice thickness on June 28, 2023.


The danger is that, as El Niño strengthens, there will be massive loss of Arctic sea ice over the coming months, with water in the Arctic Ocean heating up strongly due to loss of the latent heat buffer and loss of albedo, while huge amounts of ocean heat keep entering the Arctic Ocean from the Atlantic Ocean and the Pacific Ocean.

The image below shows that the North Atlantic sea surface temperature was 23.5°C on June 28, 2023 (on the black line), 0.9°C higher than the 22.6°C on June 28, 2022 (on the orange line). A record high of 24.9°C was reached on Sept. 4, 2022, even while La Niña was suppressing the temperature. This time, there's an El Niño. 


The image below, adapted from NOAA, shows ocean heat moving toward the Arctic along the path of the Gulf Stream on June 25, 2023, while sea surface temperatures on the map are as high as 32.6°C.


In addition, the Jet Stream is strongly deformed, and this threatens to strengthen heatwaves extending over the Arctic Ocean and causing hot water from rivers to enter the Arctic Ocean, and to strengthen storms accelerating the flow of ocean heat into the Arctic Ocean, while fires and storms contribute to darkening of the sea ice, further speeding up its demise.

The danger is that, as El Niño strengthens and as ocean heat keeps entering the Arctic Ocean from the Atlantic Ocean and the Pacific Ocean, a huge amount of heat will abruptly be pushed into the Arctic Ocean.

This danger is illustrated by the image on the right, from an earlier post, showing the Jet Stream pushing wind at a speed of 126 km/h (78 mph) up through Fram Strait (at the green circle) into the Arctic Ocean on June 21, 2023.

This situation threatens to cause massive loss of Arctic sea ice over the coming months, with water in the Arctic Ocean heating up strongly due to loss of the latent heat buffer and loss of albedo.

This in turn threatens to trigger methane eruptions from the seafloor of the Arctic Ocean, a threat that has been described many times before, such as here, here and here.

[ Latent heat loss, feedback #14 on the Feedbacks page ]
[ see the Extinction page ]
Loss of Arctic sea ice albedo, loss of the latent heat buffer and eruption of seafloor methane all constitute tipping points that threaten to abruptly accelerate the temperature rise in the Arctic, further speeding up loss of permafrost in Siberia and North America and thus threatening to trigger further releases of greenhouse gases.

In addition, there are further events and developments that could unfold and make things even worse.

The upcoming temperature rise on land on the Northern Hemisphere could be of such a severity that much traffic, transport and industrial activity will grind to a halt, resulting in a reduction in cooling aerosols that are now masking the full wrath of global heating. Without these cooling aerosols, the temperature is projected to rise strongly, while there could be an additional temperature rise due to an increase in warming aerosols and gases as a result of more biomass and waste burning and forest fires. Furthermore, as traffic slows down, there will be less nitrogen oxide emissions, which could result in less hydroxyl to curtail methane.

The bar on the right depicts the threat, as discussed at the Extinction page.

In conclusion, the situation is dire and calls for support for a Climate Emergency Declaration.


Links

• Arctic sea ice under threat

• Arctic sea ice under threat - update 1

• Arctic sea ice under threat - update 2

• Arctic sea ice under threat - update 3
https://arctic-news.blogspot.com/2023/06/arctic-sea-ice-under-threat-update-3.html

• Arctic sea ice under threat - update 4
https://arctic-news.blogspot.com/2023/06/arctic-sea-ice-under-threat-update-4.html

• Climate Reanalyzer - Daily sea surface temperatures
https://climatereanalyzer.org/clim/sst_daily

• NOAA - The National Centers for Environment Prediction Climate Forecast System Version 2  

• NOAA - Climate Prediction Center - ENSO Diagnostic Discussions
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_advisory/ensodisc.shtml

• NOAA - sea surface temperature
https://www.ospo.noaa.gov/Products/ocean/sst/contour/index.html

• University of Bremen - sea ice concentration and thickness
https://seaice.uni-bremen.de/start

• NASA Worldview
https://worldview.earthdata.nasa.gov


Friday, June 23, 2023

Arctic sea ice under threat - update 4

The image below, created by Eliot Jacobson, shows the North Atlantic sea surface temperature anomaly through June 20, 2023 (versus 1982-2023 mean).

The image below, created by Eliot Jacobson, shows the North Atlantic sea surface temperature on June 21, for the years 1982-2023.

The image below shows that the North Atlantic sea surface temperature was 23.3°C on June 21, 2023 (on the black line), 0.9°C higher than the 22.4°C on June 21, 2022 (on the orange line). A record high of 24.9°C was reached on September 4, 2022, even while La Niña then was suppressing the temperature, whereas now there's an El Niño.

[ click on images to enlarge ]

Global sea ice extent was at a record low for the time of year on June 23, 2023, i.e. only 21.57 million km², as illustrated by the image below.

[ click on images to enlarge ]

Contributing to this is very low Antarctic sea ice extent. The image below shows Antarctic sea ice extent up to June 23, 2023. Values in the column on the left are for February 16; Antarctic sea ice extent reached a record minimum on February 16, 2023. Values in the column on the right are for June 23. Highlighted are three years: 2023 (red), 2022 (blue) and 2016 (black). Antarctic sea ice extent was also very low at the end of the year 2016, which was a strong El Niño year, yet extent was even lower at the very end of the year in 2022, even though that was during a La Niña.


The image on the right, adapted from NOAA, shows ocean heat moving toward the Arctic along the path of the Gulf Stream on June 21, 2023, while sea surface temperatures on the map are as high as 32.5°C.

In addition, the Jet Stream is strongly deformed, and this threatens to strengthen heatwaves extending over the Arctic Ocean and causing hot water from rivers to enter the Arctic Ocean, and to strengthen storms accelerating the flow of ocean heat into the Arctic Ocean, while fires and storms contribute to darkening of the sea ice, further speeding up its demise.

The danger is that, as El Niño strengthens and as ocean heat keeps entering the Arctic Ocean from the Atlantic Ocean and the Pacific Ocean, a huge amount of heat will abruptly be pushed into the Arctic Ocean. 

This danger is illustrated by the image on the right, showing the Jet Stream pushing wind at a speed of 126 km/h (78 mph) up through Fram Strait (at the green circle) into the Arctic Ocean on June 21, 2023.

This situation threatens to cause massive loss of Arctic sea ice over the coming months, with water in the Arctic Ocean heating up strongly due to loss of the latent heat buffer and loss of albedo.

This in turn threatens to trigger methane eruptions from the seafloor of the Arctic Ocean, a threat that has been described many times before, such as here, here and here.

[ Latent heat loss, feedback #14 on the Feedbacks page ]
[ see the Extinction page ]
Loss of Arctic sea ice albedo, loss of the latent heat buffer and eruption of seafloor methane all constitute tipping points that threaten to abruptly accelerate the temperature rise in the Arctic, thus also further speeding up loss of permafrost in Siberia and North America and thus threatening to trigger further releases of greenhouse gases.

In addition, there are further events and developments that could unfold and make things even worse.

The upcoming temperature rise on land on the Northern Hemisphere could be of such a severity that much traffic, transport and industrial activity will grind to a halt, resulting in a reduction in cooling aerosols that are now masking the full wrath of global heating. Without these cooling aerosols, the temperature is projected to rise strongly, while there could be an additional temperature rise due to an increase in warming aerosols and gases as a result of more biomass and waste burning and forest fires. Furthermore, as traffic slows down, there will be less nitrogen oxide emissions, which could result in less hydroxyl to curtail methane.

The bar on the right depicts the threat, as discussed at the Extinction page.

In conclusion, the situation is dire and calls for support for a Climate Emergency Declaration.


Links

• Arctic sea ice under threat

• Arctic sea ice under threat - update 1

• Arctic sea ice under threat - update 2

• Arctic sea ice under threat - update 3

• Eliot Jacobson - North Atlantic sea surface temperature anomaly through June 20, 2023

• Eliot Jacobson - North Atlantic sea surface temperature on June 21, for the years 1982-2023
https://twitter.com/EliotJacobson/status/1672232859409723392/photo/1

• Climate Reanalyzer - Daily sea surface temperatures
https://climatereanalyzer.org/clim/sst_daily

• NOAA - The National Centers for Environment Prediction Climate Forecast System Version 2  

• NOAA - Climate Prediction Center - ENSO Diagnostic Discussions
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_advisory/ensodisc.shtml

• University of Bremen - sea ice concentration and thickness
https://seaice.uni-bremen.de/start

• NASA Worldview
https://worldview.earthdata.nasa.gov

• Wetland emission and atmospheric sink changes explain methane growth in 2020 - by Sushi Peng et al. 

• NOAA - sea surface temperature

• Nullschool.net

• Latent Heat

• Albedo

• Extinction

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Climate Emergency Declaration
https://arctic-news.blogspot.com/p/climate-emergency-declaration.html




Monday, June 12, 2023

Arctic sea ice under threat - update 1


The World daily 2-meter Air Temperature (90-90°N, 0-360°E) was 16.77°C on June 9, 2023, an anomaly of 0.9°C for that day. The highest temperature on record is 16.92°C, and it was reached on August 14, 2016, and the anomaly for that day was only 0.75°C. 

The record high of 16.92° actually was a tie between August 13, 2016, August 14, 2016, and July 24, 2022. That latter date is important, since the record high temperature was reached even while there was a strong La Niña, suppressing the temperature. This time, we're in an El Niño, so we can expect even higher temperatures over the next few weeks.

The highest anomaly on record was reached on February 28, 2016, when there was a strong El Niño and the anomaly was 1.15°C. Note that these anomalies are compared to the mean temperature for that day in NOAA's NCEP CFSv2


The above image, from an earlier post, uses monthly NASA Land+Ocean temperature anomalies versus 1886-1915 that are further adjusted by 0.99°C to reflect ocean air temperatures, higher polar anomalies and a pre-industral base.

[ image credit: WTF is Happening? An Overview - by Eliot Jacobson ]

The above image shows sea surface temperature on the North Atlantic (0-60°N, 0-80°W) depicted as anomalies, reaching about 1.1°C above the 1982-2023 mean on June 10, 2023.

The situation is especially critical in the North Atlantic, as vast amounts of ocean heat in the North Atlantic are moving toward the Arctic, threatening to cause rapid melting of Arctic sea ice and thawing of permafrost.

The above image shows the same data for sea surface temperature on the North Atlantic (0-60°N, 0-80°W) reaching 22.7°C on June 10, 2023 (on the black line), 0.7°C higher than the 22.0°C on June 10, 2022 (on the orange line). 

The comparison with 2022 is important, as the North Atlantic sea surface temperature reached a record 24.9°C on Sept. 4, 2022, even while there was a strong La Niña, suppressing the temperature. This time, we have an El Niño, as illustrated by the NOAA image on the right. 

Global sea ice extent was at a record low for the time of year on June 14, 2023, i.e. only 21.42 million km², as illustrated by the image below.  



Contributing to this is very low Antarctic sea ice extent. The image below shows Antarctic sea ice extent up to June 14, 2023. Values in the column on the left are for February 16; Antarctic sea ice extent reached a record minimum on February 16, 2023. Values in the column on  the right are for June 14.  Highlighted are three years: 2023 (red), 2022 (blue) and 2016 (black). Antarctic sea ice extent was also very low at the end of the year 2016, which was a strong El Niño year, yet extent was even lower at the very end of the year in 2022, even though that was during a La Niña.  


The annual Arctic sea ice extent minimum is typically reached in September and the North Atlantic sea surface temperature is critical in regard to melting of the Arctic sea ice. The already high sea surface temperature together with the impact of the El Niño make the outlook for Arctic sea ice for September 2023 look grim.

Sea ice concentration is getting lower in many places and there is open water off the Siberian coast and in parts of the Beaufort Sea and Baffin Bay, as illustrated by the Uni of Bremen image on the right. Rising temperatures in the Arctic threaten to trigger massive loss of Arctic sea ice over the coming months.

The image on the right, from polarportal.dk, shows very low Arctic sea ice volume for the time of year on June 13, 2023, already much lower than the volume on the same date for any of the four previous years.

The NASA Worldview satellite image below shows Arctic sea ice in a very vulnerable state on June 11, 2023, even very close to the North Pole (on the left of the image below). Open water is also visible near the Franz Jozef Archipelago, some 1000 km from the North Pole (on the right of the image below).


The NASA satellite image on the right provides a closer look at the sea ice near the North Pole on June 14, 2023 (click on images to enlarge). 

On the one hand, it's terrible to see open water close to the North Pole so early in the year, yet on the other hand, this may enable ocean heat to escape to the atmosphere and thus delay eruption of seafloor methane (image further below). 

The Uni of Bremen image on the right underneath shows Arctic sea ice thickness on June 13, 2023.

As discussed in earlier posts such as this one, conditions are dire:
• Earth's energy imbalance is at record high
• emissions are at record high
• greenhouse gas concentrations are at record high
• temperatures are very high, especially in the Arctic
• North Atlantic sea surface temperature is at record high
• sea ice is very vulnerable
• the Jet Stream is strongly deformed, threatening to cause:
• heatwaves extending over the Arctic Ocean with
• hot water from rivers entering the Arctic Ocean, with
• storms pushing hot water into the Arctic Ocean, and with
• fires and storms darkening the sea ice

The image on the right shows that carbon dioxide was as high as 427 ppm recently at Mauna Loa, Hawaii. 

The image below shows the extent of the deformation of the Jet Stream on June 6, 2023. No less than 26 circular wind patterns (at 250 hPa) are marked on the image, which also shows sea surface temperature anomalies. The Jet Stream is can also be seen crossing the Equator at the bottom of the image.


Furthermore, there are circumstances that could coincide in a cataclysmic alignment: El Niño is on the way, sunspots are higher than predicted and the Tonga submarine volcano did add large amounts of water vapor high into the atmosphere.

All this looks set to jointly result in massive loss of Arctic sea ice over the coming months, with loss of the latent heat buffer and loss of albedo threatening to trigger eruption of methane from the seafloor of the Arctic Ocean, as has been described many times before, such as in this post, in this post and in this post.

[ Latent heat loss, feedback #14 on the Feedbacks page ]
[ see the Extinction page ]
Both loss of Arctic sea ice and eruption of seafloor methane constitute tipping points that threaten to abruptly accelerate the temperature rise in the Arctic, thus also accelerating loss of permafrost in Siberia and North America that threatens to trigger further releases of greenhouse gases.

In addition, there are further events and developments that could unfold and make things even worse.

The upcoming temperature rise on land on the Northern Hemisphere could be of such a severity that much traffic, transport and industrial activity will grind to a halt, resulting in a reduction in cooling aerosols that are now masking the full wrath of global heating. Without these cooling aerosols, the temperature is projected to rise strongly, while there could be an additional temperature rise due to an increase in warming aerosols and gases as a result of more biomass and waste burning and forest fires. Furthermore, as traffic slows down, there will be less nitrogen oxide emissions, which could result in less hydroxyl to curtail methane.

The bar on the right depicts the threat, as discussed at the Extinction page.

In conclusion, the situation is dire and calls for support for a Climate Emergency Declaration.

In the video below, Jim Massa is interviewed by Sandy Schoelles about the changes taking place in the oceans. 



Links

• Climate Reanalyzer - World Daily 2-meter Air Temperature (90-90°N, 0-360°E)

• NOAA - The National Centers for Environment Prediction Climate Forecast System Version 2  

• Humans may be extinct in 2026

• NASA - GISS Surface Temperature Analysis

• Pre-industrial

• WTF is Happening? An Overview - by Eliot Jacobson
https://climatecasino.net/2023/06/wtf-is-happening-an-overview

• Climate Reanalyzer - Daily sea surface temperatures 
https://climatereanalyzer.org/clim/sst_daily

• NOAA - Climate Prediction Center - ENSO Diagnostic Discussions
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_advisory/ensodisc.shtml

• University of Bremen - sea ice concentration and thickness
https://seaice.uni-bremen.de/start

• Polar Portal - Arctic sea ice thickness and volume
http://polarportal.dk/en/sea-ice-and-icebergs/sea-ice-thickness-and-volume

• NASA Worldview
https://worldview.earthdata.nasa.gov

• Wetland emission and atmospheric sink changes explain methane growth in 2020 - by Sushi Peng et al. 

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Climate Emergency Declaration
https://arctic-news.blogspot.com/p/climate-emergency-declaration.html