Showing posts with label natural gas. Show all posts
Showing posts with label natural gas. Show all posts

Friday, August 16, 2013

Stop All New Fossil Fuel Megaprojects



Why is Obama not rejecting the Keystone XL pipeline now?

In light of Obama's 42 minute climate change speech, his understanding on the lack of permanent jobs created, as well as his knowledge on the corrupted environmental assessment report generated by pipeline advocates, one has to wonder what the delay is for? Clearly, Obama will reject the pipeline or completely lose support and credibility and destroy his long-term legacy.

So why the delay? For one thing, other pipelines are being planned and designed and pretty much slipped under the radar. Like the reversal of Enbridge Line 9 and conversion from natural gas to dilbit and a capacity of 1.1 million barrels per day, much higher than the 0.85 mbd from Keystone XL. By delaying on the Keystone XL, Obama is keeping pressure off these other projects which are threatening to slip in under the radar while people opposed are preoccupied with the Keystone XL.

This needs to change. People opposed to Keystone XL need to ramp up their opposition to all pipeline projects, in fact to all new fossil fuel megaprojects, including coal and pipelines and tankers and also to fracking. The reason is that climate change has moved into a much more rapid and abrupt regime, whereby massive extreme weather events like torrential rains cause floods in some regions, and long-term persistent droughts occur in other regions, all at the whim of a wavy and stuck jet stream.


Paul Beckwith is a part-time professor with the laboratory for paleoclimatology and climatology, department of geography, University of Ottawa. He teaches second year climatology/meteorology. His PhD research topic is “Abrupt climate change in the past and present.” He holds an M.Sc. in laser physics and a B.Eng. in engineering physics and reached the rank of chess master in a previous life.


Related

- The Social Tipping Point - by Paul Beckwith
http://arctic-news.blogspot.com/2013/08/the-social-tipping-point.html

- The Obama Climate Plan: Disappointing and Hopeless - by Peter Carter
http://arctic-news.blogspot.com/2013/07/the-obama-climate-plan-disappointing-and-hopeless.html

- Comprehensive and Effective Climate Plan - by Sam Carana

Monday, July 15, 2013

Comprehensive and Effective Climate Plan

President Obama's Climate Action Plan doesn't look much like a shift to genuinely clean energy. As discussed in a recent post by Peter Carter, the President's Plan sadly supports fossil fuel in many ways.

The plan supports natural gas very prominently. Indeed, how clean is natural gas? Years ago, a Cornell University study (image below) concluded that emissions caused by natural gas can be even worse than coal and diesel oil, especially when looked at over a relatively short period.

At the time, I wrote that this kind of support for natural gas - as if that was supposedly "clean energy" - would only perpetuate the government's support for fuel, while doing little or nothing to help genuinely clean energy. Moreover, continued support for fossil fuel comes at the expensive of growth in genuinely clean energy that we need instead.

EIA figures also show that, over the period from 1990 to 2010, the average amount of carbon dioxide produced in the United States for each unit of energy generated has remained much the same as the world average, while the situation in China has grown even worse.



IEA figures further show that the world's energy-related carbon dioxide emissions continue to rise rapidly and that they, for the period 1900 - 2012, add up to a staggering amount of 1257 Gt.


As the image below shows, from a recent IEA report, the carbon intensity of global energy has hardly improved over the decades.


The colored lines on the right correspond with scenarios in which global temperatures are projected to increase by, respectively, 6 degrees Celsius, 4 degrees Celsius and 2 degrees Celsius.

What are the chances that it will be possible to avoid the worst-case scenario?  The IEA elaborates that an extension of current trends would result in an average global temperature rise of at least 6 degrees Celsius in the long term. To have an 80% chance of limiting the average global temperature rise to 2 degrees Celsius, energy-related carbon dioxide emissions need to be cut by more than half in 2050 compared with 2009. They would need to continue to fall thereafter.

While the IEA adds that the goal of limiting the average global temperature rise to 2 degrees Celsius can only be achieved if greenhouse gas emissions in non-energy sectors are also reduced, the IEA does not elaborate on what further action will be needed and whether emission reductions alone will suffice to avoid climate catastrophe.

[click to enlarge]
As said, the world's cumulative energy-related carbon dioxide emissions add up, for the period 1900 - 2012, to a staggering amount of 1257 Gt. As the graph on the right shows, methane's global warming potential for the first decade since its release into the atmosphere will be more than 130 times as much as carbon dioxide.

Abrupt release of just 10 Gt of methane will - during the first decade since entering into the atmosphere - have a stronger greenhouse effect globally than all cumulative energy-related carbon dioxide emissions from 1900 to 2012.

Note that above calculation applies to methane as it's typically released at present, i.e. gradually and spread out over the world, mostly originating from cattle, wetlands, biowaste, energy, forest fires, etc. Things will be much worse in case of abrupt release of methane from the Arctic seabed, when much of the methane will initially remain concentrated in the Arctic, where hydroxyl levels are also very low.

After 5 years, a methane cloud 20% the size of its original abrupt release of methane in the Arctic will still have more than 1000 times the warming potency locally that the same mass of carbon dioxide has globally.


Look at it this way; an abrupt release in the Arctic Ocean will initially remain concentrated locally. The Arctic Ocean covers 2.8% of the Earth's surface, while there's currently about 0.14 Gt of methane in the atmosphere over the Arctic Ocean. Abrupt release of 1 Gt methane from the Arctic seabed will thus initially multiply methane levels in the atmosphere over the Arctic Ocean by 8, trapping much more heat from sunlight, especially during the June solstice when solar radiation received by the Arctic is higher than anywhere else on Earth.

This comes on top of warming that is already accelerated in the Arctic. Albedo changes alone could cause more warming than all emissions by people globally, according to calculations by Prof. Peter Wadhams, who also describes things in the video below.


The resulting temperature rises in the Arctic threaten to trigger further methane releases from the seabed and wildfires on land in the Arctic, further driving up temperatures in an exponential spiral of runaway global warming.

In conclusion, we need a climate plan that will genuinely produce the necessary action, i.e. a comprehensive and effective climate plan as articulated at http://climateplan.blogspot.com

Wednesday, May 22, 2013

Is the permafrost's integrity breaking down?


The chart below shows very high methane levels over Antarctica in April and May 2013. High levels of methane over Antarctica were recorded before in 2013, as described in an earlier post at the methane-hydrates blog.

Meanwhile, a methane reading of 2475 ppb was recorded on April 26, 2013, appearing to originate from the Himalayan Plateau, as illustrated by the image below.


Recurring high readings could indicate that methane is bubbling up through the permafrost, both in Antarctica and on the Himalayan Plateau.

Loss of the integrity of the permafrost is particularly threatening in the Arctic, where the sea ice looks set to disappear within years, resulting in huge albedo changes in summer. Decrease of surface reflectivity results in increases in absorption of energy from sunlight and decreases in shortwave radiation in the atmosphere. The latter results in lower photo-dissociation rates of tropospheric gases. Photo-dissociation of the ozone molecule is the major process that leads to the production of OH (hydroxyl radical), the main oxidizing (i.e., cleansing) gas species in the troposphere. A 2009 NASA study projects this to lead to a decrease in OH concentrations and a weakening of the oxidizing capacity of the Arctic troposphere, further increasing the vulnerability of the Arctic to warming in case of additional methane releases.

Levels of greenhouse gases such as carbon dioxide and methane are already very high in the Arctic atmosphere, while large quantities of black carbon get deposited on snow and ice, further contributing to the albedo changes. This threatens to result in rapid summer warming of many parts of the Arctic Ocean with very shallow waters. Additionally, rivers can bring increasingly warm water into those shallow seas in summer, adding to the threat that heat will penetrate the seabed that contains huge quantities of methane.



Above image, earlier included in an animation at the Arctic-news blog, shows methane concentrations on January 23, 2013, when a reading of 2241 ppb was recorded in the Arctic.

Analysis of sediment cores collected in 2009 from under ice-covered Lake El'gygytgyn in the northeast Russian Arctic suggest that, last time the level of carbon dioxide in the atmosphere was about as high as it is today (roughly 3.5 to 2 million years ago), regional precipitation was three times higher and summer temperatures were about 15 to 16 degrees Celsius (59 to 61 degrees Fahrenheit), or about 8 degrees Celsius (14.4 degrees Fahrenheit) warmer than today.

As temperatures rose back in history, it is likely that a lot of methane will have vented from hydrates in the Arctic, yet without causing runaway warming. Why not? The rise in temperature then is likely to have taken place slowly over many years. While on occasion this may have caused large abrupt releases of methane, the additional methane from such releases could each time be broken down within decades, also because global methane levels in the atmosphere were much lower than today.

In conclusion, the situation today is much more threatening, particularly in the East Siberian Arctic Shelf (ESAS), as further described in the earlier post methane hydrates.

Above post is an extract of the full post at the methane-hydrates blog

Monday, June 4, 2012

The ANGELS proposal

The Arctic Natural Gas Extraction, Liquefaction & Sales (ANGELS) Proposal aims to reduce the threat of large, abrupt releases of methane in the Arctic, by extracting methane from hydrates prone to destabilization.

By Malcolm Light (author), Sam Carana (editor) and Harold Hensel (public relations)

You can view the presentation by clicking on the link below:
docs.google.com/presentation/d/1vOw215pGuiob9q-u0VRrc2Uumfxr8xU3s4Q2k_YNdsE/edit

Wednesday, May 30, 2012

Proposal to extract, store and sell Arctic methane


A Proposal for the Prevention of
Arctic Methane Induced Catastrophic
Global Climate Change by Extraction
of Methane from beneath the Permafrost/
Arctic Methane Hydrates and its Storage and
Sale as a Subsidized "Green Gas"
Energy Source
By Malcolm P.R. Light
PhD. UCL
May 27th, 2012


DEDICATION

This proposal is dedicated to my Father and Mother, Ivan and Avril Light,
both meteorologists and farmers who knew about the vagaries of the weather;
and to all our grandchildren whose entire future depends on its successful outcome.



EXECUTIVE SUMMARY

Methane hydrates (clathrates) exist on the Arctic submarine shelf and slope where they are stabilized by the low temperatures and they have a continuous cap of frozen permafrost which normally prevents methane escape (Figure 1 below).


However, recent research has shown that millions of tons of methane are already being released in the Siberian Arctic through perforated zones in the subsea permafrost cap with the concentrations reaching up to 100 times the normal, such as in the discharge region of the Lena River and the junction of the Laptev and East Siberian Seas (Shakova et al. 2010).
Mean methane concentrations in the Arctic atmosphere showed a striking anomalous buildup between November 1-10, 2008 and November 1-10, 2011 (Figure 2 above)(Yurganov 2012 in Carana, 2012a).

The surface temperature hotspots in the Arctic caused by global warming correlate well with the anomalous buildups of atmospheric methane in the Arctic (Figure 3 right, in Arctic feedbacks in Carana, 2012a).

This indicates that there is a strong correlation between the dissociation of Arctic subsea methane hydrates from the effects of globally warmed seawater and the increasing size and rate of eruptions of methane into the Arctic atmosphere.

  • Methane eruption zones (torches) occur widely in the East Siberian Arctic Shelf (ESAS) (Shakova et al., 2008; 2010), but the largest and most extreme are confined to the region outside the ESAS where the Gakkel "mid ocean" ridge system intersects at right angles the methane hydrate rich shelf slope region (Figure 9 above and Figure 17 right). 

    The wedge-like opening and spreading of the Gakkel Ridge is putting the formations and overlying methane hydrate sediments under torsional stress and in the process activating the major strike slip faults that fan away and thrust faults that radiate from this region (Figure 16 below). 

    Light and Solana (2002) predicted that the north slope of the Barents - Laptev - East Siberian seas at the intersection of the slowly opening Gakkel Ridge. This region would be especially vulnerable to slope failures where unstable methane hydrate would be affected by seismicity from earthquakes with magnitudes greater then 3.5 Richter and at depths of less than 30 km. Many earthquakes occur along the Gakkel Ridge often with magnitudes greater than 4 to 6 and at depths shallower than 10 km (Avetisov, 2008) continuously destabilizing the already unstable methane hydrates there (Figure 16 below). 


  • Major and minor strike slip and normal faults form a continuous subterranean network around the Gakkel Ridge and are clearly charged with overpressured methane because methane gas is escaping from these fault lines many hundreds of km up dip and away from the subsea methane hydrate zones through which these fault zones pass (Figures 9 above and Figure 18 right).
     
  • One small methane eruption zone occurs directly over the centre of the Gakkel Ridge and probably represents thermogenic deep seated methane being released by the magmatic heating of adjacent oil/gas fields by rising (pyroclastic) magma (Figure 9 above)(Edwards et al. 2001). This surface gas eruption appears to only represent a tiny percentage of the total gas released from other sources such as methane hydrates, as do methane eruptions around Cenozoic volcanics offshore Tiksi on the East Siberian shelf (Figure 11 right and Figure 16 above).

  • An elongated set of methane eruption zones occur on the submarine slope north of Svalbard flanking the Gakkel Ridge and result from methane hydrate decomposition caused by sudden changes in pressure and temperature conditions due to submarine slides/slumps (Figure 9 above). These submarine slides/slumps were evidently set off by seismic activity along the Gakkel Ridge which lies a short distance to the north in an area where the ridge opening is the widest (Figure 16 above). This may be similar to the Storegga slide (Light and Solana, 2002; NGI, 2012). Light and Solana (2002) predicted that the western slopes of Norway and along the Barents Sea to Svalbard, would be especially vulnerable to slope failures in regions of unstable methane hydrate. Here the slowly spreading Gakkel Ridge runs as close as 30 km to the slope. Earthquake activity along the Gakkel Ridge often has magnitudes greater than 4 to 6 at depths shallower than 10 km (Avetisov, 2008) and will also be destabilizing the already unstable methane hydrates here leading to eruptions of methane into the atmosphere (Figure 9 above and Figure 16 above).
There are some 1000 Gt to 1400 Gt (10^9 tonnes) of carbon contained in the methane hydrates on the East Siberian Arctic Shelf and 700 Gt of free methane is trapped under the Arctic submarine permafrost (Shakova et al. 2008, 2010). Shakova et al. estimate that between 5% to 10% of the subsea permafrost (methane hydrates) in that region is now punctured allowing methane to escape at a rate of about 0.5 Mt (500,000 tonnes) a year and that up to 50 Gt (10^9 tonnes) could be released abruptly at any time soon. Release of this subsea Arctic methane would increase the worldwide atmospheric methane content about 12 times equivalent to doubling the carbon dioxide content of the atmosphere. This "methane hydrate gun", which is cocked and ready to fire at any moment, is an extremely serious scenario that will cause abrupt climate change (CCSP, 2008; IMPACTS 2008). Even if this subsea volume of Arctic methane is released over a longer interval of some ten to twenty years it will still result in a massive feedback on global warming and drive the Earth on an irretrievable plunge into total extinction.
Figure 5. From: Carana 2012b, originally from: arctische pinguin - click to enlarge

After 2015, when the Arctic Ocean becomes navigable (Figure 5 above, Carana 2012b) it will be possible to set up a whole series of drilling platforms adjacent to, but at least 1 km away from the high volume methane eruption zones and to directionally drill inclined wells down to intersect the free methane below the sealing methane hydrate permafrost cap within the underlying fault network (Figure 18 above).

High volume methane extraction from below the subsea methane hydrates using directional drilling from platforms situated in the stable areas between the talik/fault zones will reverse the methane and seawater flow in the taliks and shut down the uncontrolled methane sea water eruptions (Figure18 above). The controlled access of globally warmed sea water drawn down through the taliks to the base of the methane hydrate - permafrost cap will gradually destabilize the underlying methane hydrate and allows complete extraction of all the gas from the methane hydrate reserve (Figure18 above). The methane extraction boreholes can be progressively opened at shallower and shallower levels as the subterranean methane hydrate decomposes allowing the complete extraction of the sub permafrost reserve (Figure18 above).

The methane and seawater will be produced to the surface where the separated methane will be processed in Floating Liquefied Natural Gas (FLNG) facilities and stored in LNG tankers for sale to customers as a subsidised green alternative to coal and oil for power generation, air and ground transport, for home heating and cooking and the manufacture of hydrogen, fertilizers, fabrics, glass, steel, plastics, paint and other products.

Where the trapped methane is sufficiently geopressured within the fault system network underlying the Arctic subsea permafrost and is partially dissolved in the water (Light, 1985; Tyler, Light and Ewing, 1984; Ewing, Light and Tyler, 1984) it may be possible to coproduce it with the seawater which would then be disposed of after the methane had be separated from it for storage (Jackson, Light and Ayers, 1987; Anderson et al., 1984; Randolph and Rogers, 1984; Chesney et al., 1982).

Many methane eruption zones occur along the narrow fault bound channels separating the complex island archipelago of Arctic Canada (Figure 6 and 9). In these regions drilling rigs could be located on shore or offshore and drill inclined wells to intersect the free methane zones at depth beneath the methane hydrates, while the atmospheric methane clouds could be partly eliminated by using a beamed interfering radio transmission system (Lucy Project) (Light 2011a). A similar set of onshore drilling rigs could tap subpermafrost methane along the east coast of Novaya Zemlya (Figure 6 below and 9 above).

Methane is a high energy fuel, with more energy than other comparable fossil fuels (Wales 2012). As a liquid natural gas it can be used for aircraft and road transport and rocket fuel and produces little pollution compared to coal, gasoline and other hydrocarbon fuels.

Support should be sought from the United nations, World Bank, national governments and other interested parties for a subsidy (such as a tax rebate) of some 5% to 15% of the market price on Arctic permafrost methane and its derivatives to make it the most attractive LNG for sale compared to LNG from other sources. This will guarantee that all the Arctic gas recovered from the Arctic methane hydrate reservoirs and stockpiled, will immediately be sold to consumers and converted into safer byproducts. This will also act as an incentive to oil companies to produce methane in large quantities from the Arctic methane hydrate reserves. In this way the Arctic methane hydrate reservoirs will be continuously reduced in a safe controlled way over the next 200 to 300 years supplying an abundant "Green LNG" energy source to humanity.