Sunday, December 24, 2017

Winds keep changing as warming continues

November 2017 was 0.87 degrees Celsius warmer than the mean 1951-1980 November temperature, as above image shows. The last three Novembers — 2015, 2016, and 2017 — are the three warmest in the entire modern record. The warmest month of November happened in 2015 (+1.03°C) when there was a strong El Niño, while we're currently in a La Niña period.

On the image below, cyclonic winds on December 21, 2017, are visible near the Philippines and Vietnam. Near the Philippines, 3-hour precipitation accumulation was as high as 121.6 mm or 4.79 in (at green circle). As a BBC report describes, Tropical Storm Tembin made landfall in the southern Philippines on December 22, 2017, causing flash flooding and mudslides. More than 180 people are reported to have been killed, as the tropical storm swept through Mindanao island, with dozens more missing.

A week earlier, Tropical Storm Kai-Tak hit the central Philippines, killing dozens. The region is still recovering from Typhoon Haiyan, which killed more than 5,000 people and affected millions in 2013.

The winds are fueled by high sea surface temperatures. Above image shows that, on December 21, 2017, sea surface temperatures were as high as 31.7°C or 89°F north of Australia. In line with rising temperatures caused by global warming, sea surface temperature anomalies are high across the oceans, as the image below illustrates.

As above image also shows, the sea surface was relatively cold at locations indicative for El Niño (depicted as four El Niño regions on the right).

The image below shows El Niño forecast plumes indicating that we're currently in a La Niña period, and that temperatures are on the rise.

In conclusion, just like the rise in temperatures is currently masked by a La Niña period, the return to a new El Niño period will further strengthen the rise.

This strengthening of winds is what can be expected in a warmer world. Above image shows a wavy Northern Polar Jet Stream combine with the Northern Subtropical Jet Stream to reach speeds as high as 401 km/h or 249 mph.

As the jet stream becomes more wavy and extends over the Arctic, more warm air and water gets carried into the Arctic, further speeding up warming, as also discussed at The Arctic is changing the Jet Stream - Why This Is Important.

The importance of Arctic warming was also discussed in the recent post Warming is accelerating. Changes to the Jet Stream can cause a lot more heat to be brought into the Arctic, through both the Bering Strait and the Fram Strait. This image below shows wind through the Bering Strait reaching speeds as high as 135 km/h or 84 mph.

The combination image below shows the Jet Stream extending over the Arctic Ocean and remaining in place for days, reaching speeds as high as 206 km/h or 128 mph. Such 'blocking' patterns can cause a lot of heat to be brought into the Arctic atmosphere, as well as into the water of the Arctic Ocean. The image in the left-hand panel indicates that temperature anomalies over the Arctic Ocean could be as high as 30°C or 54°F.

[ click on images to enlarge ]
As the temperature difference between the North Pole and the Equator decreases, the Jet Stream becomes more wavy, at times extending deep over the continents and bringing cold air to the south. This further increases the (already high) temperature difference between land and ocean, further speeding up cyclonic winds that move over the oceans toward the North Pole and that carry warm water and air toward the Arctic Ocean. The image below shows a forecast for January 1, 2018.

As sea ice keeps declining, ever less sunlight gets reflected back into space. The image below shows the decline in global sea ice area over the years.

The image below shows the average year-to-date Arctic sea ice volume (PIOMAS data).

This further confirms the updated trend analysis of the NASA temperature anomaly below.

The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.


• Climate Plan

• Warming is accelerating

• The Arctic is changing the Jet Stream - Why This Is Important

• NASA: November 2017 temperature news release

• BBC: Philippines Tropical Storm Tembin kills 180 on Mindanao

• NOAA: Four El Niño regions

• ECMWF: El Niño forecast plumes

• 10°C or 18°F warmer by 2021?

• Abrupt Warming - How Much And How Fast?

• Accelerating growth in CO₂ levels in the atmosphere

• High methane levels over the Arctic Ocean on January 14, 2014

• Feedbacks

• Extinction

• Methane Erupting From Arctic Ocean Seafloor

• Warning of mass extinction of species, including humans, within one decade

Sunday, December 17, 2017

Fires threaten Santa Barbara

New mandatory evacuation orders have been issued for the areas of Montecito, Summerland and some parts of Santa Barbara city, emergency officials said.

Above graph shows carbon monoxide (CO) and carbon dioxide (CO₂) levels from December 5 - 20, 2017, while the map below shows the location of the measurements (and forecasts).

The graph shows levels at one location and for one time of day (00:00 UTC for CO, respectively 01:30 UTC for CO₂). On December 11, 2017, at this location, but at 22:30 UTC, CO levels were 55639 ppb and CO₂ levels were 898 ppm, as illustrated the combination image below (left panel).

The right panel of the image below shows that CO₂ levels were as high as 922 ppm on December 7, 2017, at 01:30 UTC at a slightly different location. No CO₂ measurements were available for December 9 and 10, 2017, but given that levels of CO₂ and CO typically go up and down hand in hand, CO₂ may have peaked at well over 1000 ppm on December 9, 2017, possibly exceeding the 1229 ppm CO₂ measured in Montana on July 22, 2017.

Such fires look set to cause increasing amounts of emissions, speeding up warming of the atmosphere. These fires were fueled by extremely dry, hot and strong winds lasting for many days. Global warming is behind all these conditions. Not only does more heat translate into higher temperatures and stronger winds, the decreasing temperature difference between the Arctic and the Equator is also increasing the intensity and duration of more extreme weather events such as storms and droughts. A record 129 million trees on 8.9 million acres have died in California due to drought and bark beetles infestation.

“For the first time in history, on December 7th, the Cal Fire elevated the fire threat to purple for San Diego County, warning that the weather conditions presented an extreme risk of fire for San Diego,” California Governor Jerry Brown wrote in a request for federal emergency assistance. “Fire officials predict extreme winds of up to 80 miles per hour, equal to the wind speed of a category one hurricane.”

The following is an extract from the California Scoping Plan 2017:
In California, as in the rest of the world, climate change is contributing to an escalation of serious problems, including raging wildfires, coastal erosion, disruption of water supply, threats to agriculture, spread of insect-borne diseases, and continuing health threats from air pollution. The drought that plagued California for years devastated the state’s agricultural and rural communities, leaving some of them with no drinking water at all. In 2015 alone, the drought cost agriculture in the Central Valley an estimated $2.7 billion, and more than 20,000 jobs. Last winter, the drought was broken by record-breaking rains, which led to flooding that tore through freeways, threatened rural communities, and isolated coastal areas. This year, California experienced the deadliest wildfires in its history. Climate change is making events like these more frequent, more catastrophic and more costly.

The situation is dire and calls for comprehensive and effective action as described at the Climate Plan.


• Climate Plan

• Wildfires

• Extreme weather is upon us

• 10°C or 18°F warmer by 2021?

• Abrupt Warming - How Much And How Fast?

• Accelerating growth in CO₂ levels in the atmosphere

• Feedbacks

• Warning of mass extinction of species, including humans, within one decade

• Turning forest waste into biochar

Friday, November 24, 2017

Warming is accelerating

Warming is accelerating. For some time, it has been warmer than the 1.5°C guardrail that the Paris Agreement promised should not be crossed. This conclusion follows from above analysis of NASA land+ocean data 1880-October 2017, adjusted by 0.59°C to cater for the rise from preindustrial and with a trend added that also indicates that the global temperature look set to cross the 2°C guardrail soon, with 2021 falling within the margins of the trend line.
[ click on images to enlarge ]

The trend line shows a strong and ominous direction upward. Nonetheless, the situation could be even more dire than this trend indicates, since some warming elements are not fully incorporated in these data.

As an example, the NASA data look at the temperature at the surface of the oceans, which has increased strongly, as also illustrated by the image on the right.

Much warming has also occurred below the sea surface, while there has been some cooling of the sea surface. Moreover, ocean heat has also increased strongly over the years, as the image below illustrates, and looks set to increase further.

After all, what happens to oceans is important, as 93.4% of global warming currently goes into oceans.

The fact that much warming is taking place below the sea surface could make that it gets overlooked. If much of this warming were to get transferred from the Arctic Ocean to the atmosphere over the next few years, then the temperature rise over the next few years could take an even sharper turn upward.

The threat that warming below the sea surface is overlooked is highlighted by the image below, which shows huge warming of Arctic waters at selected locations near Svalbard.

Above image focuses on temperatures at selected locations near Svalbard (see map below). In 1981-2011, temperatures were gradually falling by more than one degree Celsius over the period of measurement, i.e. from October 1 to November 23 (blue line), a fall that is in line with the change in seasons. Over this period in 2017, temperatures were 13.19°C or 23.77°F higher than in 1981-2011, while the temperature didn't seem to be falling (red line).

How could these waters get a stunning 13.19°C warmer than two decades ago?

Global warming did hit the North Atlantic hard, particularly along the track of the Gulf Stream all the way to the Arctic Ocean. This has translated into stronger winds along the track of the Gulf Stream, which are making that ever larger amounts of warm water are getting pushed from the North Atlantic to the Arctic Ocean.

A temperature rise underneath the sea surface can be overlooked when merely monitoring the average surface temperature of the Arctic Ocean, especially when stronger winds have caused more evaporation, cooling down the water at the surface.

[ 100% relative humidity (left) as jet stream moves over Arctic Ocean (right) ]
Stronger winds, higher temperatures and the presence of more open water in the Arctic have all contributed to stronger rainfall in the Arctic. It looks like the rain did cause a freshwater lid to form at the surface of the Arctic Ocean, acting as an insulator and preventing transfer of ocean heat to the atmosphere. This also contributed to a colder atmosphere over the Arctic Ocean, i.e. colder than it would otherwise have been. At the same time, since less heat could escape from the Arctic Ocean to the atmosphere, this freshwater lid has resulted in warmer water, as is evident from the huge anomalies at the locations near Svalbard. The forecast below that Arctic will be 7.2°C or 12.96°F warmer than in 1979-2000 on December 3, 2017, illustrates just how warm the Arctic Ocean currently is.

This freshwater lid has also made it easier for sea ice to form at the surface, as ice will form in freshwater as warm as just below 0°C (or 32°F), compared to salty seawater that must cool down to -2°C (or 28.4°F) before freezing. The seawater underneath the sea ice is warm enough to melt the ice from below, but the layer of freshwater at the surface acts as an insulator.

There would have been less sea ice, had it not been for the rain resulting in this freshwater lid. Much of the freshwater lid did turn into sea ice in September 2017, as air temperatures came down below 0°Cs, and this sea ice similarly acted as an insulator, preventing transfer of heat from the Arctic Ocean to the atmosphere. Importantly, while much of the additional freshwater at the surface did turn into sea ice in 2017, this is only a temporary phenomenon, as no ice will form once the surface of the water will stay above 0°C, which looks imminent as temperatures keep rising.

[ Cyclone carrying particulates into the Arctic Ocean ]
Further sea ice loss means that less sunlight will get reflected back into space and will instead get absorbed by the Arctic, further accelerating warming in the arctic.

Additionally, more heat is radiated from sea ice into space than from open water (feedback #23).

Stronger cyclones can also bring more particulates into the Arctic Ocean, speeding up the demise of sea ice by darkening it when settling on ice, as illustrated by the image on the right.

In conclusion, while the formation of the freshwater lid at the surface of the Arctic Ocean has been holding back the collapse of the sea ice, the delay of the collapse can only be a temporary one as temperatures keep rising. The Arctic Ocean is warming at accelerating speed and collapse of the sea ice looks imminent.

[ click on image to enlarge ]

Above images confirm the loss of the thicker sea ice over the past few years, while zero Arctic sea ice is within the margins of the trend line of the image on the right.

Less sea ice will on the one hand make that more heat can escape from the Arctic Ocean to the atmosphere, but on the other hand the albedo loss and the additional water vapor will at the same time cause the Arctic Ocean to absorb more heat, with the likely net effect being greater warming of the Arctic Ocean.

Another point to consider is latent heat, as discussed in earlier posts. The danger is illustrated by the image below, showing that heat threatens to destabilize methane hydrates at the seafloor of the Arctic Ocean. As the temperature of the Arctic Ocean keeps rising, more heat threatens to reach sediments that have until now remained frozen. Melting of the ice in these sediments then threatens to unleash huge eruptions of seafloor methane that has until now been kept locked up by the permafrost.

The Buffer has gone, feedback #14 on the Feedbacks page
Additionally, melting of permafrost on land can cause rapid decomposition of soils, resulting in releases of huge amounts of greenhouse gases, further accelerating warming in the Arctic, which in turn will result in more greenhouse gases (CO2, CH4, N2O, water vapor) entering the Arctic atmosphere, more albedo changes, etc., in a vicious self-reinforcing cycle of runaway warming.

Levels of CO2, CH4 an N2O have been rising rapidly since 1750, as above image shows. Methane levels have risen 257% since 1750.

Did the rise in methane emissions slow down from 1999 to 2006?

One explanation for the apparent slowdown is that, as temperatures kept rising, water vapor in the atmosphere increased accordingly (7% more water vapor for every 1°C warming), resulting in more hydroxyl that broke down more methane in the atmosphere since 1990. So, while the rise in methane levels appeared to slow down, methane emissions were actually continuing to increase, but as an increasingly large part of methane was decomposed by hydroxyl, this rise in methane was overlooked. In 2007, Arctic sea ice reached a record low, triggering more methane eruptions from the seafloor of the Arctic Ocean. While hydroxyl kept increasing, seafloor methane kept increasing faster, making that methane emissions increasingly started to overwhelm hydroxyl, resulting in a stronger rise in overall methane levels. In 2013, I estimated methane emissions at 771 Tg/y, whereas the IPCC's estimate was 678 Tg/y. The post estimated methane from hydrates and permafrost at 13% of total methane emissions, whereas the IPCC's estimate was a mere 1% of total methane emissions. - Sam Carana, Dec. 2017.

[ click on images to enlarge ]
The presence of methane is felt particularly strongly over the Arctic Ocean. Above images show high methane levels over the Arctic Ocean on December 2, 2017, when methane reached a peak level of 2771 ppb and on December 13 and 14, 2017, when peak levels as high as 2713 ppb were reached.

Methane levels have been rising strongly since 2000 and this rise looks set to continue, as illustrated by the image on the right.

There is also a danger that, as temperatures keep rising, the course of the ocean current near Svalbard could change, making that more heat will reach the East Siberian Arctic Shelf (ESAS), thus further warming up sediments there, resulting in huge amounts of methane erupting from the seafloor.

Add up the impact of all warming elements and, as an earlier analysis shows, the rise in mean global temperatures from preindustrial could be more than 10°C in a matter of years, as illustrated by the images below.

A 2°C rise in temperature alone is devastating, especially when considering that temperature peaks in history look to have been less high than previously thought, as concluded by a recent study in ocean paleotemperature. Therefore, a 10°C rise may well result in the warmest temperatures experienced on Earth. Moreover, the speed at which this rise could occur leaves little or no time for plants and animals to adapt, in contrast to historical climate swings that typically took many years to eventuate.

The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.


• Climate Plan

• 10°C or 18°F warmer by 2021?

• Abrupt Warming - How Much And How Fast?

• Accelerating growth in CO₂ levels in the atmosphere

• High methane levels over the Arctic Ocean on January 14, 2014

• Feedbacks

• Extinction

• Methane Erupting From Arctic Ocean Seafloor

• Warning of mass extinction of species, including humans, within one decade

Saturday, October 7, 2017

Hurricane Nate Threatens New Orleans

The image below, a forecast for October 8, 2017, run on October 7, shows Hurricane Nate near New Orleans, with winds as fast as 83 mph or 134 km/h (at 850 mb) and up to 5.33 in or 135.4 mm (3-hour precipitation accumulation) of rain (at the green circle).

Early forecast also showed as much as 6.1 in or 154.9 mm of rain (3-hour precipitation accumulation) hitting the Mississippi coast.

The NOAA image below also shows the track over North America as forecast over the next few days.

Nate, the fourth major storm to strike the United States in less than two months, killed at least 30 people in Central America before entering the warm waters of the Gulf and bearing down on the U.S. South (Reuters report).

One of the biggest dangers is storm surge flooding, as illustrated by above image and the tweet below.

As the world keeps warming, hurricanes are increasingly causing damage, as also discussed in a recent post.

The situation is dire a calls for comprehensive and effective action, as described at the Climate Plan.


• Climate Plan

• NOAA National Hurricane Center

• The Arctic is Changing the Jet Stream - Why This Is Important

• Extreme weather is upon us

Monday, October 2, 2017

The Arctic is Changing the Jet Stream - Why This Is Important

By Sam Carana, with contributions by Jennifer Francis

Global warming is increasing the strength of hurricanes. A warmer atmosphere holds more water vapor and sea surface temperatures are rising. Both of these changes strengthen hurricanes. Steering winds may also be changing, causing unusual hurricane tracks such as Sandy's left turn into the mid-Atlantic seaboard and Harvey's stagnation over Houston. Is rapid Arctic warming playing a role?

Jennifer Francis has long been warning that global warming is increasing the likelihood of wavier jet stream patterns and more frequent blocking events, both of which have been observed. The Arctic is warming more rapidly than the rest of the world. The narrowing temperature difference between the Arctic and lower latitudes is weakening the speed at which the jet stream circumnavigates Earth and may be making the jet stream more wavy. In a 2012 study, Jennifer Francis and Stephen Vavrus warned that this makes atmospheric blocking events in the Northern Hemisphere more likely, aggravating extreme weather events related to stagnant weather conditions, such as drought, flooding, cold spells, and heat waves.

The danger was highlighted later that year, when a strong block associated with a deep jet stream trough helped steered Hurricane Sandy toward New York. In 2017, Hurricane Harvey hovered over Houston and dumped record-breaking rains (over 50 inches in some locations!), again highlighting this danger.

The jet stream separates cold air in the Arctic from warmer air farther south. A wavier jet stream transports more heat and moisture into the Arctic. This speeds up warming of the Arctic in a number of ways. In addition to warming caused by the extra heat, the added water vapor is a potent greenhouse gas, trapping more heat in the atmosphere over the Arctic, while it also causes more clouds to form that also are effective heat trappers.

As the Arctic keeps warming, the jet stream is expected to become more distorted, bringing ever more heat and moisture into the Arctic. This constitutes a self-reinforcing feedback loop that keeps making the situation worse. In conclusion, it's high time for more comprehensive and effective action to reduce the underlying culprit: global warming.

Jennifer Francis is Research Professor at the Institute of Marine and Coastal Sciences at Rutgers University, where she studies Arctic climate change and the link between the Arctic and global climates.

Jennifer has received funding from the National Science Foundation and NASA. She is a member of the American Meteorological Society, American Geophysical Union, Association for Women in Science and the Union of Concerned Scientists.


• Evidence Linking Arctic Amplification to Extreme Weather in Mid-Latitudes, by Jennifer Francis and Stephen Vavrus (March 17, 2012)

• Why Are Arctic Linkages to Extreme Weather Still Up in the Air? By Jennifer Francis (July 7, 2017)

• Amplified Arctic warming and mid‐latitude weather: new perspectives on emerging connections, by Jennifer Francis, Stephen Vavrus, Judah Cohen (May 16, 2017)

• Jennifer Francis: A New Arctic Feedback - Dec 2016 interview with Peter Sinclair (Jan 16, 2017)

• Precipitation over the Arctic - by Sam Carana (27 Jan 2017)

• Jennifer Francis - Understanding the jet stream (26 Feb 2013)

Friday, September 8, 2017

Extreme weather is upon us

Extreme weather is upon us. Global warming is increasing the intensity, occurrence, size, duration and impact of many catastrophic events, including wildfires, droughts, heat waves, cold snaps, storms, lightning, flooding and seismic events such as earthquakes and associated tsunamis.

Ever larger numbers of people are getting hit directly by such events, as well as indirectly due to lack of fresh water, food, shelter, medicine, health care and emergency services.

Many lives were lost and many further lives are at stake. In a September 11, 2017, statement, AccuWeather predicts the joint economic costs of Hurricane Harvey and Hurricane Irma to be $290 billion, or 1.5% of the U.S. GDP.

The following three images show Hurricane Irma (left) and Hurricane Jose (right), and are forecasts for September 10, 2017. The image directly below shows that waves are forecast to be as high as 48 ft (or 14.63 m).

Waves for September 10, 2017, 15:00 UTC (at green circle, 26°N, 80°W) are forecast as high as 48 ft or 14.63 m
The image below shows that winds are forecasts to be as fast as 163 mph (or 263 km/h).

Winds for Sept. 10, 2017, 12:00 UTC (green circle, 25.5°N, 80.5°W, 850 hPa) forecast as fast as 163 mph or 263 km/h
The image below shows that as much as 6.59 in (or 167.4 mm) of rain is forecast.

As much as 6.59 in (or 167.4 mm) of rain is forecast for Sept. 10, 2017, 6:00 UTC (3-hour accumulation, green circle)
Forecasts were posted widely, such as the image below that was posted at facebook.

Earlier, Hurricane Harvey hit Houston. Again, warnings were posted widely, such as the forecast below, posted at facebook.

[ click on images to enlarge ]
There is no doubt that people's emissions are causing global warming and that this is causing more extreme weather to occur across the world.

Extreme weather is amplified by changes to the Jet Streams. As the Arctic is warming more rapidly than the rest of the world, the temperature difference between the Arctic and the Equator is narrowing, which is slowing down the speed at which the Jet Streams circumnavigate the globe.

The Coriolis Effect makes Jet Streams circumnavigate the globe horizontally, and this used to keep cold air inside the Arctic and warmer air outside of the Arctic.

As the Jet Streams circumnavigate the globe at lower speeds, they increasingly move more vertically, allowing cold air from the Arctic to move down south more easily, and warm air to move up north more easily. This can make it easier for cyclones to move land-inward, where they previously would have kept following a path over the sea. This can also make it easier for weather conditions to stay the same for many days in an area, allowing huge amounts of rain water to accumulate in such an area.

This is illustrated by the image on the right, showing Jet Streams crossing the Equator at speeds as fast as 82 km/h or 51 mph (at the location marked by the green circle, at 250 mb) on August 27, 2017, 21:00 UTC. The image also shows Jet Streams crossing the Arctic at multiple locations.

Furthermore, numerous cyclones are visible on the image. As Earth retains more energy, winds and currents are getting stronger, waves are getting higher, etc., while higher temperatures are also causing winds to carry more moisture. This is especially the case for cyclones that are also stronger due to high sea surface temperatures.

The image below shows Hurricanes Jose, Irma and Katia lining up over the Atlantic Ocean on September 7, 2017.

The image below shows the hurricanes lining up over the Atlantic Ocean on September 8, 2017.

The image below shows Hurricane Jose off the coast of North America and Hurricane Maria underneath, with winds as fast as 149 mph or 241 km/h (at 850 hPa) and as much as 7.92 inch or 201.1 mm of rain (3-hour precipitation accumulation) at the location marked by the green circle.

In the video below, Paul Beckwith discusses the situation.

There can be many interactions between such events. Seismic events such as earthquakes, landslides and associated tsunamis, can be triggered by human activities in several ways.

Seismic events triggered by human activities

• Earthquakes can be triggered by fracking and by pools associated with fracking.
• Warming caused by people makes snow and ice melt, removing weight off the land and dumping it into the sea. This change in weight can trigger earthquakes.
• The Earth's crust can be flexed by storms. Large cyclones first suck up water, making sea level retreat and lifting up the crust. Then, a surge follows, while huge amounts of rainwater can add further weight, pushing the crust down again. This change can be felt over longer distances, triggering earthquakes across continents.
• Wild weather swings can be the result of changes in the jet streams caused by global warming. Huge sudden swings in temperature and in air pressure can make soils and ice go abruptly from expansion to compression and back again, which can cause cracks and landslides, and associated shockwaves, which can in turn trigger larger seismic events and open up methane craters with can come with large releases of methane.

After Sandy hit New York, in 2012, earthquakes hit the coast off Vancouver and links between the two events were discussed in this post.

Hurricane Harvey caused massive flooding in several States. The weight of the torrential rains brought by Hurricane Harvey caused Houston to sink by 2 centimeters. Water weighs about a ton per cubic meter and the flooding was so widespread that it "flexed Earth's crust", NASA scientist Chris Milliner said. 

An earthquake with a magnitude of 8.1 on the Richter scale hit at 69.7 km depth, off the coast of Mexico, 87km SW of Pijijiapan, on September 8, 2017 at 04:49:21 UTC, at 15.068°N 93.715°W.

Numerous aftershocks are visible on the map below (screenshot taken September 13, 2017).

Rising temperatures are increasing the amount of water vapor in the atmosphere at a rate of 7% more water vapor for every 1°C warming. This is further speeding up warming, since water vapor is a potent greenhouse gas. Over the coming years, a huge amount of additional water vapor threatens to enter the atmosphere, due to the warming caused by albedo changes in the Arctic, methane releases from the seafloor, etc., as described at this page.

The situation is dire and calls for comprehensive and effective action, as described at the Climate Plan.

Hurricane Damage Mitigation

A 2014 study by scientists led by Mark Jacobson calculates that large turbine arrays (300+ GW installed capacity) could diminish peak near-surface hurricane wind speeds by 25–41 m/s−1 (56–92 mph) and storm surge by 6–79% AND provide year-round clean and renewable electricity.

How many electric cars will be ready to move into Miami to provide emergency support in the wake of Hurricane Irma?

Storms can cause power outages, electricity poles can get damaged. Electricity poles can also be a traffic hazard (i.e. collisions can occur even if the pole hasn't fallen down, especially when streetlights fail). When damaged, power lines hanging off poles constitute electrical shock hazards and they can cause fires to ignite and wildfires to start.

Storms can also cause damage to backup generators and to fuel storage tanks, making it hard for emergency services to give the necessary support. Electric cars can supply electricity where needed, e.g. to power necessary air conditioning, autoclave and emergency equipment, such as in hospitals. After a tsunami hit Japan in 2011, electric cars moved in to provide electricity from their batteries, as described in many articles such as this one.

Wind turbines and solar panels are pretty robust. Hurricane Harvey hit the Papalote Creek Wind Farm near Corpus Christi, Texas. The wind farm had little or no damage, there was just a short delay in restarting, mostly due to damage to power lines. The Tesla roof that doubles as solar panels is much stronger than standard roofs. Have a look at this video.

Join the Renewables group at facebook!
Clean and renewable energy can provide more stable, robust and safe electricity in many ways. Centralized power plants are vulnerable, in that all eggs are in one basket, while there can be long supply and delivery lines. Many of the benefits of clean and renewable energy are mentioned on above image.

Furthermore, there are ways to lower sea surface temperatures. The image on the right shows the very high sea surface temperature anomalies on August 28, 2017.

Note the colder area (blue) in the Gulf of Mexico. Hurricane Harvey cooled the sea surface as water evaporated and warm moisture was added to the atmosphere. The cyclonic force also mixed colder water below the surface with warmer water at the surface, resulting in colder water at the surface. The combination image below shows the difference between August 20, 2017, and August 30, 2017.

[ click on images to enlarge ]

A number of geoengineering methods can be used to reduce sea surface temperatures and thus reduce the intensity of hurricanes. Methods include upwelling associated with ocean fertilization and with ocean tunnels, marine cloud brightening and increasing and brightening bubbles in the wake of vessels, as discussed at the geoengineering group at facebook.

Besides cooling the sea surface, there's also the upwelling of nutrients that can help combat ocean stratification. Warm water holds less oxygen than cold water. As the water warms, it also tends to form a layer at the surface that does not mix well with cooler, nutrient-rich water below, depriving phytoplankton of some of the nutrients needed in order for phytoplankton to grow (and take up carbon).

Some of these methods are also discussed at this 2011 page, which also mentions that more research is needed into the impact of such methods. Of course, possible application should go hand in hand with dramatic reductions in emissions including a rapid shift to 100% clean and renewable energy.
Similarly, the necessary shift to clean and renewable energy in itself will not be enough to avoid catastrophic warming, and it should go hand in hand with further lines of action to remove pollution and to cool the Arctic Ocean, as described at the Climate Plan.


• Climate Plan

• How much warming did and could people cause?

• Did Sandy trigger major earthquakes off Vancouver?

• Geophysicist: Weight of Harvey rains caused Houston to sink

• As Harvey breaks rainfall record, Houston imposes a curfew and death toll climbs to 18

• Historic Hurricane Harvey's Recap

• Hurricane Katia strikes Mexico, killing at least two, as the nation still reels from a massive earthquake

• Deadly quake and Hurricane Katia a one-two punch for Mexico (September 8, 2017).
Updated: Death toll now at 90 as aftershocks rattle southern Mexico (September 11, 2017).

• AccuWeather predicts economic cost of Harvey, Irma to be $290 billion

• After Disaster Hit Japan, Electric Cars Stepped Up

• In Big Test of Wind Farm Durability, Texas Facility Quickly Restarts After Harvey

• Tesla Unveils Powerwall 2 & Solar Roof

• Taming hurricanes with arrays of offshore wind turbines, by Mark Z. Jacobson et al. (2014)

• The Solutions Project

• Weakening of hurricanes via marine cloud brightening (MCB), by John Latham, Ben Parkes, Alan Gadian, Stephen Salter (2012)

• Multiple Benefits Of Ocean Tunnels

• Oxygenating the Arctic

• Reducing hurricane intensity using arrays of Atmocean Inc.'s wave-driven upwelling pumps

• Could bright, foamy wakes from ocean ships combat global warming?