Showing posts with label satellite. Show all posts
Showing posts with label satellite. Show all posts

Monday, August 12, 2013

Arctic satellite thermal infrared CH4 data compared to surface in-situ and total column measurements

Leonid Yurganov, Senior Research Scientist,
Joint Center for Earth Systems Technology,
University of Maryland Baltimore County

Below an abstract of a paper written by Leonid Yurganov, Xiaozhen Xiong and Ira Liefer, and submitted for presentation at the AGU-Fall meeting 2013.

ABSTRACT: The trace gas sensitivity of Thermal InfraRed (TIR) sounders (AIRS, IASI, TANSO) is greatest in the middle and upper troposphere; though, lower troposphere (1-2 km of altitude) sensitivity is less but not negligible. As a result, where methane largely is constrained to the lower troposphere, as is common in the Arctic particularly the marine Arctic, retrievals from these instruments provides important synoptic data on high latitude methane sources. Low Arctic water vapor content favors a better sensitivity to methane as well: H2O is the main absorber in the 7.8 micrometers spectral region.

Both AIRS/Aqua v6 (NASA) and IASI/Metop-A (NOAA/NESDIS/CLASS retrievals) methane data averaged over 0-4 km altitude clearly demonstrate increased methane concentrations over the Barents and Norwegian Seas (BNS) with seasonal maximum in December - March. Similar increases are observed over the Kara, Laptev, and Chukchi Seas for September-November, i.e. during the period of minimum ice cover over the Arctic (Figures 1 and 2). Comparison of a long series of AIRS data with in situ methane concentrations at the Zeppelin NILU observatory (Svalbard) show good agreement both in amplitude and phase of seasonal variations. Agreement with Barrow NOAA continuous methane in situ data is much worse, which likely results from lower thermal contrast in winter over the cold and icy surfaces of the Eastern Arctic. Further surface validation is by a comparison of total methane columns with the Sun-Tracking FTIR at Ny-Alesund, Svalbard (TCCON network).

These analyses demonstrate that TIR satellites are capable of detecting Arctic methane enhancements from space, particularly over relatively warm year-round water surfaces such as the BNS. Ongoing research is addressing further verification of retrieved methane columns by collecting data with a cavity ring-down spectroscopy analyzer for methane and carbon dioxide on board of the Russian Research Vessel Akademik Fedorov during the expedition NABOS-2013. Data will be collected to measure marine methane concentrations and vertical fluxes between Norway and the Eastern Arctic (New Siberian Islands) between 20 August and 23 September, 2013.

Figure 1

Figure 2. methane concentrations over the Barents and Norwegian Seas (BNS), over the Kara, Laptev, and East Siberian Seas, and over Eurasia (between 50 and 70 degrees North)

Saturday, July 27, 2013

Arctic Cyclone July 2013

A cyclone is raging over Arctic.

Above satellite image is from with further images added in the video below (July 25-27, 2013). To see the video in a larger size, go to

Below, a Naval Research Laboratory animation showing ice speed and drift over 30 days.

The impact of the cyclone is also clearly visible on the Naval Research Laboratory ice concentration animation below.


- The Great Arctic Flush - by Paul Beckwith

Thursday, January 10, 2013

Dark Snow Project - Research into soot on Greenland

Fossil fuel combustion creates carbon emissions that increase atmospheric thickness, warming climate. The occurrence of wildfire increases with climate warming, increasing soot loading of the atmosphere. Some of this soot is transported through the atmosphere and is deposited on glaciers, lowering their reflectivity, increasing solar energy absorption, increasing melt rates.
image from

In parts of Greenland where winter snow loss during each melt season exposes impurity-rich bare ice, the surface reflectivity drops from 85% to 30%. Consequently, most of the 24-hour sunlight goes into ice melt. In this Dark Zone, the impact of soot manifests strongest in a self-reinforcing feedback loop that research by Jason Box has shown to have doubled melt rates in the past decade.

High on the inland ice sheet where melting is rare, satellite data show surface darkening making the researchers suspect that wildfire and industrial soot are to blame. Darkening here promotes snowpack heating, bringing earlier melt, keeping melt going longer. Here is where this feedback is changing the ice sheet in surprising ways, leading to complete surface melting in year 2012.

To measure the extent to which soot particles enhance melting, Jason Box is organizing a Greenland ice sheet expedition for 2013. The Dark Snow Project expedition is to be the first of its kind, made possible by crowd-source funding.


Fire and Ice: Wildfires Darkening Greenland Snowpack, Increasing Melting (News Release from Byrd Polar Center)

- The DarkSnowProject

-Video: Sampling Greenland, the Dark Snow Project, by Peter Sinclair, produced at Greenman Studio, Midland, MI.

- Where there’s fire there’s smoke - Blog by Jason Box, the

Further reading

- Greenland is melting at incredible rate