Showing posts with label smoke. Show all posts
Showing posts with label smoke. Show all posts

Wednesday, January 15, 2020

The Australian firestorms: portents of a planetary future

by Andrew Glikson
Earth and climate scientist
Australian National University

Global warming and its disastrous consequences are now truly with us since the second part of 2019. At the moment a change in the weather has given parts of the country a respite from the raging fires, some of which are still burning or smoldering, waiting for another warm spell to flare up. The danger zones include the Australian Capital Territory, from where these lines are written. To date, 18.6 million hectares (186,000 square kilometers) were burnt, including native forests, native animals, homesteads and towns, and 24 people died. The firestorms betray harbingers of a planetary future, or a lack of such, under ever rising temperatures and extreme weather events inherent in fossil fuel driven global warming.

Global heating

As the atmospheric concentration of the well-mixed greenhouse gases rise (CO₂ >411.76 ppm; CH₄ >1870.5 ppb; N₂O >333 ppb plus trace greenhouse gases) land temperatures soar (NASA global sea-land mean of 1.05°C since 1880). According to Berkeley Earth global land temperatures have increased by 1.5C over the past 250 years and mean Arctic temperatures have risen by 2.5°C to 3.0°C between 1900 and 2017. According to NASA :
  1. “Extreme heatwaves will become widespread at 1.5 degrees Celsius warming. Most land regions will see more hot days, especially in the tropics.
  2. At 1.5°C about 14 percent of Earth’s population will be exposed to severe heatwaves at least once every five years, while at 2 degrees Celsius warming that number jumps to 37 percent.”
  3. “Risks from forest fires, extreme weather events and invasive species are higher at 2 degrees warming than at 1.5 degrees warming.”
  4. “Ocean warming, acidification and more intense storms will cause coral reefs to decline by 70 to 90 percent at 1.5 degrees Celsius warming, becoming all but non-existent at 2 degrees warming.”
Figure 1. The distribution of global fires. NASA.

However, bar the transient masking effects of sulphur aerosols, which according to estimates by Hansen et al. (2011) induce more than 1.0°C of cooling, global temperatures have already reached near 2.0°C (by analogy to the requirement for a patient’s body temperature to be measured before and not after aspirin has been taken). As aerosols are not homogeneously distributed, in some parts of the world temperatures have already soared to such levels. Thus the degree to which aerosols cool the earth, which depends on aerosol particle size range, has been grossly underestimated.

The rate of global warming, at ~2 to 3 ppm year and ~1.5°C in about one century, faster by an order of magnitude then geological climate catastrophe such as the PETM and the KT impact, has taken scientists by surprise, requiring a change from the term climate change to climate calamity.

The Australian firestorms

In Australia mean temperatures have risen by 1.5°C between 1910 and 2019 (Figure 2), as a combination of global warming and the ENSO conditions, as reported by the Bureau of Meteorology.

“The Indian Ocean Dipole (IOD) has returned to neutral after one of the strongest positive IOD events to impact Australia in recent history ... the IOD’s legacy of widespread warm and dry conditions during the second half of 2019 primed the Australian landscape for bushfire weather and heatwaves this summer. In the Pacific Ocean, although indicators of the El Niño–Southern Oscillation (ENSO) are neutral, the tropical ocean near and to the west of the Date Line remains warmer than average, potentially drawing some moisture away from Australia.”

Figure 2. (A) Australian mean temperature. (B) Severe fire weather. (C) Drought. (D) Driest year.
Bureau of Meteorology
The prolonged drought (Figure 2 C, D), low fuel moisture, high temperatures (Figure 2A) and warm winds emanating from the inland have rendered large parts of the Australian continent tinder dry, creating severe fire weather (Figure 2B) subject to ignition by lightning and human factors. Fires on a large scale create their own weather (see: bushfire raging in Mount Adrah and firestorm). Observations of major conflagrations, including the 2003 Canberra fires, indicate fires can form atmospheric plumes which can migrate and as hot plumes radiating toward the ground (fire tornadoes).

The underlying factor for rising temperatures and increasingly severe droughts in Australia is the polar-ward shift in climate zones (see map Oceania) as the Earth warms, estimated as approximately 56-111 km per decade, where dry hot subtropical zones encroach into temperate zones, as is also the case in South Africa and the Sahara.

Smoke signals emanating from the Australian fires are now circling around the globe (Figure 3) signaling a warning of the future state of Earth should Homo sapiens, so called, not wake up to the consequences of its actions.

Figure 3. (A) Smoke emanating from the southeastern Australian fires (January 4, 2020);
(B) smoke from the pyro-cumulonimbus clouds of the Australian fires drifting across the Pacific Ocean.
The fire clouds have lofted smoke to unusual heights in the atmosphere. The CALIPSO satellite observed smoke soaring between 15 to 19 kilometers on January 6, 2020—high enough to reach the stratosphere. NASA.

Andrew Glikson
Dr Andrew Glikson
Earth and climate scientist
Australian National University

Sunday, July 1, 2018

Can we weather the Danger Zone?

[ click on image to enlarge ]
As an earlier Arctic-news analysis shows, Earth may have long crossed the 1.5°C guardrail set at the Paris Agreement.

Earth may have already been in the Danger Zone since early 2014. This is shown by the image on the right associated with the analysis, which is based on NASA data that are adjusted to reflect a preindustrial baseline, air temperatures and Arctic temperatures.

As the added 3rd-order polynomial trend shows, the world may also be crossing the higher 2°C guardrail later this year, while temperatures threaten to keep rising dramatically beyond that point.

What is the threat?

As described at the Threat, much carbon is stored in large and vulnerable pools that have until now been kept stable by low temperatures. The threat is that rapid temperature rise will hit vulnerable carbon pools hard, making them release huge amounts of greenhouse gases, further contributing to the acceleration of the temperature rise.

Further release of greenhouse gases will obviously further speed up warming. In addition, there are further warming elements that could result in very rapid acceleration of the temperature rise, as discussed at the Extinction page.

The Danger Zone

Below are some images illustrating just how dire the situation is, illustrating how vulnerable carbon pools are getting hit exactly as feared they would be with a further rise in temperature.

On July 5, 2018, it was as hot as 33.5°C or 92.3°F on the coast of the Arctic Ocean in Siberia (at top green circle, at 72.50°N). Further inland, it was as hot as 34.2°C or 93.5°F (at bottom green circle, at 68.6°N).

The satellite image below shows smoke from fires over parts of Siberia hit strongly by heat waves.

The fires caused carbon monoxide levels as high as 20,309 ppb over Siberia on July 3, 2018.

Methane levels that day were as high as 2,809 ppb.

On July 4, 2018, forest fires near the Lena River cause smoke over the Laptev Sea and East Siberian Sea. CO (see inset) and CO₂ levels that day were as high as 45080 ppb and 724 ppm (at the green circle), as illustrated by the image below.

The Copernicus image below shows aerosol forecasts for July 4, 2018, 21:00 UTC, due to biomass burning.

Another Copernicus forecast shows high ozone levels over Siberia and the East Siberian Sea.

EPA 8-hour ozone standard is 70 ppb and here's a report on recent U.S. ozone levels. See Wikipedia for more on the strong local and immediate warming impact of ozone and how it also makes vegetation more vulnerable to fires.

The global 10-day forecast (GFS) below, run on July 3, 2018, with maximum 2 meter temperature, shows that things may get even worse over the coming week or more.

Could we move out of the Danger Zone?

What can be done to improve this dire situation?

One obvious line of action is to make more effort to reduce emissions that are causing warming. There's no doubt that this can be achieved and has numerous benefits, as described in an earlier post. Emission cuts can be achieved by implementing effective policies to facilitate changes in energy use, in diet and in land use and construction practices, etc.

One complication is that the necessary transition away from fossil fuel is unlikely to result in immediate falls in temperatures. This is the case because there will be less sulfur in the atmosphere to reflect sunlight back into space. Furthermore, there could also be an increase in biomass burning, as discussed at the Aerosols page, while the full wrath of recent carbon dioxide emissions is yet to come. As said, the resulting rise in temperature threatens to trigger numerous feedbacks that could accelerate the temperature rise even further. For more on how much temperatures could rise, see the Extinction page.

While it's clear that - besides emission cuts - further action is necessary, such as removing greenhouse gases from the atmosphere and oceans, the prospect is that such removal will have to continue for decades and decades to come before it can bring greenhouse gases down to safer levels. To further combat warming, there are additional lines of action to be looked at, but as long as politicians remain reluctant to even consider pursuing efforts to reduce emissions, we can expect that the world will be in the Danger Zone for a long time to come.

The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.


• How much warmer is it now?

• 100% clean, renewable energy is cheaper

• Feedbacks

• How much warming have humans caused?

• IPCC seeks to downplay global warming

• The Threat

• Extinction

• Aerosols

• How extreme will it get?

• Climate Plan

Monday, August 14, 2017

Arctic Sea Ice Break Up August 2017

Sun at 8:00 am, captured by Jim Reeve on August 7, 2017 near Sechelt AirPort, B.C., Canada
Arctic sea ice is under attack from all sides.  At this time of year, the sun doesn't set at the higher latitudes.

As the image below shows, it was as hot as 94°F or 34.5°C in North Canada on August 13, 2017 (at the green circle, at 1000 hPa, at 00:00 UTC). Temperatures at surface level were as high as 33.1°C or 91.5°F at that location, where wind was coming from the south and blowing toward the north at a speed of 28 km/h or 17 mph at that time.

Above image shows cyclonic winds over the Arctic Ocean pulling warm air from North Canada over the Arctic Ocean, while pushing cold air out. Winds and rain have been battering the sea ice for some time now, as discussed in an earlier post.

Fires are becoming more devastating, as discussed in an earlier post. The August 2, 2017, satellite image below shows smoke from fires in British Columbia blanketing Vancouver and Seattle. Carbon dioxide (CO₂) levels were as high as 527 ppm, carbon monoxide (CO) levels as high as 12.59 ppm and sulfur dioxide (SO₂) levels as high as 490.77 µg/m³, as these images show.  

The combination image below shows forecasts for August 8, 2017, 13:30 UTC. CO levels were forecast to be as high as 29.05 ppm, CO₂ levels as high as 625 ppm and SO₂ levels as high as 1089.65 µg/m³ (each time at the green circle). Also note the emissions from forest fires in Siberia.

Actual levels were even higher at that spot on August 11, 2017, when CO was as high as 30.97 ppm, CO₂ was as high as 633 ppm and SO₂ was as high as 1150.19 µg/m³, as illustrated by the image below.

[ click on images to enlarge ]
The image below, by Harold Hensel, shows smoke over British Columbia, Washington, and Montana on August 9, 2017.

Winds can carry smoke from forest fires over long distances, all the way to the Arctic sea ice, where the soot can settle and darken the ice, thus speeding up its decline. The image below, also by Harold Hensel, shows smoke from fires in Russia entering the Arctic Ocean near the Laptev Sea on August 9, 2017. 

The image below shows the situation on August 14, 2017.

Canadian wildfires caused PM10 to reach levels as high as 11,599 μg/m³ on August 16, 2017, at the location marked by the green circle. The image below shows PM10 getting blown over the Arctic Ocean.

The thickest sea ice in the Arctic Ocean is located close to the north of Greenland and the Canadian Archipelago. This ice is now breaking up, due to high temperatures and strong cyclonic winds that cause warm rain, high waves and strong sea currents.

Watch the thickest sea ice break up on the animation below. This is a 17 MB file, so it may take some time to fully load. Click here if you do not see the file appear below.

Saturday, May 21, 2016

Arctic Climate Records Melting

An intensely warm winter and spring are melting climate records across Alaska, reports NOAA in the post 'Arctic set for record-breaking melt'. The January-April 2016 period was 11.4°F (6.4°C) warmer than the 20th century average, reports NOAA. The NOAA image below further illustrates the situation.
The sea ice is melting rapidly. Warm water from the Mackenzie River contributes to dramatic melting in the Beaufort Sea, as illustrated by the image below, showing that on May 20, 2016, the Arctic Ocean was 5°F (2.8°C) warmer than in 1981-2011 at the delta of the Mackenzie River.

The image below shows that on May 20, 2016, sea ice extent was 10.99 million square km, compared to the 12.05 million square km extent of the sea ice in May 20, 2012, as measured by JAXA

Sea ice reached a record minimum extent of 3.18 million square km on September 15, 2012, and chances are that the sea ice will be largely gone by September 2016.

The year 2016 is an El Niño year and insolation during the coming months of June and July is higher in the Arctic than anywhere else on Earth. Higher temperatures come with increased danger of wildfires. Greenhouse gases are at record high levels: in April and may, CO2 was about 408 ppm, with hourly peaks as high as 411 ppm (on May 11, 2016). Methane levels are high and rising, especially over the Arctic. Smoke and methane are speeding up sea ice melting, as illustrated by the image below showing smoke from wildfires in Canada extending over the Beaufort Sea (main image), in addition to high methane levels that are present over the Beaufort Sea (inset). 

Ocean heat is also very high and rising. Oceans on the Northern Hemisphere were 0.93°C (or 1.7°F) warmer in the most recent 12-months period (May 2015 through April 2016) than the 20th century average.

The image below shows sea ice extent as measured by the NSIDC, confirming that melting of the sea ice in 2016 is way ahead on previous years.

Saturday, May 31, 2014

How many deaths could result from failure to act on climate change?

A recent OECD analysis concludes that outdoor air pollution is killing more than 3.5 million people a year globally. The OECD estimates that people in its 34 Member countries would be willing to pay USD 1.7 trillion to avoid deaths caused by air pollution. Road transport is likely responsible for about half.

[ from an earlier post ]
A 2012 report by DARA calculated that 5 million people were dying each year from climate change and carbon economies, mostly from indoor smoke and (outdoor) air pollution.

Back in 2012, a Reuters report calculated that this could add up to a total number of 100 million deaths over the coming two decades. This suggests, however, that failure to act on climate change will not cause even more deaths due to other causes.

Indeed, failure to act on climate change could result in many more deaths due to other causes, in particular food shortages. As temperatures rise, ever more extreme weather events can be expected, such as flooding, heatwaves, wildfires, droughts, and subsequent crop loss, famine, disease, heat-stroke, etc.

So, while currently most deaths are caused by indoor smoke and outdoor air pollution, in case of a failure to act on climate change the number of deaths can be expected to rise most rapidly among people hit by heat stress, famine, fresh water shortages, as well as wars over who controls access to land, food, fresh water, etc.

How high could figures rise? Below is an update of an image from the earlier post Arctic Methane Impact with a scale in both Celsius and Fahrenheit added on the right, illustrating the danger that temperature will rise to intolerable levels if little or no action is taken on climate change. The inset shows projected global number of annual climate-related deaths for these two scenarios, i.e. little or no action, and also shows a third scenario of comprehensive and effective action that instead seeks to bring temperature rise under control.

[ click on image to enlarge ]
For further details on comprehensive and effective climate action, see the ClimatePlan.


• The Cost of Air Pollution | OECD analysis, published May 2014

• DARA Climate Vulnerability Monitor

• 100 mln will die by 2030 if world fails to act on climate - report | REUTERS

• Arctic Methane Impact

• Is death by lead worse than death by climate? No. | by Paul Beckwith

• Climate Plan