Showing posts with label thickness. Show all posts
Showing posts with label thickness. Show all posts

Sunday, August 17, 2025

Dire State of Climate

El Niño may emerge early 2026

On the image below, very high sea surface temperature anomalies (vs 1981-2011) are showing up in the Northern Hemisphere, as high as 17.1°C or 30.8°F in the Gulf of Ob, where the water of the Ob River flows into the Kara Sea (at the location marked by the green circle).

At the same time, water is colder than 1981-2011 in the equatorial Pacific region, causing a La Niña to emerge, which means that current temperatures are actually suppressed.


El Niño-Southern Oscillation (ENSO) is a climate pattern that fluctuates from El Niño to La Niña conditions and back. El Niño raises temperatures, whereas La Niña suppresses temperatures. This year, there have been neutral to borderline La Niña conditions, as illustrated by the image below, which also shows that over the past few months, there has been a zigzag pattern of rises and falls around the mean sea surface temperature in Niño 3.4, an area in the Pacific (inset) that is critical to the development of El Niño. On August 28, 2025, the temperature reached an anomaly of -0.47°C, indicating a move into La Niña conditions. 


The image below shows the July 2025 sea surface temperature anomaly vs 1951-1980. Note the higher than 10°C anomalies in the Kara Sea in the Arctic Ocean (white area, anomalies are compared to 1951-1980).


The image below shows the sea surface temperature anomaly on August 27, 2025, this time versus 1971-2000. Note the large area with high temperature anomalies in the Kara Sea and the colder temperatures in the equatorial Pacific region. These colder temperatures indicate the absence of El Niño, i.e. the high temperature anomalies are reached while temperatures are actually suppressed.


   [ click on images to enlarge ]
As illustrated by the image on the right, the sea surface temperatures of the U.S. North Atlantic were as high as 32.8°C on August 24, 2025, the same peak temperature that was reached on August 5, 2025

The image shows heat moving north along the path of the Gulf Stream toward the Arctic, threatening to cause more loss of sea ice and permafrost.

Heat naturally flows from hot to cold areas. Furthermore, warm water floats on top of colder water because it is less dense, resulting in stratification. This in combination with the Coriolis effect causes higher sea surface temperatures along the path of the Gulf Stream toward the Arctic, as indicated by water with an orange color on the image. 

Similarly, warm water moves along the path of the Kuroshio Current in the North Pacific. 

   [ click on images to enlarge ]
The image on the right shows sea surface temperatures around North America as high as 33°C on August 27, 2025.  Despite the current absence of El Niño conditions, extreme weather events have hit many areas around the world over the past few months. As an earlier post warns, feedbacks such as changes to ocean currents, wind patterns, clouds and water vapor, and loss of sea ice and permafrost can rapidly speed up existing feedbacks and trigger new feedbacks, resulting in more extreme weather events striking with a ferocity, frequency and ubiquity that keeps increasing at an accelerating pace.

[ click on images to enlarge ]
Temperatures have been very high and Arctic sea ice is in a dire state, as illustrated by the images further below that show record high daily temperatures in the Arctic, even in the current absence of El Niño conditions. El Niño ended April 2024. 

As illustrated by the image on the right, adapted from NOAA, the ENSO outlook (CFSv2 ensemble mean, black dashed line) favors La Niña during the Northern Hemisphere fall and early winter 2025-2026. 

[ image from earlier post ]
The image on the right, adapted from ECMWF, shows an ENSO forecast for developments in Niño3.4 through August 2026, indicating that the next El Niño may emerge early 2026 and grow in strength in the course of 2026.

High temperatures in absence of El Niño

In the Northern Hemisphere, the 2024 temperature anomaly was 1.701°C higher than the 1951-1980 mean, as discussed in an earlier post. This high temperature anomaly constitutes a 14.349σ event, as illustrated by the image below.

[ image from earlier post ]
So, what happened in 2025? In the absence of El Niño, one would expect temperatures to fall. However, as illustrated by the image below, monthly deviations from the 1951-1980 mean temperature have risen in the Northern Hemisphere, reaching a standard deviation of 10.673 in July 2025 (vs 1951-1980).

In statistics, the empirical rule states that in a normal distribution, 68% of the observed data will occur within one standard deviation (1σ), 95% within two standard deviations (2σ), and 99.7% within three standard deviations (3σ) of the mean. A 4σ event indicates that the observed result is 4 standard deviations (4σ) away from the expected mean. In a normal distribution, 99.993666% of data points would fall within this range. The chance for data to at random fall outside of 4σ is thus infinitesimally small.

As said, the 2024 temperature anomaly in the Northern Hemisphere was a 14.349σ event. Natural variability fails to explain such an anomaly. This year, in the absence of El Niño, monthly deviations from the 1951-1980 mean have risen in the Northern Hemisphere, reaching a standard deviation of 10.673 in July 2025. This indicates that El Niño alone cannot be blamed for this rise, not even in combination with reductions of the aerosol masking effect. What appears to be driving the acceleration of the temperature rise most strongly is a combination of feedbacks including loss of snow and ice, loss of lower clouds, changes to soil moisture and water vapor in the atmosphere, changes to ocean currents and wind patterns, etc.

As illustrated by the image below, the temperature in the Arctic (66.5–90°N, 0–360°E) was 4.33°C on August 24, 2025, a record high for that day and an anomaly of +2.53°C versus 1979-2000. The inset shows a map with Arctic temperature anomalies versus 1991-2020 highlighted on August 24, 2025. 


The image below shows a larger version of the inset, with temperatures over the Arctic (66.5–90°N, 0–360°E) highlighted on August 24, 2025. Note that the temperature anomaly also was very high over Antarctica on August 24, 2025. 


Albedo loss

The next El Niño could be catastrophic, given the dire state of the climate, which is getting increasingly dire, as emissions keep rising, albedo keeps falling, and feedbacks keep growing in strength. The fall in albedo is illustrated by the image below, created with an image by Eliot Jacobson.  


The fall in albedo can be attributed to snow and ice decline, reductions in cooling aerosols (Hansen, May 2025) and changes in clouds (Loeb, 2024). Snow and ice decline and changes in clouds are self-amplifying feedbacks that can rapidly and strongly accelerate the temperature rise as well as trigger and amplify further feedbacks.

Snow and ice decline

The combination image below shows NASA Worldview Arctic sea ice at the northern tip of Greenland on August 27, 2025 (left), and on August 31, 2025 (right).


The image below shows the global sea ice extent anomaly through August 27, 2025, when the global sea ice extent was 2.91 million km² below the 1981-2010 mean, a deviation from 1981-2010 of -3.87σ. 
The global sea ice extent anomaly is far below the 1981-2010 mean and close to the anomalies of 2023 and 2024 that were far outside the 1981-2010 mean at this time of year. That is very worrying, more so given the current absence of El Niño conditions. Also, sea ice area is only one way of looking at the sea ice decline. The data for concentration, thickness and volume of Arctic sea ice make the situation even more worrying, as discussed below.

Heavy melting is taking place in the Arctic. The image below shows Arctic sea ice concentration on August 31, 2025. 


The combination image below compares Arctic sea ice on August 17, 2025, i.e. concentration (left) and thickness (right).


In the panel on the right of the above image, melt pools may give the impression of zero thickness in areas close to the North Pole. Melt pools can indicate that rainfall and/or heavy melting is taking place. 

The image below shows temperature anomalies on August 21, 2025 (left) and on August 22, 2025 (right). As discussed in earlier posts such as this one, in the Northern Hemisphere water evaporates from the sea surface of the North Atlantic and the North Pacific. Prevailing winds carry much water vapor in the direction of the Arctic. Precipitation over the Arctic Ocean freshens the surface, forming a buffer that temporarily slows down the decline of the sea ice extent. Similarly, much of the precipitation over land is carried by rivers into the Arctic Ocean, also freshening the surface of the Arctic Ocean. Furthermore, heavy melting of Arctic sea ice over the past few months has added further freshwater to the surface of the Arctic Ocean. The slowdown of AMOC can also create a buffer by delaying the transport of ocean heat toward the Arctic Ocean. This makes the dire state of Arctic sea ice very significant, even more so since we're in borderline La Niña conditions. Given the increase of Earth's Energy Imbalance and the additional heat that is instead accumulating in the north Pacific and the North Atlantic, more heat looks set to eventually reach the Arctic Ocean, overwhelming such buffers and threatening to cause Arctic sea ice collapse.

[ click on images to enlarge ]
The image below shows the precipitable water anomaly on August 21, 2025 (left) and on August 22, 2025 (right).

[ click on images to enlarge ]
As discussed in earlier posts such as this one, in the Southern Hemisphere water evaporates from the Southern Ocean and part of it falls on the Antarctic ice sheet, thickening the snow layer, as also illustrated by the above image that shows persistently high precipitable water anomalies over Antarctica over the past two days (on August 20, 2025 and on August 21, 2025). As a result, the Southern Ocean surface is getting more salty. As also discussed in an earlier post, saltier surface waters sink more readily, allowing heat from the deep to rise, which can melt Antarctic sea ice from below, even during winter, making it harder for ice to reform. This vertical circulation also draws up more salt from deeper layers, reinforcing the cycle.

The image below shows that Arctic sea ice volume was at a record low for the day on August 31, 2025, as it has been for more than a year. Volume is important, as also discussed on facebook


As the image below shows, Arctic sea ice reached a new record annual low volume in September 2024.

On the image below, markers are added for September (red) and April (blue) corresponding with the year's minimum- and maximum volume, confirming the downward path since 2015 for both the annual sea ice volume minimum and maximum.

Arctic sea ice volume has steadily declined since 2005, as the above measurements by the Danish Meteorological Institute show. Arctic sea ice volume now is less than 5000 km³, about half of what the volume was in 2004-2013.

Absence of thick sea ice makes it prone to collapse, and this raises the question whether it could collapse soon, even this year. Storms could rapidly push the remaining pieces of thicker sea ice out of the Arctic Ocean. Such storms could also mix surface heat all the way down to the seafloor, especially in areas where seas are shallow. 

Methane

[ The Buffer is gone, from Accelerating Temperature Rise ]
Sea ice constitutes a buffer that previously consumed much incoming ocean heat (left); as sea ice thins, the buffer disappears while more heat also enters the Arctic Ocean (right). Further heat entering the Arctic Ocean from the Atlantic Ocean and the Pacific Ocean threatens to destabilize sediments that contain methane, causing eruption of huge amounts of methane.


As temperatures rise, methane concentrations are increasing due to more fires and decomposing organic carbon.

In addition, rising temperatures threaten to destabilize sediments containing vast amounts of methane in the form of hydrates and free gas, causing huge amounts of methane to erupt and enter the atmosphere. 

[ from earlier post ]

The image on the right shows fires over Canada on August 30, 2025. Smoke (grey) from fires and fire hotspots (red makers) are visible. The image is a NASA Worldview screenshot. Smoke and black carbon (soot) from forest fires blacken the surface when settling on it, thus reducing albedo and speeding up the demise of the snow and ice cover in the Arctic. 

Furthermore, forest fires come with emissions including carbon dioxide, carbon monoxide and methane. The image below shows a (+3 h) forecast for methane concentration at surface level valid for August 31, 2025 (run August 31, 2025).

Over the Arctic, there is very little hydroxyl in the air, which extends the lifetime of methane over the Arctic. 

The temperature is already rising much more rapidly in the Arctic than elsewhere in the world, so such developments can act as strong self-amplifying feedbacks.


The image below shows hourly methane average recorded at the Barrow Atmospheric Baseline Observatory (BRW), a NOAA facility located near Utqiaġvik (formerly Barrow), Alaska, at 71.32 degrees North.


The image below shows that the NOAA 20 satellite recorded methane levels as high as 2507 parts per billion (ppb) at 399.1 mb on August 26, 2025 AM. 


Climate Emergency Declaration

The temperature rise is accelerating and the rise could accelerate even more due to decreases in buffers (as described in earlier posts such as this one), due to strengthening feedbacks, especially during an El Niño, and due to further reduction of the aerosol masking effect, which are all developments that could rapidly speed up existing feedbacks and trigger new feedbacks.

The situation is dire and the precautionary principle calls for rapid, comprehensive and effective action to reduce the damage and to improve the situation, as described in this 2022 post, where needed in combination with a Climate Emergency Declaration, as discussed at this group.



Links

• Nullschool.net

• Climate Reanalyzer

• NOAA - sea surface temperatures 
Also discussed on facebook at: 

• NOAA - Climate Prediction Center - ENSO: Recent Evolution, Current Status and Predictions

• ECMWF - El Niño forecast

• Extreme Heat Risk

• NASA - Worldview

• University of Bremen

• Danish Meteorological Institute - Arctic sea ice thickness and volume

• NOAA - CarbonTracker-CH4

• The Methane Monster





Saturday, May 3, 2025

Arctic sea ice May 2025

[ Arctic sea ice thickness, click on images to enlarge ]
The above combination image shows Arctic sea ice thickness on March 13, 2025 (left), April 28, 2025 (center) and May 13, 2025 (right). The image on the right shows more open water off the coast of Siberia.


[ Arctic sea ice concentration ]
The above image is a screenshot of part of a NASA Worldview satellite image for May 1, 2025. The image similarly shows open water off the coast of Siberia. The red dots indicate fires. 

The image on the right, adapted from NSIDC, shows Arctic sea ice concentration on May 13, 2025. 

Arctic sea ice is under threat as numerous conditions are becoming increasingly dire, as discussed in earlier posts such as this one

For some of these conditions, further updates are added below (carbon dioxide, temperature, variables and Arctic sea ice). 

Carbon dioxide

A daily carbon dioxide (CO₂) concentration of 431.25 parts per million (ppm) was recorded on May 10, 2025, at Mauna Loa, Hawaii, the highest daily average on record. 
CO₂ concentrations haven't been below 430 ppm for 14 days in a row at Mauna Loa, Hawaii, as illustrated by the above image, which shows CO₂ for the last 31 days through May 10, 2025. The image below gives another view of daily concentrations. 

One has to go back millions of years in time to find CO₂ concentrations this high, while the impact of high CO₂ concentrations back in history was lower due to lower solar output and the rate of change was also much slower, as also discussed in an earlier post.

The image below illustrates that the weekly mean CO₂ concentration at Mauna Loa, Hawaii, was 430.60 ppm in the week beginning on April 27, 2025, i.e. 4.02 ppm higher than the weekly value from one year ago (green inset).
Weekly CO₂ for the week starting May 4, 2025, was 430.86 ppm at Mauna Loa, Hawaii, compared to 426.92 ppm one year ago, a difference of 3.94 ppm, as illustrated by the image below.


The annual global average surface concentration of carbon dioxide (CO₂) for 2024 was 422.79 parts per million (ppm). CO₂ concentrations grew by 3.75 ppm during 2024, the highest growth rate on record, as discussed in an earlier post.

Temperature 

The global surface air temperature was 15.72°C on 9 May 2025, the highest temperature on record for this day, as illustrated by the image below. 

The global surface air temperature was 15.75°C on 10 May 2025, again the highest temperature on record for this day. The image below shows ERA5 daily temperature anomalies from end 2022 through May 10, 2025, with two trends added, a black linear trend and a red cubic (non-linear) trend that reflects stronger feedbacks and that follows ENSO (El Niño/La Niña) conditions more closely. This red trend warns about further acceleration of the temperature rise.


The shading added in the above image reflects the presence of El Niño conditions that push up temperatures (pink shading), La Niña conditions that suppress temperatures (blue shading), or neutral conditions (gray shading). The trends warn about feedbacks and further mechanisms pushing up temperatures over the next few years.

The above image shows two bases to compare the anomalies with, 1991-2000 (left axis) and 1901-1930 (right axis). Neither of these two bases is pre-industrial, anomalies will be higher when using a genuinely pre-industrial base. 

The image below shows NASA monthly data through April 2025 compared to a custom 1903-1924. This 1903-1924 base is not pre-industrial either, anomalies will be higher when using a genuinely pre-industrial base. The monthly temperature anomaly has now been more than 1.5°C higher than this 1903-1924 base for 22 consecutive months (July 2023 through April 2025, marked with red text). Anomalies are rising rapidly, the red line (2-year Lowess Smoothing trend) points at 2°C higher than 1903-1924 getting crossed in the course of 2027.

[ more than 1.5°C above base for 22 consecutive months, trend points at 2°C above 1903-1924 crossed in 2027 ]
The picture can change when using a different base that anomalies are compared with. To illustrate this, the image below uses the decade from 1904 through 1913 as a custom base, resulting in higher anomalies and a trend pointing at 2°C above this base (1904-1913) getting crossed in the course of 2026.
[ trend points at 2°C above 1904-1913 getting crossed in 2026 ]
An earlier analysis of pre-industrial suggests that using 1750 as a base could add as much as 0.3°C to the historic rise, while using a 3480 BC base could add as much as 0.79°C to the historic rise. 

Those who seek to sabotage climate action typically call for use of a base that minimizes the historic temperature rise. A higher historic rise can imply that temperatures are already higher than the thresholds that politicians at the adoption of the Paris Agreement pledged wouldn't be crossed, and it can also imply that the temperature rise is accelerating more due to stronger feedbacks such as more water vapor in the atmosphere and disappearance of lower clouds, so that would constitute a stronger call for climate action. 

The Arctic is hit hardest by the temperature rise, as illustrated by the image below, which shows temperature anomalies compared to 1951-1981 for the period from November 2024 through April 2025. 


The image below illustrates that the global temperature was at a record high for the time of year for five days in a row, i.e. from April 24, 2025, through April 28, 2025.

Variables

Some variables have a short-term impact on the temperature rise, including volcanoes, sudden stratospheric warming, sunspots and El Niño/La Niña variations. There have been no volcano eruptions and no sudden stratospheric warming events recently that could have provided significant cooling. Sunspots are at a high point in this cycle, which pushes up temperatures. Regarding ENSO (El Niño-Southern Oscillation), current conditions are ENSO-neutral, highlighting the significance of the high current temperatures, while a new El Niño may emerge soon. The image below shows NOAA's ENSO outlook dated May 11, 2025.


The image below shows temperatures through May 9, 2025, in Niño 3.4, an area in the Pacific (inset) that is critical to the development of El Niño.

[ temperature in Niño 3.4 area ]

Mechanisms such as self-amplifying feedbacks and crossing of tipping points, and further developments such as loss of the aerosol masking effect, can jointly contribute to further accelerate the temperature rise, resulting in a rise from pre-industrial of more than 10°C, while in the process also causing the clouds tipping point to get crossed and that can push the temperature rise up by a further 8°C, as discussed in earlier posts such as this one.

Arctic sea ice volume and area

Loss in sea ice can dramatically push up temperatures, as discussed in earlier posts such as this one. High ocean temperatures are causing Arctic sea ice volume to be very low compared to earlier years. The image below shows Arctic sea ice volume over the years in red for April, the month when Arctic sea ice typically reaches its maximum volume for the respective year. 

The image below shows Arctic sea ice volume from 2000, with markers indicating volume in September (red) and in April (blue), corresponding to the year's minimum- and maximum volume. 
The image below shows Arctic sea ice volume through May 14, 2025.
The image below illustrates that Arctic sea ice disappears not only as it melts away from below, due to heating up of the water of the Arctic Ocean. Arctic sea ice can also disappear as it gets broken up by ocean currents and moves out of the Arctic Ocean. The image shows how, on May 6, 2025, the sea ice gets broken up just north of the northern tip of Greenland, due to ocean currents that will also move the pieces to the south, alongside the edges of Greenland, toward the North Atlantic. 

[ click on images to enlarge ]
On May 13, 2025, Arctic sea ice area was second lowest on record for that day, as illustrated by the image below. 
The comparison with the year 2012 is important, since Arctic sea ice area reached its lowest minimum in 2012. Arctic sea ice area was only 2.24 million km² on September 12, 2012, i.e. 1.24 million km² above a Blue Ocean Event. While on May 13, 2025, Arctic sea ice area was only 0.8 million km² lower than on May 8, 2012, the difference between anomalies typically gets narrower in May. Therefore, if the difference between 2025 and 2012 will widen again, a Blue Ocean Event may occur in September 2025, as discussed in an earlier post

Methane

Loss of Arctic sea ice can also trigger a very dangerous feedback: eruptions of methane from the seafloor of the Arctic Ocean. Methane in the atmosphere is already very high and large additional methane releases threaten to cause hydroxyl depletion, in turn extending the lifetime of all methane currently in the atmosphere. 

Data for the annual increase in methane have been updated by NOAA. in 2024, there was a higher increase than in 2023, the 2024 increase was almost 10 parts per billion (ppb).   

The image below shows the annual methane increase data (red circles), with two trends added. A quadratic trend (blue) is based on all available data (1894 through 2024), while a quintic trend (pink) is based on 2017 through 2024 data. The pink trend warns about a huge increase in methane, which could eventuate due to eruptions of seafloor methane.

Below are warnings from earlier posts. 
[ from earlier post, also note the recent discussion on monthly methane ]
[ from earlier post ]
Also noteworthy is this analysis by Andrew Glikson and work by Peter Wadhams et al. 

In the video below, methane emissions are discussed by Peter Wadhams, Paul Beckwith, Peter Carter and Herb Simmens
 

Methane concentrations in the atmosphere have been around 1960 parts per billion (ppb) recently at Mauna Loa, Hawaii, as illustrated by the image below. 

Methane is more potent as a greenhouse gas than carbon dioxide. Methane also has indirect effects, such as ground-level ozone and stratospheric water vapor, while methane partly turns into carbon dioxide. Importantly, the warming potential of a pulse of methane will decrease over time, given methane's relatively short lifetime. 

Accordingly, there are different ways to calculate methane's carbon dioxide equivalent (CO₂e). Also important is whether a specific concentration of methane is used (in ppb) or the weight is used of a pulse of methane. In each of these cases, different multipliers can be used to calculate methane's CO₂e.

When using a multiplier of 200, a methane concentration of 1960 ppb would translate into 392 ppm of CO₂e. As mentioned above, a daily CO₂ concentration of 431.25 ppm was recorded at Mauna Loa, Hawaii, on May 10, 2025. So, when adding up these two, the joint CO₂e would be 823.25 ppm CO₂e, i.e. just 376.75 ppm short of the clouds tipping point (at 1200 ppm). This joint total doesn't yet include contributions of nitrous oxide and other drivers, so the situation is even more dire. Moreover, concentrations of greenhouse gases are increasing and they may increase even more dramatically soon.

So, what multiplier is best used when calculating methane's CO₂e? The IPCC already uses a slightly higher GWP for methane emissions from fossil fuel fugitive emission sources than for other methane emissions. So, the idea of using different multipliers in different scenarios is not new. 

One multiplier could be used that does include cooling aerosols and another one that doesn't. Most carbon dioxide results from burning coal and oil, which comes not only with high CO₂ emissions, but also with co-emissions of cooling aerosols. On the other hand, there are little or no cooling aerosols co-emitted with methane emissions. Therefore, inclusion of cooling aerosols could result in a higher multiplier to be used when translating concentrations of methane into CO₂e, compared to carbon dioxide.

[ warming contributions, from earlier post, click on images to enlarge ]

[ warming responsibility by sector ]
To illustrate this point, the above image shows contributions to warming from 2010 to 2019, using IPCC AR6 data. If masking (cooling) would be included in the image by subtracting cooling by sulfates from CO₂, then the contribution of CO₂ would be proportionally lower, while the contribution of methane would be proportionally higher than what the image shows. 

The image on the right is from a recent analysis by Gerard Wedderburn-Bisshop.    

Given the dire outlook and given methane's higher potency as a greenhouse gas, it makes most sense to seek urgent and dramatic reductions in methane and such action should not be allowed to be sabotaged by those who propose a low multiplier when calculating methane's CO₂e.

IPCC

Meanwhile, the IPCC remains silent. No updates or special reports on topics such as acceleration of the temperature rise. Instead, the IPCC keeps persisting in downplaying the potential for such dangerous developments (in terms of the severity, probability, ubiquity and imminence of their impact), in efforts to hide the most effective climate action. The IPCC keeps pointing at less effective policies such as support for BECCS and biofuel, while continuing to make it look as if there was a carbon budget to divide among polluters, as if polluters could continue to pollute for decades to come.

Climate Emergency Declaration

The situation is dire and the precautionary principle calls for rapid, comprehensive and effective action to reduce the damage and to improve the situation, as described in this 2022 post, where needed in combination with a Climate Emergency Declaration, as also discussed at this group.



Links

• University of Bremen - sea ice
https://seaice.uni-bremen.de/start

• NASA Worldview
https://worldview.earthdata.nasa.gov

• NSIDC - National Snow and Ice Data Center - Sea Ice Today
https://nsidc.org/sea-ice-today


• NOAA - Daily Average Mauna Loa CO2
https://gml.noaa.gov/ccgg/trends/monthly.html

• NOAA - Weekly Average Mauna Loa CO2

• Climate Reanalyzer
https://climatereanalyzer.org

• Danish Meteorological Institute - Arctic sea ice volume and thickness
https://ocean.dmi.dk/arctic/icethickness/thk.uk.php

• Kevin Pluck - seaice.visuals.earth
https://seaice.visuals.earth

• Record high increase in carbon dioxide
https://arctic-news.blogspot.com/2025/04/record-high-increase-in-carbon-dioxide.html

• NOAA - ENSO: Recent Evolution, Current Status and Predictions - 5 May 2025
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.pdf

• NOAA - trends in methane
https://gml.noaa.gov/ccgg/trends_ch4

• The methane time bomb - by Andrew Glikson (2018)

• Copernicus
https://climate.copernicus.eu

• Increased transparency in accounting conventions could benefit climate policy - by Gerard Wedderburn-Bisshop