Showing posts with label extinction. Show all posts
Showing posts with label extinction. Show all posts

Monday, December 6, 2021

Planetary Extinction due to Arctic Atmospheric Methane Veil

 by Malcolm Light


Below is Malcolm Light's Arctic methane growth diagram, updated in line with recent mean atmospheric methane concentrations and temperature data. 

[ click on images to enlarge ]

NOAA mean globally-averaged marine surface data show high increases in methane levels recently, which were used to generate the trends and curves to the year 2030 in above image.

[ from earlier post ]
NASA temperature data as adjusted by Sam Carana on the right show the potential for a mean temperature anomaly from pre-industrial of 3°C anomaly to occur late in 2022 (blue trend). By extension, a 4°C anomaly could occur in late 2023 and a 5°C anomaly in late 2024. 

Above data was used to determine a trend line for exponentially increasing atmospheric methane increase, as well as where along the trend lines the surface atmospheric temperature anomalies would occur.

A surface atmospheric temperature anomaly of 10°C was recorded in France in the summer of 2020 (Copernicus 2020) with the overlying methane global veil giving a concentration of 2008 ppb. In this case the Global Warming is only partly caused by the methane (about 85.5%) and the rest by the concentration of other greenhouse gases.

It seems that we only have a very short time left until total Planetary Extinction due to the Arctic Atmospheric Methane Global Warming Veil. It is now clear that we do not have time to extract the methane from the subsea Arctic methane reserves, because we are so close to total extinction in 3 years.

The blue color on the map on the right indicates depth (see scale underneath).

The image below, by Malcolm Light and based on Max & Lowrie (1993), from a recent post, shows vulnerable Arctic Ocean slope and deep water methane hydrates zones below 300 m depth. 

Malcolm Light indicates three areas: 
Area 1. Methane hydrates on the slope; 
Area 2. Methane hydrates on the abyssal plane; 
Area 3. Methane hydrates associated with the spreading Gakkel Ridge hydro-thermal activity (the Gakkel Riidge runs in between the northern tip of Greenland and the Laptev Sea).


In addition, huge amounts of methane are contained in sediments at the bottom of the shallow parts of the Arctic Ocean, in particular the East Siberian Arctic Shelf (ESAS). Dr. Natalia Shakova warned in 2008 that some 50Gt of carbon in the form of methane can be released at any moment from the East Siberian Arctic Shelf alone, because of the high temperature of the invading Atlantic (Gulf Stream) waters. This threatens to cause a 10°C surface atmospheric temperature increase leading to Global Extinction. 

The cataclysmic weather events occurring worldwide including giant droughts and city-destroying fires, floods and summer and winter storm systems have already devastated Canada and the United States.

From the sharp increase in catastrophic weather events, it is obvious that ‘Mother Earth’ has correctly identified the North American continent as the source of its gigantic pollution problems. Extreme Fossil Fuel pollution from the United States and Canada has previously heated up the Gulf Stream which flows north into the Arctic Ocean as the Svalbard current, where it is now destabilizing the shelf methane hydrates in the Laptev Sea and on the East Siberian Arctic Shelf. 

The image below illustrates that huge amounts of heat are entering the Arctic Ocean, driven by ocean currents and temperature differences. 

[ from earlier post ]


Links 

• NOAA - Trends in Atmospheric Methane
https://gml.noaa.gov/ccgg/trends_ch4/

• Human Extinction by 2022?
https://arctic-news.blogspot.com/2021/11/human-extinction-by-2022.html

• Arctic Ocean invaded by hot, salty water
https://arctic-news.blogspot.com/2021/05/arctic-ocean-invaded-by-hot-salty-water.html

• Max, M.D. & Lowrie, A. 1993. Natural gas hydrates: Arctic and Nordic Sea potential. In: Vorren, T.O., Bergsager, E., Dahl-Stamnes, A., Holter, E., Johansen, B., Lie, E. & Lund, T.B. Arctic Geology and Petroleum Potential, Proceedings of the Norwegian Petroleum Society Conference, 15-17 August 1990, Tromso, Norway. Norwegian Petroleum Society (NPF), Special Publication 2 Elsevier, Amsterdam, 27-53. 
https://www.elsevier.com/books/arctic-geology-and-petroleum-potential/vorren/978-0-444-88943-0

• Extinction by 2027- by Malcolm Light
https://arctic-news.blogspot.com/2021/05/extinction-by-2027.html

• Anomalies of methane in the atmosphere over the East Siberian shelf: Is there any sign of methane leakage from shallow shelf hydrates? - by Shakhova, Semiletov, Salyuk and Kosmach (2008) 
https://www.cosis.net/abstracts/EGU2008/01526/EGU2008-A-01526.pdf

• Will humans be extinct by 2026? - An exploration of the potential, by Sam Carana

• WARNING - Planetary Omnicide between 2023 and 2031 - by Malcolm Light
https://arctic-news.blogspot.com/2015/02/warning-planetary-omnicide-between-2023-and-2031.html

Saturday, November 13, 2021

Human Extinction by 2022?

The NASA image below shows the October 2021 temperature anomaly. The Arctic is heating up enormously, with anomalies showing up of up to 9.1°C. 


The image below shows that the global temperature over the past century, i.e. from 1920 to 2020, has risen by 1.3°C. The image shows anomalies from 1900-1920. When adjusting data to reflect a pre-industrial base, ocean air (2m) temperatures and higher polar anomalies, temperatures may have crossed 2°C long ago.

The image below shows two trends, based on NASA 1880-October 2021 data, adjusted to reflect a pre-industrial base, ocean air (2m) temperatures and higher polar anomalies. The linear trend (green) misses the point that the temperature rise is accelerating. The polynomial trend (black) shows the potential for 3°C to be crossed by 2026.


Acceleration of the temperature rise may speed up further soon, for a number of reasons:

Aerosols: As cleaner alternatives become more economic, and as calls for cleaner air become stronger, this could result in a strong temperature rise soon, as sulfate cooling falls away and more black carbon may result from more wood burning and forest fires, as discussed at the aerosols page.

Sunspots: Within a few years time, sunspots will be reaching the peak of their cycle, and they are looking stronger than forecast, as illustrated by the image on the right showing sunspots up to October 2021.

ENSO: An upcoming El Niño could raise surface temperatures significantly. The image on the right shows that the current La Niña is forecast to end in 2022 and move toward a new El Niño. As the temperature keeps rising, ever more frequent strong El Niño events are likely to occur, as confirmed by a recent study. Authors also confirm concerns that the IPCC downplays the threat that a super El Nino event could occur soon.

The image below indicates that the difference between the top of El Niño and the bottom of La Niña could be more than half a degree Celsius.


As illustrated by the bar on the right, there are many further elements that could dramatically push up the temperature soon. Altogether, there could be a rise from pre-industrial of more than 18°C by end 2026, as discussed in earlier posts such as this one.

As the image at the top shows, the Arctic is heating up enormously, with anomalies showing up of up to 9.1°C.

Decline of Arctic snow and ice can result in huge albedo losses, loss of latent heat buffer, jet stream changes, more and more extreme weather events, and more. Slowing down of the Atlantic meridional overturning circulation (AMOC) and increasing ocean stratification can result in less heat getting transferred from the atmosphere to the depths of the ocean, as also described at this page.

One of the largest threats is seafloor methane and despite repeated warning from some of the best experts in the field, the IPCC simply waves away this threat. This and other elements in the bar have been discussed in detail in many earlier posts such as this one and on the extinction page.

The image below shows three trends, i.e. the same black polynomial and green linear trends, based on NASA 1880-October 2021 data, and a blue polynomial trend based on 2015-October 2021 data. Data are again adjusted to reflect a pre-industrial base, ocean air (2m) temperatures and higher polar anomalies.

The blue polynomial trend better reflects short-term climate forcing such as aerosols, sunspots and an upcoming El Niño, as discussed above. The blue trend also shows the potential for 3°C to be crossed by the end of 2022.


The current situation is extremely dangerous

Huge amounts of heat are entering the Arctic Ocean, driven by ocean currents and temperature differences. Sea ice acts as a buffer, by consuming energy in the process of melting, thus avoiding that this energy can raise the temperature of the water of the Arctic Ocean. Furthermore, huge amounts of heat get transferred to the atmosphere over the Arctic Ocean, as long as sea ice is low in extent.


The latent heat buffer has now virtually disappeared, while lower air temperatures are causing the sea ice to grow in extent, effectively sealing off the Arctic Ocean and reducing heat transfer from the Arctic Ocean to the atmosphere, as illustrated on the right by the 30-day navy.mil animation (up to November 12, the last 8 days are forecasts). 

Heat that was previously melting the ice or that was getting transferred to the atmosphere is now instead heating up the water. Some 75% of ESAS (East Siberian Arctic Shelf) is shallower than 50 m. Being shallow, these waters can easily warm up all the way down to the sea floor, where heat can penetrate cracks and conduits, destabilizing methane hydrates and sediments that were until now sealing off methane held in chambers in the form of free gas in these sediments.

Methane can then be released abruptly from the seabed in the form of plumes, causing it to rapidly pass through a shallow water column. Such plumes can quickly deplete oxygen in the water, making it harder for microbes to break down the methane. Where such plumes reach the atmosphere, they will also quickly deplete hydroxyl, which is present only in very low quantities in the Arctic in the first place.


Ominously, methane recently reached very high levels. As illustrated by above image, the MetOp-B satellite (also known as MetOp-1) recorded a peak methane level of 3644 ppb and a mean level of 1944 ppb at 367 mb on November 21, 2021, pm.

Given that humans may go extinct with a 3°C rise, and a 5°C rise will likely end most life on Earth, the COP26 summit in Glasgow could have acted more decidedly. The situation is dire and calls for the most comprehensive and effective action, as described at the Climate Plan.


Added below is the presentation Paths to Extinction by Guy McPherson



Links

• NASA Temperature Analysis
https://data.giss.nasa.gov/gistemp/

• NOAA - Monthly Temperature Anomalies Versus El Niño
https://www.ncdc.noaa.gov/sotc/global/202110/supplemental/page-4

• Historical change of El Niño properties sheds light on future changes of extreme El Niño - by Bin Wang et al. (study, 2019)

• Climate warming promises more frequent extreme El Niño events (news release, 2019)

• Changing El Niño–Southern Oscillation in a warming climate - by Wenju Cai et al. (2021)
https://www.nature.com/articles/s43017-021-00199-z

• IPCC report may have underplayed risk of freak El Nino and La Nina events
https://www.smh.com.au/environment/climate-change/ipcc-report-may-have-underplayed-risk-of-freak-el-ninos-and-la-ninas-20210820-p58klm.html

• Changing El Niño–Southern Oscillation in a warming climate
https://cshor.csiro.au/changing-el-nino-southern-oscillation-in-a-warming-climate

• How much warming have humans caused?
https://arctic-news.blogspot.com/2016/05/how-much-warming-have-humans-caused.html

• A Temperature Rise Of More Than 18 Degrees Celsius By 2026?
https://arctic-news.blogspot.com/2021/07/a-temperature-rise-of-more-than-18-degrees-celsius-by-2026.html

• Could temperatures keep rising?
https://arctic-news.blogspot.com/2021/06/could-temperatures-keep-rising.html

• Overshoot or Omnicide?
https://arctic-news.blogspot.com/2021/03/overshoot-or-omnicide.html

• Will COP26 in Glasgow deliver?
https://arctic-news.blogspot.com/2021/10/will-cop26-in-glasgow-deliver.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Pre-industrial
https://arctic-news.blogspot.com/p/pre-industrial.html

• Feebates
https://arctic-news.blogspot.com/p/feebates.html

• Quotes
https://arctic-news.blogspot.com/p/quotes.html

• Feedbacks
https://arctic-news.blogspot.com/p/feedbacks.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Latent Heat
https://arctic-news.blogspot.com/p/latent-heat.html

• Aerosols
https://arctic-news.blogspot.com/p/aerosols.html

• Is the IPCC creating false perceptions, again?
https://arctic-news.blogspot.com/2021/08/is-the-ipcc-creating-false-perceptions-again.html

• Can we weather the Danger Zone?
https://arctic-news.blogspot.com/2018/07/can-we-weather-the-danger-zone.html

• How much warmer is it now?
https://arctic-news.blogspot.com/2018/04/how-much-warmer-is-it-now.html

• When will we die?
https://arctic-news.blogspot.com/2019/06/when-will-we-die.html

• Most Important Message Ever
https://arctic-news.blogspot.com/2019/07/most-important-message-ever.html

• Arctic Ocean invaded by hot, salty water

Thursday, November 4, 2021

The exclusion of climate science from COP meetings

 by Andrew Glikson

There can be little doubt that, had the US, China and Russia been on the same page, an advanced agreement was likely to be reached at COP26, but since it is not, the collapse can be laid at the feet of human tribalism and eternal conflict since the dawn of civilization, ultimately leading to a mass extinction of species.

Climate scientists have practically been excluded from COP meetings, dominated as they are by economists, lawyers and politicians. To date no address has been made by leading climate scientists, including authorities such as James Hansen, Michael Mann, Joachim Schellnhuber, Will Steffen and other, leaving delegates and populations unaware of the ultimate consequences of global climate devastation.

With the exception of David Attenborough and references to “one minute to mid-night”, the science-based projections of global heating have only received faint echoes among the assembly of warring tribes at COP-26, dominated by nationalism, vested interests and sheer ignorance of the current trend, which can only culminate in the end of civilization.

The futility of making political decisions regarding future carbon emissions while continuing to grow fossil fuel industries is manifest (Figure 1).

Figure 1. Global CO₂ emissions by fuel (Global Carbon Project)

The lessons from climate science indicate:
  1. While politicians talk about a 1.5°C target, the mean global temperature has already exceeded this level and likely approaches 2°C when the transient short-term masking effects of aerosols are accounted for. Thus Hansen and Sato (2012) estimate aerosol to lower global temperatures by between -1.0°C and -1.2°C, which implies the real mean global temperatures are close to +2°C above pre-industrial level. By contrast, references to the NASA’s ~1.02°C warming can be compared to a measurement of a patient’s body temperature only after they take a dose of aspirin. Furthermore, this NASA anomaly is measured from 1951-1980, whereas the Paris Agreement calls for a pre-industrial base.

  2. Whereas the critical need for emissions reduction is central to climate negotiations, the effects of cumulative concentration of GHG in the atmosphere (CO₂ + equivalent CH₄, N₂O, etc), which trigger amplifying feedbacks from land and ocean, remains hardly tackled. The current CO₂-equivalent level of >500 ppm (Figure 2), which is near X1.8 times the pre-industrial level of ~280 ppm CO₂, is generating amplifying feedbacks. According to a climate sensitivity estimate of 3 ± 1.5°C per doubling of CO₂ the equilibrium rise in temperature could be approaching +3°C.

  3. The role of amplifying GHG feedbacks from land and oceans, leading to enhanced heating, appears to be neglected in climate talks, including:
    - A decline in the polar albedo (reflection) due to large-scale lateral and vertical melting of ice;
    Reduced CO₂ intake by warming oceans. Currently the oceans absorb between 35-42% of all CO₂ and around 90% of the excess heat;
    - Warming, desiccation, deforestation and fires over land areas;
    - Release of methane from melting permafrost and from polar sediments;
    - An increase in evaporation, particularly in arid zones, raising atmospheric vapor levels, which enhances the greenhouse gas effect.

  4. IPCC-based climate trends are mostly linear, yielding an impression that overshooting of the warming trend is capable of being reversed within acceptable time scales, projections which neglect the likelihood of tipping points of no return. The time scales for attempts to cool the atmosphere may exceed the longevity of civilization. The weakening of the Arctic jet stream, allowing air and water masses of contrasted temperatures to cross the Arctic boundary, leads to disruptions such as the freezing “beast from the east” fronts that hit North America and Europe and Arctic wildfires. The flow of ice melt water from Greenland and Antarctica into the oceans may result in marked transient temperature reversals in the oceans, extending onto land.
While neglecting the consequences of runaway global warming, discussions continue of the price of mitigation and adaptation, i.e. the price of habitability of Earth, proceeding to huggle in terms akin to corner store grocers. Elsewhere, much of the media appears to be preoccupied with the price of submarines, deadly weapons in futile wars, ironically more suitable for coastal surveys of regions flooded by an inevitable sea level rise on the scale of many meters.



Andrew Glikson
A/Prof. Andrew Glikson

Earth and Paleo-climate scientist
School of Biological, Earth and Environmental Sciences
The University of New South Wales,
Kensington NSW 2052 Australia

Books:
The Asteroid Impact Connection of Planetary Evolution
https://www.springer.com/gp/book/9789400763272
The Archaean: Geological and Geochemical Windows into the Early Earth
https://www.springer.com/gp/book/9783319079073
Climate, Fire and Human Evolution: The Deep Time Dimensions of the Anthropocene
https://www.springer.com/gp/book/9783319225111
The Plutocene: Blueprints for a Post-Anthropocene Greenhouse Earth
https://www.springer.com/gp/book/9783319572369
Evolution of the Atmosphere, Fire and the Anthropocene Climate Event Horizon
https://www.springer.com/gp/book/9789400773318
From Stars to Brains: Milestones in the Planetary Evolution of Life and Intelligence
https://www.springer.com/us/book/9783030106027
Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia
https://www.springer.com/us/book/9783319745442
The Event Horizon: Homo Prometheus and the Climate Catastrophe
https://www.springer.com/gp/book/9783030547332
The Fatal Species: From Warlike Primates to Planetary Mass Extinction
https://www.springer.com/gp/book/9783030754679

Saturday, July 3, 2021

A Temperature Rise Of More Than 18 Degrees Celsius By 2026?

On July 1, 2021 pm, the MetOp-1 satellite recorded a mean methane level of 1935 ppb at 293 mb.

[ from earlier post ]
This mean methane level translates into 387 ppm CO₂e at a 1-year Global Warming Potential (GWP) of 200. 

This GWP is appropriate in the light of the danger of a huge burst of methane erupting from the seafloor of the Arctic Ocean, which would, due to the abrupt nature of such an eruption, make its impact felt instantaneously.

Carbon dioxide on July 1, 2021, was 418.33 ppm, as illustrated by the NOAA image below.


Together, this CO₂e level of methane and this carbon dioxide level add up to 805.33 ppm CO₂e, which is 394.67 ppm CO₂e away from the 1200 ppm clouds tipping point which on its own could increase the temperature rise by a further 8°C, as discussed in an earlier post.

This 394.67 ppm CO₂e, again at a 1-year GWP of 200, translates into 1973 ppb of methane. In other words, a methane burst of 1973 ppb or about 5 Gt of methane would suffice to trigger the clouds feedback, adding a further 8°C to the temperature rise, as depicted in the image below. 


A 5 Gt seafloor methane burst would double methane in the atmosphere and could instantly raise the CO₂e level to 1200 ppm and trigger the clouds feedback (top right panel of above chart).

[ from earlier post ]
Even without such a huge eruption of methane from the seafloor, there are further pollutants than just carbon dioxide and methane, such as nitrous oxide, nitrogen oxides, CFCs, carbon monoxide, black carbon, brown carbon and water vapor, and they haven't yet been included in the above CO₂e total. The levels of all these pollutants could rise strongly in a matter of years and feedbacks could start kicking in with much greater ferocity, while the resulting extreme weather events would cause sulfate cooling to end, resulting in an 18.43°C temperature rise that could be reached as early as 2026 (left panel of above chart). 

To further illustrate this, the image on the right shows a trend that is based on NOAA 2006-2020 annual global mean methane data and that points at a mean of 3893 ppb getting crossed by the end of 2026, more than twice the 1935 ppb mean methane level of the image at the top.

Such a high mean methane level by 2026 cannot be ruled out, given the rapid recent growth in mean annual methane levels (15.85 ppb in 2020, see inset on image). And, as said, there are further pollutants, in addition to methane, and additional feedbacks to take into account. 

As discussed in an earlier post, humans will likely go extinct with a 3°C rise, while a 5°C rise will likely end most life on Earth. The temperature rise from pre-industrial to 2020 may well be as large as 2.28°C, as the bottom figure in the bar on the left of above chart shows and as discussed in an earlier post.

Will the IPCC get its act together?

Meanwhile, the IPCC plans to release its next report, the Working Group I contribution to the Sixth Assessment Report (AR6), on August 9, 2021, in the lead up to the COP 26 UN Climate Change Conference, from October 31 to November 12, 2021 in Glasgow, UK. Given their track record, the IPCC and politicians may be reluctant to even consider the information in this post, but it clearly is high time for the IPCC to get its act together. 



The IPCC said, in SR15_FAQ, that the "global temperature is currently rising by 0.2°C (±0.1°C) per decade, human-induced warming reached 1°C above pre-industrial levels around 2017 and, if this pace of warming continues, would reach 1.5°C around 2040." 

Sam Carana: "The temperature rise for the most recent decade (2011-2020) is 0.41°C (NASA data) and the rise from pre-industrial may be 2.28°C, so if this pace continued, 3.11°C could be reached by 2040 and humans will likely go extinct with a 3°C rise. Worse, the rise is accelerating and a rise of as much as 18.43°C could occur by 2026."

Potential temperature rise from pre-industrial to 2026

We face the threat of a potential temperature rise from pre-industrial to 2026 of 18.43°C and the eventual disappearance of all life from Earth, as illustrated by the image below. NASA data shows a 1920-2020 temperature rise of 1.29°C. To calculate the rise from pre-industrial, 0.29°C is added for the 3480 BC-1520 rise, 0.2°C for 1520-1750 and 0.3°C for 1750-1920, while 0.1°C is added to reflect higher polar anomalies and 0.1°C for air temperatures, adding up to a rise of 2.28°C from pre-industrial. A temperature rise of a further 16.15°C could happen by 2026, adding up to a total potential temperature rise of 18.43°C from pre-industrial to 2026. Most species will likely go extinct with a 5°C rise, but humans will likely go extinct with a 3°C rise and eventually, all life would disappear from Earth, as discussed in an earlier post.



In the video below, Guy McPherson comments on the IPCC.


EPA could and should act now

In the US, Joe Biden could simply instruct the EPA to enforce tighter standards. The US supreme court ruled on June 26, 2006, that the EPA has the authority to set standards for greenhouse gas emissions. In 2009, the EPA confirmed that greenhouse gas emissions are pollutants that endanger public health and welfare through their impacts on climate change and admitted that the EPA has the responsibility and the duty to regulate greenhouse gas emissions, and it took until August 3, 2015, for the EPA to issue the Clean Power Plan, giving states a number of choices how to reach set targets for CO₂ emissions. In the light of recent scientific findings and in line with the Paris Agreement, adopted on 12 December 2015, it now makes sense for the EPA to strengthen these targets and enforce this without delay.

Conclusion

The situation is clearly dire and calls for more immediate, more comprehensive and more effective action, as described in the Climate Plan.


Links

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Could temperatures keep rising?

• Confirm Methane's Importance
https://arctic-news.blogspot.com/2021/03/confirm-methanes-importance.html

• When Will We Die?
https://arctic-news.blogspot.com/2019/06/when-will-we-die.html

• Overshoot or Omnicide?
https://arctic-news.blogspot.com/2021/03/overshoot-or-omnicide.html

• NASA, Goddard Institute for Space Studies (GISS)
https://data.giss.nasa.gov/gistemp

• IPCC:  Frequently Asked Questions, Special Report on Global Warming of 1.5°C
https://www.ipcc.ch/site/assets/uploads/sites/2/2018/12/SR15_FAQ_Low_Res.pdf

• Possible climate transitions from breakup of stratocumulus decks under greenhouse warming - by Tapio Schneider et al.
https://www.nature.com/articles/s41561-019-0310-1

• Most Important Message Ever
https://arctic-news.blogspot.com/2019/07/most-important-message-ever.html

• Heatwaves and the danger of the Arctic Ocean heating up

• Science Update: Continued IPCC Conservatism and Lies - by Guy McPherson


Sunday, May 30, 2021

Methane and the mass extinction of species

by Andrew Glikson

“The smart way to keep people passive and obedient is to strictly limit the spectrum of acceptable opinion, but allow very lively debate within that spectrum.” Noam Chomsky (1998).

The level of atmospheric methane, a poisonous gas considered responsible for major mass extinction events in the past, has nearly tripled during the 20-21st centuries, from ~722 ppb (parts per billion) to above ~1866 ppb, currently reinforced by coal seam gas (CSG) emissions. As the concentration of atmospheric methane from thawing Arctic permafrost, from Arctic sediments and from marshlands worldwide is rising, the hydrocarbon industry, subsidized by governments, is progressively enhancing global warming by extracting coal seam gas in defiance of every international agreement.

Methane (CH₄), a powerful greenhouse gas ~80 times the radiative power of carbon dioxide (CO₂) when fresh, sourced in from anaerobic decomposition in wetlands, rice fields, emission from animals, fermentation, animal waste, biomass burning, charcoal combustion and anaerobic decomposition of organic waste, is enriched by melting of leaking permafrost, leaks from sediments of the continental shelf (Figure 1) and extraction as coal seam gas (CSG). The addition to the atmosphere of even a part of the estimated 1,400 billion tons of carbon (GtC) from Arctic permafrost would destine the Earth to temperatures higher than 4 degrees Celsius and thereby demise of the biosphere life support systems.


During the last and present centuries, global methane concentrations have risen from approximately ~700 parts per billion (ppb) to near-1900 ppb, an increase by a factor of ~2.7, the highest rate in the last 800,000 years.


Since the onset of the Industrial age global emissions of carbon have reached near-600 billion tonnes of carbon (>2100 billion tonnes CO₂) at a rate faster than during the demise of dinosaurs. According to research published in Nature Geoscience, CO₂ is being added to the atmosphere at least ten times faster than during a major warming event about 55 million years ago.

Australia, possessing an abundance of natural gas, namely methane resources, is on track to become the world's largest exporter. Leaks from hydraulic fracturing (fracking) production wells, transport and residues of combustion are bound to contribute significantly to atmospheric methane. However, despite economic objections, not to mention accelerating global warming, natural gas from coal seam gas, liquefied to -161°C, is favored by the government for domestic use as well as exported around the world.

In the Hunter Valley, NSW, release of methane from open-cut coal mining reached above 3000 ppb. In the US methane released in some coal seam gas fields constitutes between 2 and 17 per cent of the emissions.

While natural gas typically emits between 50 and 60 percent less CO₂ than coal when burned, the drilling and extraction of natural gas from wells, fugitive emissions, leaks from transportation in pipelines result in enrichment of the atmosphere in methane, the main component of natural gas, 34 times stronger than CO₂ at trapping heat over a 100-year period and 86 times stronger over 20 years. So, while natural gas when burned emits less CO₂ than coal, that doesn’t mean that it’s clean – the reason summed up in one word: methane.

Global warming triggered by the massive release of CO₂ may be catastrophic, but release of CH₄ from methane hydrates may be apocalyptic. According to Brand et al. (2016), the release of methane from permafrost and shelf sediment has constituted the ultimate source and cause for the dramatic life-changing global warming. The mass extinction at the end of the Permian 251 million years ago, when 96 percent of species was lost, holds an important lesson for humanity regarding greenhouse gas emissions, global warming, and the life support system of the planet (Brand et al. 2016, Methane Hydrate: Killer cause of Earth's greatest mass extinction).

The pledge for zero-emissions by 2050 is questioned as governments continue to subsidize, mine and export hydrocarbons. Examples include Saudi-Arabia, the Gulf States, Russia, Norway and Australia. A mostly compliant media highlights a zero-emission pledge, but is reluctant to report the scale of exported emissions as well as the ultimate consequences of the open-ended rise of global temperatures.

Norway, a country committed to domestic clean energy, is conducting large scale drilling for Atlantic and Arctic oil. Australia, the fourth-largest producer of coal, with 6.9% of global production, is the biggest net exporter, with 32% of global exports in 2016. 23 new coal projects are proposed n the Hunter Valley, NSW, with a production capacity equivalent to 15 Adani-sized mines.

Australian electricity generation is dominated by fossil fuel and about 17% renewable energy. Fossil fuel subsidies hit $10.3 billion in 2020-21, about twice the investment in solar energy in 2019-2020. State Governments spent $1.2 billion subsidizing exploration, refurbishing coal ports, railways and power stations and funding “clean coal” research, ignoring the pledge for “zero emissions by 2050”.

The pledge overlooks the global amplifying effects of cumulative greenhouse gases. At the current rate of emissions, atmospheric CO₂ levels would be near 500 ppm CO₂ by 2050, generating warming of the oceans (expelling CO₂), decreased albedo due to melting of ice, release of methane, desiccated vegetation and extensive fires.

Claims of “clean coal”, “clean gas” and “clean hydrogen” ignore the contribution of these methods to the rise in greenhouse gases. Coal seam gas has become an additional source of methane which has an 80 times more powerful greenhouse effect than CO₂. This adds to the methane leaked from Arctic permafrost, with atmospheric methane rising from ~ 600 parts per billion early last century to higher than 2000 ppb. In the Hunter Valley, NSW, release of methane from open-cut coal mining reached above 3000 ppb. In the US, methane released in some coal seam gas fields constitutes between 2 and 17 per cent of the emissions.

The critical index of global warming, rarely mentioned by politicians or the media, is the atmospheric concentration of CO₂. During 2020-2021 CO₂ rose from 416.45 to 419.05 parts per million at a rate of 2.6 ppm/year, a trend unprecedented in the geological record of the last 55 million years. The combined effects of greenhouse gases such as cabon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O) have reached near ~500 ppm CO2-equivalent.

Since 1880, the world has warmed by 1.09 degrees Celsius on average, near ~1.5°C on the continents and ~2.2°C in the Arctic, with the five warmest years on record during 2015-2020. Since the 1980s, the wildfire season has lengthened across a quarter of the world's vegetated surface. As extensive parts of Earth are burning, “forever wars” keep looming. 

It is not clear how tracking toward +4 degrees Celsius by the end of the century can be arrested. A level of +4°C above pre-industrial temperature endangers the very life support systems of the planet. The geological record indicates past global heating events on a scale and rate analogous to the present have led to mass extinctions of species. According to Professor Will Steffen, Australia’s top climate scientist “we are already deep into the trajectory towards collapse”. While many scientists are discouraged by the extreme rate of global heating, it is left to a heroic young girl to warn the world of the greatest calamity since a large asteroid impacted Earth some 66 million years ago.


Andrew Glikson
A/Prof. Andrew Glikson

Earth and Paleo-climate scientist
The University of New South Wales,
Kensington NSW 2052 Australia


Books:
The Asteroid Impact Connection of Planetary Evolution
http://www.springer.com/gp/book/9789400763272
The Archaean: Geological and Geochemical Windows into the Early Earth
http://www.springer.com/gp/book/9783319079073
Climate, Fire and Human Evolution: The Deep Time Dimensions of the Anthropocene
http://www.springer.com/gp/book/9783319225111
The Plutocene: Blueprints for a Post-Anthropocene Greenhouse Earth
http://www.springer.com/gp/book/9783319572369
Evolution of the Atmosphere, Fire and the Anthropocene Climate Event Horizon
http://www.springer.com/gp/book/9789400773318
From Stars to Brains: Milestones in the Planetary Evolution of Life and Intelligence
https://www.springer.com/us/book/9783030106027
Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia
http://www.springer.com/us/book/9783319745442
The Event Horizon: Homo Prometheus and the Climate Catastrophe
https://www.springer.com/gp/book/9783030547332



Tuesday, May 18, 2021

Extinction by 2027

by Malcolm Light

The greatest threat to humanity on Earth is the escalating Arctic atmospheric methane buildup, caused by the destabilization of subsea methane hydrates. This subsea Arctic methane hydrate destabilization will go out of control in 2024 and lead to a catastrophic heatwave by 2026.

While the source region for this subsea methane is in Russian waters, the hot ocean current setting them off is the northern extension of the Gulf Stream - North Atlantic Drift, the “Svalbard Current”, which makes United States and Canadian atmospheric pollution guilty of this looming catastrophic Global Extinction event.


References

Extinction by 2027 - Post by Malcolm Light and comments 
https://www.facebook.com/malcolm.light.50/posts/4013328748745929

Anomalies of methane in the atmosphere over the East Siberian shelf: Is there any sign of methane leakage from shallow shelf hydrates? - by Shakhova, Semiletov, Salyuk and Kosmach (2008) 
http://www.cosis.net/abstracts/EGU2008/01526/EGU2008-A-01526.pdf

Max, M.D. & Lowrie, A. 1993. Natural gas hydrates: Arctic and Nordic Sea potential. In: Vorren, T.O., Bergsager, E., Dahl-Stamnes, A., Holter, E., Johansen, B., Lie, E. & Lund, T.B. Arctic Geology and Petroleum Potential, Proceedings of the Norwegian Petroleum Society Conference, 15-17 August 1990, Tromso, Norway. Norwegian Petroleum Society (NPF), Special Publication 2 Elsevier, Amsterdam, 27-53. 
https://www.elsevier.com/books/arctic-geology-and-petroleum-potential/vorren/978-0-444-88943-0

Lucy-Alamo Projects - Hydroxyl Generation and Atmospheric Methane Destruction 

Thursday, March 18, 2021

Overshoot or Omnicide?

Questions and Answers with Sam Carana


Above image shows a non-linear blue trend based on 1880-2020 NASA Land+Ocean data that are adjusted 0.78°C to reflect a pre-industrial base, to more fully reflect strong polar warming, and to reflect surface air temperatures over oceans. This blue trend highlights that the 1.5°C threshold was crossed in 2012 (inset), while the 2°C threshold looks set to be crossed next year and a 3°C rise could be reached at the end of 2026.

Overshoot?

The blue trend in the image at the top shows the temperature rise crossing 1.5°C in 2012. Could this have been a temporary overshoot? Could the trend be wrong and could temperatures come down in future, instead of continuing to rise, and could temperatures fall to such extent that this will bring the average temperature rise back to below 1.5°C?

To answer this question, let's apply the method followed by the IPCC and estimate the average temperature rise over a 30-year period that is centered around the start of 2012, i.e. from 1997 to the end of 2026. The IPPC used a 30-year period in its Special Report on Global Warming of 1.5 ºC, while assuming that, for future years, the current multi-decadal warming trend would continue (see image below).


As said, the image at the top shows the temperature rise crossing 1.5°C in 2012. For the average temperature over the 30-year period 1997-2026 to be below 1.5°C, temperatures would have to fall over the next few years. Even if the temperature for 2021 fell to a level as low as it was in 2018 and remained at that same lower level until end 2026, the 1997-2026 average would still be more than 1.5°C above pre-industrial. Furthermore, for temperatures to fall over the next few years, there would need to be a fall in concentrations of greenhouse gases over the next few years, among other things. Instead, greenhouse gas levels appear to be rising steadily, if not at accelerating pace.

What did the IPCC envisage? As the image below shows, the IPCC in AR5 did envisage carbon dioxide under RCP 2.6 to be 421 ppm in 2100, while the combined CO₂e for carbon dioxide, methane and nitrous oxide would be 475 ppm in 2100.


The image below, based on a study by Detlef van Vuuren et al. (2011), pictures pathways for concentrations of carbon dioxide, methane and nitrous oxide, for each of four Representative Concentration Pathways (RCPs).


Above image shows that, for RCP 2.6 to apply in the above study, there is little or no room for a rise in these greenhouse gases. In fact, the study shows that methane levels would have to be falling dramatically. At the moment, however, methane concentrations show no signs of falling and instead appear to be following if not exceeding RCP 8.5, as discussed in a recent post and as also illustrated by the images below. The IPCC used similar figures in AR5 (2013), as shown below. 


Greenhouse gas levels are rising

As the image below shows, the carbon dioxide (CO₂) level recorded at Mauna Loa, Hawaii, was 421.36 parts per million (ppm) on April 8, 2021. 


The N20 satellite recorded a methane peak of 2862 ppb on the afterrnoon of March 29, 2021, at 487.2 mb, as the image below shows.


A similarly high methane peak was recorded by the MetOp-1 satellite at 469 mb on the morning of April 4, 2021. 

Below are the highest daily mean methane levels recorded by the MetOp-1 satellite at selected altitudes on March 10 or 12, for the years 2013-2021, showing that methane levels are rising, especially at the higher altitude associated with 293 mb. 


Similarly, nitrous oxide levels show no signs of falling, as illustrated by the image below.


Methane grew 15.85 ppb in 2020, how fast could CO₂e rise

Rising greenhouse gas levels and associated feedbacks threaten to cause temperatures to keep rising, in a runaway scenario that cannot be reverted even if emissions by people were cut to zero.

Peaks in greenhouse gas levels could suffice to trigger the clouds feedback, which occurs when a CO₂e threshold of around 1,200 ppm is crossed, and the stratocumulus decks abruptly become unstable and break up into scattered cumulus clouds.

Once the clouds tipping point is crossed, it will be impossible to undo its impact, in line with the nature of a tipping point. In theory, CO₂ levels could come down after the stratocumulus breakup, but the stratocumulus decks would only reform once the CO₂ levels drop below 300 ppm.

recent post repeated the warning that by 2026, there could be an 18°C rise when including the clouds feedback, while humans will likely go extinct with a 3°C rise and most life on Earth will disappear with a 5°C rise. In conclusion, once the clouds feedback gets triggered, it cannot be reverted by people, because by the time the clouds feedback starts kicking in, people would already have disappeared, so there won't be any people around to keep trying to revert it.

[ click on images to enlarge ]
Methane levels are rising rapidly. The image to the right shows a trend that is based on NOAA 2006-2020 annual global mean methane data and that points at a mean of 3893 ppb getting crossed by the end of 2026. 

Why is that value of 3893 ppb important? On April 8, 2021, carbon dioxide reached a peak of 421.36 ppm, i.e. 778.64 ppm away from the clouds tipping point at 1200 ppm, and 778.64 ppm CO₂e translates into 3893 ppb of methane at a 1-year GWP of 200. 

In other words, a methane mean of 3893 ppb alone could cause the clouds tipping point to get crossed, resulting in an abrupt 8°C temperature rise. 

Such a high mean by 2026 cannot be ruled out, given the rapid recent growth in mean annual methane levels (15.85 ppb in 2020, see inset on image). 

Additionally, there are further warming elements than just carbon dioxide and methane, e.g. nitrous oxide and water vapor haven't yet been included in the CO₂e total.

Moreover, it may not even be necessary for the global mean methane level to reach 3893 ppb. A high methane peak in one single spot may suffice and a peak of 3893 ppb of methane could be reached soon, given that methane just reached a peak of 2862 ppb, while even higher peaks were reached over the past few years, including a peak of 3369 ppb recorded on the afternoon of August 31, 2018

Abrupt stratocumulus cloud shattering 

[ click on images to enlarge ]
Catastrophic crack propagation is what makes a balloon pop. Could low-lying clouds similarly break up and vanish abruptly?

Could peak greenhouse gas concentrations in one spot break up droplets into water vapor, thus raising CO₂e and propagating break-up of more droplets, etc., to shatter entire clouds?

In other words, an extra burst of methane from the seafoor of the Arctic Ocean alone could suffice to trigger the clouds tipping point and abruptly push temperatures up by an additional 8°C.

Omnicide?

This brings the IPCC views and suggestions into question. As discussed above, for the average temperature to come down to below 1.5°C over the period 1997-2026, temperatures would need to fall over the next few years. What again would it take for temperatures to fall over the next few years?

Imagine that all emissions of greenhouse gases by people would end. Even if all emissions of greenhouse gases by people could magically end right now, there would still be little or no prospect for temperatures to fall over the next few years. Reasons for this are listed below, and it is not an exhaustive list since some things are hard to assess, such as whether oceans will be able to keep absorbing as much heat and carbon dioxide as they currently do.

By implication, there is no carbon budget left. Suggesting that there was a carbon budget left, to be divided among polluters and to be consumed over the next few years, that suggestion is irresponsible. Below are some reasons why the temperature is likely to rise over the next few years, rather than fall.

How likely is a rise of more than 3°C by 2026?

• The warming impact of carbon dioxide reaches its peak a decade after emission, while methane's impact over ten years is huge, so the warming impact of the greenhouse gases already in the atmosphere is likely to prevent temperatures from falling and could instead keep raising temperatures for some time to come.

• Temperatures are currently suppressed. We're in a La Niña period, as illustrated by the image below.


[ click on images to enlarge ]
As NASA describes, El Niño events occur roughly every two to seven years. As temperatures keep rising, ever more frequent strong El Niño events are likely to occur. NOAA anticipates La Niña to re-emerge during the fall or winter 2021/2022, so it's likely that a strong El Niño will occur between 2023 and 2025. 

• Rising temperatures can cause growth in sources of greenhouse gases and a decrease in sinks. The image below shows how El Niño/La Niña events and growth in CO₂ levels line up. 


• We're also at a low point in the sunspot cycle. As the image on the right shows, the number of sunspots can be expected to rise as we head toward 2026, and temperatures can be expected to rise accordingly. According to James Hansen et al., the variation of solar irradiance from solar minimum to solar maximum is of the order of 0.25 W/m⁻².

• Add to this the impact of a recent Sudden Stratospheric Warming event. We are currently experiencing the combined impact of three short-term variables that are suppressing the temperature rise, i.e. a Sudden Stratospheric Warming event, a La Niña event and a low in sunspots.

Over the next few years, in the absence of large volcano eruptions and in the absence of Sudden Stratospheric Warming events, a huge amount of heat could build up at surface level. As the temperature impact of the other two short-term variables reverses, i.e. as the sunspot cycle moves toward a peak and a El Niño develops, this could push up temperatures substantially. The world could be set up for a perfect storm by 2026, since sunspots are expected to reach a peak by then and since it takes a few years to move from a La Niña low to the peak of an El Niño period.

• Furthermore, temperatures are currently also suppressed by sulfate cooling. This impact is falling away as we progress with the necessary transition away from fossil fuel and biofuel, toward the use of more wind turbines and solar panels instead. Aerosols typically fall out of the atmosphere within a few weeks, so as the transition progresses, this will cause temperatures to rise over the next few years. Most sulfates are caused by large-scale industrial activity, such as coal-fired power plants and smelters. A significant part of sulphur emissions is also caused by volcanoes. Historically, some 20 volcanoes are actively erupting on any particular day. Of the 49 volcanoes that erupted during 2021, 45 volcanoes were still active with continuing (for at least 3 months) eruptions as at March 12, 2021.

• Also holding back the temperature rise at the moment is the buffer effect of thick sea ice in the Arctic that consumes heat as it melts. As Arctic sea ice thickness declines, more heat will instead warm up the Arctic, resulting in albedo changes, changes to the Jet Stream and possibly trigger huge releases of methane from the seafloor. The rise in ocean temperature on the Northern Hemisphere looks very threatening in this regard (see image on the right) and many of these developments are discussed at the extinction page. There are numerous further feedbacks that look set to start kicking in with growing ferocity as temperatures keep rising, such as releases of greenhouse gases resulting from permafrost thawing and the decline of the snow and ice cover. Some 30 feedbacks affecting the Arctic are discussed at the feedbacks page.

• The conclusion of study after study is that the situation is worse than expected and will get even worse as warming continues. Some examples: a recent study found that the Amazon rainforest is no longer a sink, but has become a source, contributing to warming the planet instead; another study found that soil bacteria release CO₂ that was previously thought to remain trapped by iron; another study found that forest soil carbon does not increase with higher CO₂ levels; another study found that forests' long-term capacity to store carbon is dropping in regions with extreme annual fires; a recent post discussed a study finding that at higher temperatures, respiration rates continue to rise in contrast to sharply declining rates of photosynthesis, which under business-as-usual emissions would nearly halve the land sink strength by as early as 2040; the post also mentions a study on oceans that finds that, with increased stratification, heat from climate warming less effectively penetrates into the deep ocean, which contributes to further surface warming, while it also reduces the capability of the ocean to store carbon, exacerbating global surface warming; finally, a recent study found that kelp off the Californian coast has collapsed. So, both land and ocean sinks look set to decrease as temperatures keep rising, while a 2020 study points out that the ocean sink will also immediately slow down as future fossil fuel emission cuts drive reduced growth of atmospheric CO₂. 

Where do we go from here?

[ image from earlier post ]
The same blue trend that's in the image at the top also shows up in the image on the right, from an earlier post, together with a purple trend and a red trend that picture even worse scenarios than the blue trend.

The purple trend is based on 15 recent years (2006-2020), so it can cover a 30-year period (2006-2035) that is centered around end December 2020. As the image shows, the purple trend points at a rise of 10°C by 2026, leaving little or no scope for the current acceleration to slow, let alone for the anomaly to return to below 2°C.

The red trend is based on a dozen recent years (2009-2020) and shows that the 2°C threshold could already have been crossed in 2020, while pointing at a rise of 18°C by 2025.

In conclusion, temperatures could rise by more than 3°C by the end of 2026, as indicated by the blue trend in the image at the top. At that point, humans will likely go extinct, making it in many respects rather futile to speculate about what will happen beyond 2026. On the other hand, the right thing to do is to help avoid the worst things from happening, through comprehensive and effective action as described in the Climate Plan.


Links

• Climate Plan

• NOAA Global Climate Report - February 2021 - Monthly Temperature Anomalies Versus El Niño

• NOAA Northern Hemisphere Ocean Temperature Anomaly

• NOAA Sunspots - solar cycle progression

• Smithsonian Institution - Volcanoes - current eruptions

• IPCC Special Report Global Warming of 1.5 ºC - Summary for Policy Makers

• IPCC AR5 WG1 Summary for Policymakers - Box SPM.1: Representative Concentration Pathways

• IPCC AR5, Climate Change (2013), Chapter 8

• The representative concentration pathways: an overview - by Detlef van Vuuren et al. (2011)

• Young people's burden: requirement of negative CO₂ emissions - by James Hansen et al. (2017)

• 2020: Hottest Year On Record

• What Carbon Budget?

• Most Important Message Ever

• High Temperatures October 2020

• Temperature keep rising

• More Extreme Weather

• Extinction

• Feedbacks

• Sudden Stratospheric Warming

• Possible climate transitions from breakup of stratocumulus decks under greenhouse warming - by Tapio Schneider  et al.

• Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw - by Monique Patzner et al.

• Global maps of twenty-first century forest carbon fluxes - by Nancy Harris et al.

• A trade-off between plant and soil carbon storage under elevated CO2 - by César Terrer et al.

• Forests' long-term capacity to store carbon is dropping in regions with extreme annual fires

• Decadal changes in fire frequencies shift tree communities and functional traits - by Adam Pellegrini et al.

• NOAA - Annual Mean Growth Rate for Mauna Loa, Hawaii

• NOAA - Trends in Atmospheric Methane
https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4

• The Climate Data Guide: Nino SST Indices - by Kevin Trenberth & NCAR Staff (Eds)
https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni

• Historical change of El Niño properties sheds light on future changes of extreme El Niño - by Bin Wang et al. 

• NOAA - ENSO: Recent Evolution, Current Status and Predictions, April 12, 2021
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.pdf

• Upper Ocean Temperatures Hit Record High in 2020 - by Lijing Cheng et al.

• Large-scale shift in the structure of a kelp forest ecosystem co-occurs with an epizootic and marine heatwave - by Meredith McPherson et al.

• External Forcing Explains Recent Decadal Variability of the Ocean Carbon Sink - by Galen McKinley et al. (2020) 
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019AV000149

• Maximum warming occurs about one decade after a carbon dioxide emission - by Katharine Ricke et al.

• Blue Ocean Event

• Confirm Methane's Importance

• FAQs