Sunday, June 5, 2022

Cataclysmic Alignment

Record high carbon dioxide

The concentration of carbon dioxide (CO₂) in the atmosphere recently broke two records at Mauna Loa, Hawaii, CO₂ was 421.63 in the week starting May 29, 2022, while CO₂ was 420.99 ppm in May 2022.


Earlier, very high daily and hourly measurements were recorded at Mauna Loa, as illustrated by the image below, showing one hourly measurement of 424 ppm (on May 28, 2022), as well as sequences of daily measurements in the green insets.


The image below shows carbon dioxide concentration rising over the past few years, with surface flask measurements well above 422 ppm at Mauna Loa recently.


Carbon dioxide concentration is even higher over the Arctic. The image below shows carbon dioxide approaching 430 ppm at Barrow, Alaska.


To get an idea how much greenhouse gases have risen, a 2021 study points at concentrations of 190 ppm for CO₂, 370-375 ppb for CH₄ and 200-245 ppb for N₂O some 18 ka to 21 ka. By comparison, the MetOp image below shows a global mean methane level of 1951 ppb, which is more than five times as high, while the image also shows a peak of 2405 ppb, at 293 mb on June 7, 2022 pm.  


The MetOp image below shows a lot of methane over the Arctic on May 30, 2022 pm, at 742 mb, which is much closer to sea level. 


The NOAA 20 image below shows high nitrous oxide levels over the Arctic on June 3, 2022 pm at 1000 mb.


Greenhouse gas levels are very high and there are many further indications that a huge temperature rise could take place over the next few years. 

Cataclysmic alignment of El Niño and sunspots 

The trigger for such a huge rise could be a cataclysmic alignment of the upcoming El Niño with a high number of sunspots, which look set to reach maximum impact around July 2025.

We are currently in the depths of a persistent La Niña, as illustrated by the image on the right, adapted from NOAA. This suppresses the temperature rise.

El Niños typically occur every 3 to 5 years, according to NOAA and as also illustrated by the NOAA image below, so the upcoming El Niño can be expected to occur soon.


The above NOAA image indicates that going from the bottom of a La Niña to the peak of an El Niño could make a difference of more than half a degree Celsius (0.5°C or 0.9°F). 

A huge temperature rise looks set to unfold soon, first of all in the Arctic, triggered by the combined impact of an upcoming El Niño and a peak in sunspots.
 
Sunspots are currently well above what NOAA predicted, as illustrated by the image on the right, adapted from NOAA

The more sunspot, the more the temperature goes up. The rise in sunspots from May 2020 to July 2025 could make a difference of some 0.15°C (0.27°F).

The next El Niño looks set to line up with a high peak in sunspots, in a cataclysmic alignment that could push up the temperature enough to cause dramatic sea ice loss in the Arctic, resulting in runaway temperature rise by 2026.

A huge temperature rise in the Arctic

There are many further indications that we're on the brink of a huge temperature rise in the Arctic.

Ocean heat that enters the Arctic Ocean from the Atlantic Ocean and the Pacific Ocean keeps rising.

[ see also more background at the Extinction page ]
As a result, several tipping points threaten to be crossed in the Arctic soon, as described in an earlier post, including the latent heat tipping point and a Blue Ocean Event (starting when Arctic sea ice extent will fall below 1 million km²), which would further speed up the temperature rise in the Arctic.

As temperatures keep rising in the Arctic, changes to the Jet Stream look set to intensify, resulting in loss of terrestrial albedo in the Arctic that could equal the albedo loss resulting from sea ice decline.

Further feedbacks include permafrost degradation, both terrestrial and on the seafloor of the Arctic Ocean, which looks set to cause huge releases of greenhouse gases (particularly CO₂, CH₄ and N₂O).

This would in turn also cause more water vapor to enter the atmosphere, further speeding up the temperature rise, especially in the Arctic, where vast amounts of methane are contained in sediments at the seafloor and where there is very little hydroxyl in the air to break down the methane.

Temperatures look set to rise further in the Arctic, due to falling away of sulfate aerosols, as illustrated by the IPCC image below that shows how much temperatures are currently suppressed in the Arctic due to aerosols and thus also shows how much temperatures in the Arctic look set to rise as the aerosol masking effect falls away.  

Conversely, there could be a temperature rise due to releases of other aerosols that have a net warming impact, such as black and brown carbon, which can increase dramatically as more wood burning, forest fires and urban fires take place, which again would hit the Arctic hard by darkening the surface as they settle on the snow and ice cover, thus speeding up its decline. 


Furthermore, the combined impact of aerosols and nitrogen fertilizers has been underestimated; a recent study concludes that when ammonia, nitric acid and sulfuric acid are present together, they contribute strongly to the formation of cirrus clouds. 

Global temperature rise

As the temperature keeps rising, further self-reinforcing feedbacks will kick in with more ferocity such as an increase in water vapor globally combined with a decrease in lower clouds decks, further increasing the temperature, as described at the clouds feedback page.

Altogether, the global temperature could rise by more than 18°C above pre-industrial, as illustrated by the image further above on the right, and as also discussed at the Extinction page.

Human extinction by 2025?

[ from earlier post ]
 
[ from earlier post ]
An April 2022 analysis found that the temperature rise from pre-industrial to March 2022 could be as much as 2.35°C. When adding 0.65°C for the joint impact of the upcoming El Niño and a peak in sunspots, the rise could be as much as 3°C by 2025, as also depicted in the image on the right, from that same analysis

A 2018 study (by Strona & Bradshaw) indicates that most life on Earth will disappear with a 5°C rise. Humans, who depend for their survival on many other species, will likely go extinct with a 3°C rise, as illustrated by the image below, from an earlier post.


Rise beyond 2026

As said, a temperature rise of 3°C from pre-industrial could be reached by 2025 just due to the combined push of the upcoming El Niño and a peak in sunspots, i.e. without change in other forcers.

What would happen if just methane kept rising, i.e. without change in other forcers? The image below shows methane with a trend added that points at a rise that could represent a forcing of 780 ppm CO₂e in 2028, which means that the clouds tipping point at 1200 ppm CO₂e would be crossed by methane and carbon dioxide alone (assuming no change in other forcers and with carbon dioxide remaining at 421 ppm), which would cause an additional 8°C rise in temperature. 


The above image shows that such a trend is contained in existing methane data. When also adding a large eruption of methane from the seafloor of the Arctic Ocean, the situation would be even worse, further underlining the potential for a rise of more than 18°C by 2026. 

Conclusion

In conclusion, temperatures could rise strongly soon, driving humans extinct as early as in 2025, while temperatures could skyrocket in 2026, making it in many respects rather futile to speculate about what will happen beyond 2026. At the same time, the right thing to do now is to help avoid the worst things from happening, through comprehensive and effective action as described in the Climate Plan.

In the video below, Jennifer Hynes and Sandy Schoelles discuss the situation.



Links

• NOAA - Global Monitoring Laboratory, Recent Daily Average CO₂ at Mauna Loa, Hawaii, U.S.
https://gml.noaa.gov/ccgg/trends

• NOAA - Global Monitoring Laboratory, at Barrow, Alaska, U.S.
https://gml.noaa.gov/dv/iadv/graph.php?code=BRW&program=ccgg&type=ts

• Globally resolved surface temperatures since the Last Glacial Maximum - by Matthew Osman et al. (2021)
https://www.nature.com/articles/s41586-021-03984-4

• Arctic Hit By Ten Tipping Points
https://arctic-news.blogspot.com/2020/04/arctic-hit-by-ten-tipping-points.html

• NOAA - ENSO: Recent Evolution, Current Status and Predictions
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.pdf

• NOAA - El Niño
https://www.noaa.gov/education/resource-collections/weather-atmosphere/el-nino#:~:text=An%20El%20Ni%C3%B1o%20condition%20occurs,every%203%20to%205%20years.

• NOAA - Monthly Temperature Anomalies Versus El Niño
https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202204/supplemental/page-4

• MetOp satellite
https://www.ospo.noaa.gov/Products/atmosphere/soundings/iasi

• NOAA 20 satellite
https://www.ospo.noaa.gov/Products/atmosphere/soundings/nucaps/NUCAPS_composite.html

• Ten temperature rise indications
https://engineering.cmu.edu/.../05/18-ammonia-emissions.html

• How ice clouds develop – Asian monsoon influences large parts of the Northern Hemisphere https://aktuelles.uni-frankfurt.de/.../how-ice-clouds...

• Synergistic HNO3 H2SO4 NH3 upper tropospheric particle formation - by Mingyi Wang et al. https://www.nature.com/articles/s41586-022-04605-4

• Clouds feedback and tipping point
https://arctic-news.blogspot.com/p/clouds-feedback.html

• Jet Stream
https://arctic-news.blogspot.com/p/jet-stream.html

• The Importance of Methane
https://arctic-news.blogspot.com/p/the-importance-of-methane-in-climate.html

• Pre-industrial

• Runaway temperature rise by 2026?
https://arctic-news.blogspot.com/2022/04/runaway-temperature-rise-by-2026.html

• Co-extinctions annihilate planetary life during extreme environmental change - by Giovanni Strona and Corey Bradshaw (2018) 




Monday, May 16, 2022

Carbon dioxide reaches another record high

NOAA data show a carbon dioxide level of 421.13 parts per million (ppm) for the week starting May 8, 2022, a new record high since measurements started at Mauna Loa, Hawaii. As the image below also shows, very high daily levels were reached recently, as high as 422.04 ppm. 


Greenhouse gas levels are even higher further north. Very high carbon dioxide levels were recorded recently at Barrow, Alaska, approaching 430 ppm. 

Furthermore, very high methane levels were recorded recently at Barrow, Alaska, including many at levels well over 2000 parts per billion (ppb).

The trigger: El Niño and sunspots

El Niños typically occur every 3 to 5 years, according to NOAA and as illustrated by the NOAA image below, so the upcoming El Niño can be expected to occur within the next few years. 


As also illustrated by the NOAA image on the right, we are currently in the depths of a persistent La Niña and this suppresses current temperatures.

A huge temperature rise in the Arctic looks set to unfold soon, triggered by the combined impact of an upcoming El Niño and a peak in sunspots. 

Sunspots are currently well above what NOAA predicted, as illustrated by the image below on the right.

Huge temperature rise in Arctic

Additionally, greenhouse gas levels are very high over the Arctic, while the ocean heat that enters the Arctic Ocean from the Atlantic Ocean and the Pacific Ocean keeps rising.  

As a result, several tipping points threaten to be crossed in the Arctic soon, as described in an earlier post, including the latent heat tipping point and a Blue Ocean Event, starting when Arctic sea ice extent will fall below 1 million km²

As temperatures keep rising in the Arctic, changes to the Jet Stream look set to intensify, while loss of terrestrial albedo in the Arctic could equal the albedo loss resulting from sea ice decline.
[ from the Extinction page ]

Further feedbacks include permafrost degradation, both terrestrial and on the seafloor of the Arctic Ocean, which looks set to cause huge releases of greenhouse gases (particularly CO₂, CH₄ and N₂O).

Global temperature rise

This would in turn also cause more water vapor to enter the atmosphere, further speeding up the temperature rise, especially in the Arctic, where vast amounts of methane are contained in sediments at the seafloor and where there is very little hydroxyl in the air to break down the methane.

Temperatures looks set to rise further due to the falling away of sulfate aerosols, while there could be a further temperature rise due to releases of other aerosols that have a net warming impact, such as black and brown carbon, which can increase dramatically as more wood burning and forest fires take place.

As the temperature keeps rising, further self-reinforcing feedbacks will kick in with more ferocity such as an increase in water vapor globally combined with a decrease in lower clouds decks, further increasing the temperature, as described at the clouds feedback page.

Altogether, the global temperature could rise by more than 18°C above pre-industrial, as illustrated by the image on the right from the Extinction page.

Conclusion

In conclusion, temperatures could rise strongly by 2026, resulting in humans going extinct, making it in many respects rather futile to speculate about what will happen beyond 2026.

At the same time, the right thing to do is to help avoid the worst things from happening, through comprehensive and effective action as described in the Climate Plan.


Links

• NOAA - Global Monitoring Laboratory, Recent Daily
 Average CO₂ at Mauna Loa, Hawaii, U.S.
https://gml.noaa.gov/ccgg/trends

• NOAA - Global Monitoring Laboratory, at Barrow, Alaska, U.S.
https://gml.noaa.gov/dv/iadv/graph.php?code=BRW&program=ccgg&type=ts

• Arctic Hit By Ten Tipping Points
https://arctic-news.blogspot.com/2020/04/arctic-hit-by-ten-tipping-points.html

• NOAA - El Niño
https://www.noaa.gov/education/resource-collections/weather-atmosphere/el-nino#:~:text=An%20El%20Ni%C3%B1o%20condition%20occurs,every%203%20to%205%20years.

• NOAA - Monthly Temperature Anomalies Versus El Niño

• NOAA - sunspots


Wednesday, April 27, 2022

Carbon dioxide crosses 422 ppm

Carbon dioxide (CO₂) reached an average daily concentration of 422.06 ppm on April 26, 2022, at Mauna Loa, Hawaii.


Furthermore, very high methane (CH₄) concentrations were recorded recently at Mauna Loa, Hawaii, with surface flask readings appearing to be as high as 1955 ppb.  


Clouds tipping point

A methane concentration of 1955 ppb corresponds, at a Global Warming Potential (GWP) of 200, with a carbon dioxide equivalent (CO₂e) of 391 ppm. Together with the above daily average CO₂ concentration of 422.06 ppm this adds up to a joint CO₂e of 813.06 ppm, i.e. less than 387 ppm away from the clouds tipping point (at 1200 ppm CO₂e) that on its own could raise the global temperature by 8°C.

Such a 387 ppm CO₂e could be added almost immediately by a burst of seafloor methane less than the size of the methane that is currently in the atmosphere (about 5 Gt). There is plenty of potential for such an abrupt release, given the rising ocean heat and the vast amounts of methane present in vulnerable sediments at the seafloor of the Arctic Ocean, as discussed in posts such as this one.


The 1200 ppm CO₂e clouds tipping point could also be crossed even without such an abrupt seafloor methane release. Carbon dioxide and methane levels are rising rapidly. The above image shows carbon dioxide concentration with a trend added, based on NOAA 1980-2021 mean global annual carbon dioxide data, illustrating how carbon dioxide concentration could cross 750 ppm by the end of the year 2029.

[ see also the importance of methane ]

The above image shows methane concentration with a trend added, based on NOAA 2008-2021 mean global annual methane data, illustrating how methane concentration could cross 4100 ppb by the end of the year 2029 and how methane's impact could cross 820 ppm CO₂e by the end of the year 2029.

As illustrated by the image below, 750 ppm carbon dioxide and 820 ppm CO₂e methane would together yield a joint CO₂e of 1570 ppm and thus would have already raised the global temperature by 8°C due to the clouds feedback much earlier than 2029, while the temperature rise would also have been driven up by the higher carbon dioxide and the methane concentrations. 


Furthermore, nitrous oxide is also rising and there are many further forcers, as discussed at the Extinction page. Altogether, there is the potential for a temperature rise of well over 18°C by 2026, as discussed in an earlier post.

Such high carbon dioxide concentrations could occur due to forest fires causing soils to burn (especially peat soils), which can also add vast amounts of methane to the atmosphere. 

The IPCC does contemplate high carbon dioxide scenarios (see image right), but as discussed in an earlier post, does not mention the clouds tipping point.

High carbon dioxide scenarios typically stop at the year 2100 and rarely do concentrations reach higher than 1200 ppm.

In the image on the right, from a 2020 analysis by Malte Meinshausen et al., the SSP5-8.5 scenario is extended to the year 2300 and a carbon dioxide concentration of well over 2100 ppm is reached around 2240.

In conclusion, there is plenty of scientific consideration of the potential for high concentrations of carbon dioxide and methane to eventuate, but it is typically ignored or waved away as too distant in the future to worry about. 

In other words, what's lacking is analysis of abrupt catastrophic climate change.

Climate change danger assessment

The image below expands risk assessment beyond its typical definition as the product of the severity of impact and probability, by adding a third dimension: timescale.


Water in soil and atmosphere

The image on the right, from a news release associated with a recent study, shows changes in atmospheric thirst, measured in terms of reference evapotranspiration from 1980-202 (in mm).

As temperatures rise due to people's emissions, more evaporation will take place over both land oceans, but not all water will return as precipitation, so more water vapor will stay in the air.

[ click on images to enlarge ]
The water-holding capacity of the atmosphere increases by about 7% for every 1°C (1.8°F) rise in temperature, in line with the Clausius–Clapeyron relation

In many cases, this means drier soils and vegetation, making vegetation more vulnerable to pests and diseases, and more prone to fire hazards. 

Water in the soil acts as a buffer, slowing down the temperature rise, so drier soil will heat up faster and further, causing land surface temperatures to rise even more and amplifying the impact of Urban heat island and Heat dome phenomena.

The image on the right, adapted from ESA, shows land surface temperatures as high as 65°C (149°F) in India on April 26, 2022. Note that land surface temperatures can be substantially higher than air temperatures. 

As temperatures rise, extreme weather events increase in frequency and intensity. The duration of extreme weather events can also increase, due to blocked weather patterns resulting from changes to the Jet Stream.

This contributes to shortages in food and water supplies. As long as glaciers are melting in the mountains, rivers will keep supplying some water, but the snow and ice cover is disappearing rapidly around the globe. 

The image on the right shows that food prices have risen strongly over the past few years and extreme weather events resulting from the global temperature rise have strongly contributed to the price rise. 

Further contributing to this rise is the rising demand for fertilizers that are currently all too often produced with fossil fuel, as political will to produce food in better ways remains lacking. 

Heat stress

Another issue is humidity. The more water vapor there is in the air, the harder temperature peaks are to bear.

The human body can cool itself by sweating, which has a physiological limit that is often described as a 35°C wet-bulb temperature

A 2020 study (by Raymond et al.) warned that this limit could be regularly exceeded with a temperature rise of less than 2.5°C (compared to pre-industrial).

Meanwhile, recent research found that in practice the limit will typically be lower and depending on circumstances could be as low as a wet-bulb temperature of 25°C.

In the video below, Paul Beckwith discusses the danger of combined high heat and humidity. 


In the video below, Guy McPherson also discusses the danger of combined high heat and humidity. 


Extinction

A 2018 study (by Strona & Bradshaw) indicates that most life on Earth will disappear with a 5°C rise. Humans, who depend for their survival on many other species, will likely go extinct with a 3°C rise, as illustrated by the image below, from an earlier post.


Conclusion

This further highlights the imminence of the danger and adds further urgency to the call for immediate, comprehensive and effective action, as described in the Climate Plan.


Links

• NOAA - Global Monitoring Laboratory, Recent Daily Average CO₂ at Mauna Loa, Hawaii, U.S. 
• NOAA - Global Monitoring Laboratory, Methane (surface flasks) at Mauna Loa, Hawaii, U.S. 
• The Importance of Methane
https://arctic-news.blogspot.com/p/the-importance-of-methane-in-climate.html

• Clouds feedback and tipping point
https://arctic-news.blogspot.com/p/clouds-feedback.html

• NOAA - Globally averaged marine surface annual mean carbon dioxide data
https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_annmean_gl.txt

• NOAA - Globally averaged marine surface annual mean methane data
https://gml.noaa.gov/webdata/ccgg/trends/ch4/ch4_annmean_gl.txt

• NOAA - Mauna Loa CO2 weekly mean and historical comparisons
https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_weekly_mlo.txt

• Methane rise is accelerating

• Runaway temperature rise by 2026?
• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Shortcomings of IPCC AR6 WGIII - Mitigation of Climate Change
https://arctic-news.blogspot.com/2022/04/shortcomings-of-ipcc-ar6-wgiii-mitigation-of-climate-change.html

• NOAA Mauna Loa CO₂ annual mean data
https://gml.noaa.gov/ccgg/trends/data.html

• NOAA globaly averaged marine surface annual mean methane data
https://gml.noaa.gov/ccgg/trends_ch4

• Is the IPCC creating false perceptions, again?
https://arctic-news.blogspot.com/2021/08/is-the-ipcc-creating-false-perceptions-again.html

• The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500 - by Malte Meinshausen et al. 
https://gmd.copernicus.org/articles/13/3571/2020

• Clausius–Clapeyron relation

• Heat dome
https://en.wikipedia.org/wiki/Heat_dome

• ESA - Heatwave across India
https://www.esa.int/ESA_Multimedia/Images/2022/04/Heatwave_across_India

• Evaporative Demand Increase Across Lower 48 Means Less Water Supplies, Drier Vegetation, and Higher Fire Risk
https://www.drought.gov/news/evaporative-demand-increase-across-lower-48-means-less-water-supplies

• A Multidataset Assessment of Climatic Drivers and Uncertainties of Recent Trends in Evaporative Demand across the Continental United States - by Christine Albano et al.
https://journals.ametsoc.org/view/journals/hydr/23/4/JHM-D-21-0163.1.xml

• It could be unbearably hot in many places within a few years time
https://arctic-news.blogspot.com/2016/07/it-could-be-unbearably-hot-in-many-places-within-a-few-years-time.html

• The emergence of heat and humidity too severe for human tolerance - by Colin Raymond et al.
https://www.science.org/doi/10.1126/sciadv.aaw1838

• Evaluating the 35°C wet-bulb temperature adaptability threshold for young, healthy subjects (PSU HEAT Project) - by Daniel Vecellio et al.
https://pennstate.pure.elsevier.com/en/publications/evaluating-the-35c-wet-bulb-temperature-adaptability-threshold-fo

• Co-extinctions annihilate planetary life during extreme environmental change, by Giovanni Strona and Corey Bradshaw (2018)
https://www.nature.com/articles/s41598-018-35068-1

• Jet Stream
https://arctic-news.blogspot.com/p/jet-stream.html

• When Will We Die?
https://arctic-news.blogspot.com/2019/06/when-will-we-die.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html






Saturday, April 16, 2022

Runaway temperature rise by 2026?

March 2022 temperature anomaly

The NASA image below shows the March 2022 temperature anomaly. The Arctic is heating up strongly. 


The above image shows a temperature rise for March 2022 of 1.06°C, which is the rise from 1951-1980. The image below shows a temperature rise from 1900 for March 2022 of 1.36°C. 


[ click on images to enlarge ]
The box on above image shows that, when including further adjustment, the temperature rise from pre-industrial to March 2022 could be as much as 2.35°C. Details of the adjustment are described at the pre-industrial page. A 2.35°C rise is only 0.65°C away from a 3°C rise and, as described before, a 3°C rise will likely drive humans (and many other species) into extinction. 

Note that the March 2022 temperature is suppressed, as we're currently in the depth of a persistent La Niña, as illustrated by the NOAA image on the right. 


[ click on images to enlarge ]
The above NOAA image shows that the difference between the top of El Niño and the bottom of La Niña could be more than half a degree Celsius. The peak of the next El Niño may well coincide with a high number of sunspots (NOAA image right). 

The image below features two trends. The black trend is based on adjusted Jan.1880-Mar.2022 NASA data and shows how 3°C could be crossed in 2027. The blue trend is based on adjusted Apr.2012-Mar.2022 NASA data and better reflects short-term variables such as sunspots and El Niño. The blue trend shows how 3°C could be crossed in 2025, triggered by an emerging El Niño and high sunspots. 


Runaway temperature rise

[ click on images to enlarge ]
A strong El Niño combined with high sunspots could cause the global temperature rise to cross 3°C in 2025.

Moreover, this could trigger runaway temperature rise, starting before 2026 where the temperature rise is felt most strongly, i.e. in the Arctic, especially during El Niño events, as illustrated by the image on the right that shows anomalies (vs 1951-1980) as high as 6.6°C in the Arctic.  


[ see the Extinction page ]
The potential temperature rise is illustrated by the bar on the right.

As temperatures rise, loss of Arctic sea ice and of its latent heat buffer will cause more heating of the atmosphere, while changes to the Jet Stream will cause more extreme weather. 

As humans go extinct, transport and industrial activities will stop that currently co-emit sulfur that masks the full extent of the temperature rise. 

In addition, as also discussed at the aerosols page, worldwide forest fires and trash fires could cause huge amounts of black carbon to be emitted. 

Rising temperatures will result in more water vapor in the atmosphere (7% more water vapor for every 1°C warming), further amplifying the temperature rise, since water vapor is a potent greenhouse gas. 

As the IPCC warns (see above image), for each additional 1°C of warming, the global volume of perennially frozen ground to 3 m below the surface is projected to decrease by about 25% relative to the present volume, and the IPCC adds that these decreases may be underestimates. As permafrost declines, huge amounts of carbon dioxide, methane and nitrous oxide get released. 

As the ocean heats up, a huge temperature rise could be caused by releases of seafloor methane, further contributing to the clouds tipping point (at 1200 ppm CO₂e) to get crossed, causing a further rise of 8°C. Altogether, the temperature rise could exceed 18°C.

The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.

In the video below, Jennifer Hynes and Sandy Schoelles discuss the temperature rise. 




Links

• NASA Gistemp
https://data.giss.nasa.gov/gistemp

• Pre-industrial
https://arctic-news.blogspot.com/p/pre-industrial.html

• When Will We Die?
https://arctic-news.blogspot.com/2019/06/when-will-we-die.html

• NOAA - Monthly Temperature Anomalies Versus El Niño
https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202203/supplemental/page-4

• NOAA - ENSO: Recent Evolution, Current Status and Predictions
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.pdf

• NOAA - Solar cycle sunspots progression
https://www.swpc.noaa.gov/products/solar-cycle-progression

• Sunspots
https://arctic-news.blogspot.com/p/sunspots.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Aerosols
https://arctic-news.blogspot.com/p/aerosols.html

• Arctic Hit By Ten Tipping Points
https://arctic-news.blogspot.com/2020/04/arctic-hit-by-ten-tipping-points.html

• IPCC - FAQ on water vapor
https://wg1.ipcc.ch/publications/wg1-ar4/faq/wg1_faq-3.2.html

• IPCC - AR6 WG1 TS on permafrost
https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_TS.pdf

• Clouds feedback
https://arctic-news.blogspot.com/p/clouds-feedback.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html