Monday, July 15, 2013

Comprehensive and Effective Climate Plan

President Obama's Climate Action Plan doesn't look much like a shift to genuinely clean energy. As discussed in a recent post by Peter Carter, the President's Plan sadly supports fossil fuel in many ways.

The plan supports natural gas very prominently. Indeed, how clean is natural gas? Years ago, a Cornell University study (image below) concluded that emissions caused by natural gas can be even worse than coal and diesel oil, especially when looked at over a relatively short period.

At the time, I wrote that this kind of support for natural gas - as if that was supposedly "clean energy" - would only perpetuate the government's support for fuel, while doing little or nothing to help genuinely clean energy. Moreover, continued support for fossil fuel comes at the expensive of growth in genuinely clean energy that we need instead.

EIA figures also show that, over the period from 1990 to 2010, the average amount of carbon dioxide produced in the United States for each unit of energy generated has remained much the same as the world average, while the situation in China has grown even worse.

IEA figures further show that the world's energy-related carbon dioxide emissions continue to rise rapidly and that they, for the period 1900 - 2012, add up to a staggering amount of 1257 Gt.

As the image below shows, from a recent IEA report, the carbon intensity of global energy has hardly improved over the decades.

The colored lines on the right correspond with scenarios in which global temperatures are projected to increase by, respectively, 6 degrees Celsius, 4 degrees Celsius and 2 degrees Celsius.

What are the chances that it will be possible to avoid the worst-case scenario?  The IEA elaborates that an extension of current trends would result in an average global temperature rise of at least 6 degrees Celsius in the long term. To have an 80% chance of limiting the average global temperature rise to 2 degrees Celsius, energy-related carbon dioxide emissions need to be cut by more than half in 2050 compared with 2009. They would need to continue to fall thereafter.

While the IEA adds that the goal of limiting the average global temperature rise to 2 degrees Celsius can only be achieved if greenhouse gas emissions in non-energy sectors are also reduced, the IEA does not elaborate on what further action will be needed and whether emission reductions alone will suffice to avoid climate catastrophe.

[click to enlarge]
As said, the world's cumulative energy-related carbon dioxide emissions add up, for the period 1900 - 2012, to a staggering amount of 1257 Gt. As the graph on the right shows, methane's global warming potential for the first decade since its release into the atmosphere will be more than 130 times as much as carbon dioxide.

Abrupt release of just 10 Gt of methane will - during the first decade since entering into the atmosphere - have a stronger greenhouse effect globally than all cumulative energy-related carbon dioxide emissions from 1900 to 2012.

Note that above calculation applies to methane as it's typically released at present, i.e. gradually and spread out over the world, mostly originating from cattle, wetlands, biowaste, energy, forest fires, etc. Things will be much worse in case of abrupt release of methane from the Arctic seabed, when much of the methane will initially remain concentrated in the Arctic, where hydroxyl levels are also very low.

After 5 years, a methane cloud 20% the size of its original abrupt release of methane in the Arctic will still have more than 1000 times the warming potency locally that the same mass of carbon dioxide has globally.

Look at it this way; an abrupt release in the Arctic Ocean will initially remain concentrated locally. The Arctic Ocean covers 2.8% of the Earth's surface, while there's currently about 0.14 Gt of methane in the atmosphere over the Arctic Ocean. Abrupt release of 1 Gt methane from the Arctic seabed will thus initially multiply methane levels in the atmosphere over the Arctic Ocean by 8, trapping much more heat from sunlight, especially during the June solstice when solar radiation received by the Arctic is higher than anywhere else on Earth.

This comes on top of warming that is already accelerated in the Arctic. Albedo changes alone could cause more warming than all emissions by people globally, according to calculations by Prof. Peter Wadhams, who also describes things in the video below.

The resulting temperature rises in the Arctic threaten to trigger further methane releases from the seabed and wildfires on land in the Arctic, further driving up temperatures in an exponential spiral of runaway global warming.

In conclusion, we need a climate plan that will genuinely produce the necessary action, i.e. a comprehensive and effective climate plan as articulated at

No comments:

Post a Comment