Showing posts with label anomalies. Show all posts
Showing posts with label anomalies. Show all posts

Thursday, January 24, 2013

High methane levels persist in January 2013

Below a combination of images produced by Dr. Leonid Yurganov, comparing methane levels between January 1-10, 2012 (below left), and January 1-10, 2013 (below right).




The 2013 image shows worryingly high levels of methane between Norway and Svalbard, an area where hydrate destabilization is known to have occurred over the past few years. Even more worrying is the combination of images below. Methane levels came down January 11-20, 2012, but for the same period in 2013, they have risen. 



On January 21, 2013, as shown on the image below, methane levels of up to 2234 ppb were recorded at 892 mb. Further examination indicated that this was caused by large releases of methane above North-Africa, apparently associated with the terrorist attack on the natural gas plant in Algeria.  An image without data is added underneath, to better distinguish locations on the map. 


It didn't take long for even higher methane levels to be reached above the Arctic. The NOAA image below shows methane levels of up to 2241 ppb above the Arctic at 742 mb on January 23, 2013. 




Below a NOAA image with temperature anomalies for January 7, 2013, when a huge area of the Arctic experienced anomalies of over 20 degrees Celsius, including a large area close to Svalbard. 



Temperatures change daily, as the wind changes direction and as sea currents keep the water moving around the Arctic Ocean. For an area close to Svalbard, the recent 30-day temperature anomalies is over 20 degrees Celsius, as shown on the NOAA image below, and this indicates persistently high temperature anomalies for that area. 



Below, a NOAA image showing sea surface temperature anomalies up to 5 degrees Celsius close to Svalbard.



Related

High methane levels persist in December 2012
- Methane contributes to accelerated warming in the Arctic

Thursday, January 17, 2013

Accelerated Arctic Warming

The Arctic is warming much faster than the rest of the world, as illustrated by the NASA image below.

global temperature anomalies averaged from 2008 through 2012, NASA Goddard Institute for Space Studies
The interactive image below (no longer functioning, ed.) shows temperature anomalies for the different latitudional zones over time.

The Arctic shows the strongest warming over time, while accelerating in recent years. The best fit for this warming in the Arctic is a fourth order polynomial trendline, as added to the data on the image below.


This accelerated warming in the Arctic is threatening to destabilize the methane in the seabed and trigger runaway global warming within a decade. Effective action needs to be taken before it's too late!

Sunday, December 30, 2012

High methane levels persist in December 2012

The image below was posted earlier at Methane contributes to accelerated warming in the Arctic. As mentioned there, this is a compilation of images produced by Dr. Leonid Yurganov, comparing methane levels between November 21-30, 2008 (below left), and November 21-30, 2012 (below right).


Dr. Yurganov has released two further images this year, i.e. for December 1-10, 2012 (below left), and for December 11-20, 2012 (below right).


The images show that the highest methane levels show up above the water, as opposed to above land, indicating that methane is being released from the seabed across the Arctic. The images further show that high levels of methane persist in December 2012.

Apart from comparing 10-day periods, we can also look at methane levels for individual days. The NOAA image below shows methane levels up to 2167 ppb on December 27, 2012, for the morning set of measurements.

To better see where the high (yellow) levels of methane were measured, a map with empty data is added below, showing the location of the continents more clearly on the map.


Pressure levels at which measurements are taken are displayed in hectopascals (symbol hPa) which are numerically equivalent to millibars (mb). A pressure of 600 mb (or hPa) corresponds with an altitude of 13794.9 ft (4204.7 m). By comparison, air pressure at mean sea level is 1013.25 hPa (millibar), or 29.92 inches of mercury.

The map below, from apocalypse4realmethane2012, shows methane measurements taken on the same day (December 27, 2012, morning set), but at 718 mb, which corresponds with an altitude that is a bit closer down to sea level. The map focuses on the Arctic and shows geographic names. If you like, click on the map to enlarge it.


Methane measurements were taken with the IASI (Infrared Atmospheric Sounding Interferometer) instrument, fitted onto the European Space Agencys (ESA) MetOp series of polar orbiting satellites.


For further analysis, the NOAA image with surface temperature anomalies for December 28, 2012, is added above, showing anomalies up to 20 degrees Celsius. Furthermore, the NOAA image with sea surface temperature anomalies for December 27, 2012, is added below, showing anomalies up to 5 degrees Celsius.

Friday, December 21, 2012

Methane contributes to accelerated warming in the Arctic


Above combination image featured earlier in the post Striking increase of methane in the Arctic. The images were produced by Dr. Leonid Yurganov, Senior Research Scientist, JCET, UMBC, who presented his findings at the AGU Fall Meeting 2012. The image below gives an update for 2012, showing an image with methane levels at 600 hPa.


Temperature anomalies on the inset on above image are averages for the full month November, whereas the methane levels displayed on the left are for the first ten days of November only. Using temperature maps for the same periods in such comparisons may result in even more striking simularities between methane levels and temperatures. For a more complete picture, further comparisons between November 2008 and November 2012 are added, for days 11-20 (below),


and for days 21-30 (below).


The images show that the highest methane levels show up above the water, as opposed to above land, indicating that methane is being released from the seabed across the Arctic.

Temperatures have meanwhile changed. In November 2012, there were high temperature anomalies in east Siberia. There now are very low temperatures throughout Siberia, as illustrated by the Wunderground map below, which shows high temperatures. Temperatures as low as -60.5°F (-51.4°C) were recorded in Susuman, east Siberia, both on December 13th and 17th, 2012.


The now hugely deformed polar jet stream and high levels of methane in the Arctic are only two out of numerous feedbacks that contribute to accelerate warming in the Arctic. Without rapid action, we can expect such wild swings in temperature to get even worse, making more extreme weather the new norm.

Thursday, December 20, 2012

Polar jet stream appears hugely deformed


World climate zones used to be kept well apart by jet streams. On the northern hemisphere, the polar jet stream was working hard to separate the Tundra and Boreal climate zones' colder air in the north from the Temperate climate and the Subtropical climate zones' warmer air in the south.

NOAA image
The greater the difference in temperature between north and south, the faster the jet streams spin around the globe, the polar jet stream at about 60°N and the subtropical jet stream at about 30°N, as illustrated on above image. 

NOAA image
The polar jet stream used to move at speeds of up to 140 miles per hour, while following a relatively straight track that was meandering only slightly, i.e. with waves that go up and down only a little bit.

Accordingly, the Northern Temperate Zone used to experience only mild differences between summer and winter weather, rather than the extreme hot or cold temperatures that we've experienced recently.

Accelerated warming in the Arctic is decreasing the difference in temperature between the Arctic and the Northern Temperate Zone. This is causing the polar jet to slow down and become more wavy, i.e. with larger loops, as illustrated by the NASA image further below.
Polar jet stream (blue) & subtropical
jet stream (red) - NOAA image

                   Diagram of Doom, Sam Carana
This is a feedback of accelerated warming in the Arctic that reinforces itself. As the jet stream slows down and its waves become more elongated, cold air can leave the Arctic more easily and come down deep into the Northern Temperate Zone. Conversily, more warm air can at the same time move north into the Arctic.

The 'open doors' feedback further decreases the difference in temperature between the Arctic and the Northern Temperate Zone, in turn further slowing down the jet stream and making it more wavy, and thus further accelerating warming in the Arctic.

The polar jet stream can travel at speeds greater than 100 mph. Here, the fastest winds are colored red; slower winds are blue. View animated version here. Credit: NASA/Goddard Space Flight Center
How does this affect temperatures? If we look at the average surface temperature anomalies for the month November 2012, we see huge differences in temperatures. Areas in the East Siberian Sea and in east Siberia registered average surface temperature anomalies for November 2012 of about 10 degrees Celsius, compared with 1951-1980. At the same time, areas in Alaska and Canada have been experiencing anomalies of about -10 degrees Celsius.


This suggests a hugely deformed polar jet stream, as indicated by the contour lines on above image on the right. This is very worrying, as this is only one out of many feedbacks that come with accelerated warming in the Arctic. There are at least ten such feedbacks, as depicted in the diagram below, from the earlier post Diagram of Doom.

       Diagram of Doom, Sam Carana
One of the most frightening feedbacks is the albedo loss in the Arctic. The speed at which changes are taking place can be illustrated with the image below, from the earlier post Big changes in the Arctic within years.



The urgency to act is perhaps best expressed by means of the two images below, which can constitute a fitting end-of-year message if you like to share them further. The image below highlights that Arctic sea ice minimum volume in 2012 was only 19.3% what it was in 1979. The background image, prepared by Wipneus, shows an exponential trend projecting a 2013 minimum of only 2000 cubic km of sea ice, with a margin of error that allows Arctic sea ice to disappear altogether next year, i.e. nine months from now.

Finally, the image below highlights that, in 2012, Arctic sea ice area fell by 83.7% in just 168 days, again illustrating how fast things can eventuate. 


For more quotes, see the page at http://arcticmethane.blogspot.com/p/quotes.html

Earlier posts:
Opening the Doorways to Doom

Wednesday, September 12, 2012

Storm enters Arctic region

Tropical Storm Leslie hit Newfoundland on September 11, 2012. Leslie was discussed in the earlier post by Paul Beckwith. The NOAA image below gives a 5-day forecast of Leslie's continued path along the coasts of Greenland and Iceland.


That may keep Leslie just out of the Arctic Circle, but this path does make it enter the Arctic Region, i.e. the area where temperatures in the warmest month used to remain under 10°C, or 50°F, as illustrated by the map below.


The image below shows how Leslie's impact on air pressure. The image below is part of a series of images showing how Leslie causes a low pressure area (compressed isobars) that then propagates over the Arctic ocean region. See further images at the Polar Meteorology Group at Ohio State University.


This low pressure region can also be tracked in the 9-panel GFSx forecast below, from Unisys Weather.



Storms are important to the Arctic, they can cause high waves and changes in wave direction, as illustrated by the combined images below from OceanWeather Inc



Storms can cause decline of Arctic sea ice and bring warm water and air into the Arctic. The Diagram of Doom, discussed in more details in an earlier post, pictures ten feedbacks that can cause warming in the Arctic to accelerate. Storms are a factor in many of these feedbacks. 



As illustrated by the NOAA image below, accelerated warming results in high temperature anomalies, increasing the danger of methane releases from sediments under the water.


Paul Beckwith comments that in this case Greenland acts as a barrier to the storm entering the Arctic due to its 3 km ice cap (note also that the thickness of the troposphere is only about 7 km high in the Arctic, meaning that Greenland extends up in altitude to cover >40% of the atmosphere in which weather occurs). What this means is that the storm will be diverted from directly crossing Greenland.

Paul adds a warning: In this case we are lucky in that the storm passes below and to the right of Greenland and then heads past Iceland on its way to north of Scotland. A worse scenario for the Arctic and the sea ice there would be if the storm stalled of the western coast of Greenland and slowly tracked up north through the Davis Strait and across the Canadian archipelago and then directly into the Arctic to the west of Greenland. Such a storm would have devastating consequences to the Arctic and the sea ice (not to mention Greenland, mostly on the coasts). Lots of heat and moisture would be transferred into the Arctic by such a storm.

Monday, August 20, 2012

Record low sea ice area


Arctic sea ice area reached a record low of 2.87746 million square km on the 230th day of 2012, as illustrated on the image below by The Cryosphere Today.


Below the sea surface temperature anomaly for August 20, 2012, by the National Oceanic and Atmospheric Administration (NOAA).



Rising temperatures in the Arctic threaten to trigger methane releases, as shown on the poster below.


The poster forms part of the updated presentation Why act now, and how?

Friday, February 24, 2012

Temperature anomalies continue in the Arctic

Much of the Arctic is showing huge temperature anomalies at the moment. The image below shows the anomalies for February 24, 2012.  


Locations in the Arctic have been showing temperature anomalies of over 20 degrees Celsius since late 2011

As the above image illustrates, the anomalies are centered around the 60 degrees East longitude, and they are most prominent between latitudes 75 North and 80 North, i.e. the area between Novaya Zemlya and Franz Josef Land, as shown on the map below. 


Not surprisingly, there's little sea ice in the area. The image below shows the sea ice as at January 15, 2012.


The animated image below, from U.S. Naval Research Lab showing the sea ice's thickness in February 2012, illustrates the retreat of the sea ice between Novaya Zemlya and Franz Josef Land in February 2012. 

The animation also illustrates that much of the sea ice is moving along with the sea current, flowing out of the Arctic Ocean along the edges of Greenland into the Atlantic Ocean. Click on Read more if you don't see the animation. The animation is a 800 kb file that may take some time to fully load.

Saturday, February 11, 2012

Methane venting in the Arctic




Above chart, based on historic NASA land-surface air temperature anomaly data (see interactive map at the bottom of this page), shows that the average temperature anomaly rise in the Arctic (latitude 64 and higher) looks set to reach 10°C within decades. 

These anomalies are based on annual averages that are also averaged over a huge area. The NASA image on the left shows temperature anomalies of over 10°C for the month December 2011.  

More detailed analysis shows that, over December 2011, the highest average temperature anomaly (12.8933°C) was recorded in the Kara Sea (latitudes 79 - 81 and longitudes 73 - 89).

NOAA daily data show even more prominent anomalies, especially for the area from the Kara Sea over Franz Josef Land to Svalbard (see Wikipedia image left). 

NOAA temperature anomalies for January 31, 2012, seem typical for the over 20°C anomalies that this area has experienced over the period December 7, 2011, to February 11, 2012. 

An animated image with the full data over the period December 7, 2011, to February 11, 2012, is displayed in an earlier post at this blog, temperature anomalies over 20 degrees Celsius. (Note: this is a 4.7MB file that may take some time to fully load.) 


How is it possible for this specific area to show such huge temperature anomalies? 

1. Rivers?

Could it be that warm water from rivers flows into the Kara Sea and is transferred to the atmosphere in this area? This seems unlikely, given that it is winter, while the mainland does not appear to be suffering similar temperature anomalies. The NOAA map below with anomalies for water temperatures (at surface level) also shows no particular anomalies for the Kara Sea.



2. Warm water from the Atlantic Ocean?

Above image shows that the water surface temperature anomalies are most prominent just north of Scandinavia. The reason for this is that thermohaline circulation is pushing warm water from the Atlantic Ocean into the Arctic Ocean, as evident when looking at actual water temperatures (image below). 


As above image shows, warm water from the Atlantic Ocean hasn't (yet) penetrated the Kara Sea, which makes sense in winter. Therefore, this also seems an unlikely candidate to explain the over 20°C air surface temperature anomalies in the area stretching from the Kara Sea over Franz Josef Land to Svalbard. 

3. Methane? 

A third possibility is that methane is venting from hydrates in the Arctic and is spread by the wind around the Arctic. This would explain the record methane level of 1870+ reached in the Arctic for January 2012, as shown on the image below. 

Particularly worrying is that this methane continues to rise. In the past, methane concentrations have fluctuated up and down in line with the seasons. Over the past seven months, however, methane has shown steady growth in the Arctic. Such a long continuous period of growth is unprecedented, the more so as it takes place in winter, when vegetation growth and algae bloom is minimal. The most obvious explanation for both the temperature anomalies in the Arctic and above image is that the methane is venting from hydrates in the Arctic.

See animation of methane levels July 2011 - January 2012