Friday, June 30, 2023

Arctic sea ice under threat - update 5

The NASA Worldview satellite image below shows Arctic sea ice on June 29, 2023, with the North Pole on the left. 


The animation below shows that, while clouds can obscure a closer look, sea ice is clearly very thin with the thickest ice breaking up near the top of Greenland, some 750 km from the North Pole. 


The Uni of Bremen image below shows Arctic sea ice thickness on June 28, 2023.


The danger is that, as El Niño strengthens, there will be massive loss of Arctic sea ice over the coming months, with water in the Arctic Ocean heating up strongly due to loss of the latent heat buffer and loss of albedo, while huge amounts of ocean heat keep entering the Arctic Ocean from the Atlantic Ocean and the Pacific Ocean.

The image below shows that the North Atlantic sea surface temperature was 23.5°C on June 28, 2023 (on the black line), 0.9°C higher than the 22.6°C on June 28, 2022 (on the orange line). A record high of 24.9°C was reached on Sept. 4, 2022, even while La Niña was suppressing the temperature. This time, there's an El Niño. 


The image below, adapted from NOAA, shows ocean heat moving toward the Arctic along the path of the Gulf Stream on June 25, 2023, while sea surface temperatures on the map are as high as 32.6°C.


In addition, the Jet Stream is strongly deformed, and this threatens to strengthen heatwaves extending over the Arctic Ocean and causing hot water from rivers to enter the Arctic Ocean, and to strengthen storms accelerating the flow of ocean heat into the Arctic Ocean, while fires and storms contribute to darkening of the sea ice, further speeding up its demise.

The danger is that, as El Niño strengthens and as ocean heat keeps entering the Arctic Ocean from the Atlantic Ocean and the Pacific Ocean, a huge amount of heat will abruptly be pushed into the Arctic Ocean.

This danger is illustrated by the image on the right, from an earlier post, showing the Jet Stream pushing wind at a speed of 126 km/h (78 mph) up through Fram Strait (at the green circle) into the Arctic Ocean on June 21, 2023.

This situation threatens to cause massive loss of Arctic sea ice over the coming months, with water in the Arctic Ocean heating up strongly due to loss of the latent heat buffer and loss of albedo.

This in turn threatens to trigger methane eruptions from the seafloor of the Arctic Ocean, a threat that has been described many times before, such as here, here and here.

[ Latent heat loss, feedback #14 on the Feedbacks page ]
[ see the Extinction page ]
Loss of Arctic sea ice albedo, loss of the latent heat buffer and eruption of seafloor methane all constitute tipping points that threaten to abruptly accelerate the temperature rise in the Arctic, further speeding up loss of permafrost in Siberia and North America and thus threatening to trigger further releases of greenhouse gases.

In addition, there are further events and developments that could unfold and make things even worse.

The upcoming temperature rise on land on the Northern Hemisphere could be of such a severity that much traffic, transport and industrial activity will grind to a halt, resulting in a reduction in cooling aerosols that are now masking the full wrath of global heating. Without these cooling aerosols, the temperature is projected to rise strongly, while there could be an additional temperature rise due to an increase in warming aerosols and gases as a result of more biomass and waste burning and forest fires. Furthermore, as traffic slows down, there will be less nitrogen oxide emissions, which could result in less hydroxyl to curtail methane.

The bar on the right depicts the threat, as discussed at the Extinction page.

In conclusion, the situation is dire and calls for support for a Climate Emergency Declaration.


Links

• Arctic sea ice under threat

• Arctic sea ice under threat - update 1

• Arctic sea ice under threat - update 2

• Arctic sea ice under threat - update 3
https://arctic-news.blogspot.com/2023/06/arctic-sea-ice-under-threat-update-3.html

• Arctic sea ice under threat - update 4
https://arctic-news.blogspot.com/2023/06/arctic-sea-ice-under-threat-update-4.html

• Climate Reanalyzer - Daily sea surface temperatures
https://climatereanalyzer.org/clim/sst_daily

• NOAA - The National Centers for Environment Prediction Climate Forecast System Version 2  

• NOAA - Climate Prediction Center - ENSO Diagnostic Discussions
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_advisory/ensodisc.shtml

• NOAA - sea surface temperature
https://www.ospo.noaa.gov/Products/ocean/sst/contour/index.html

• University of Bremen - sea ice concentration and thickness
https://seaice.uni-bremen.de/start

• NASA Worldview
https://worldview.earthdata.nasa.gov


Sunday, June 25, 2023

Extreme heat stress

Heatwaves

High Wet Bulb Globe Temperature (WBGT) is forecast to hit the Southeastern United States over the next few days. The image below shows a forecast for June 29, 2023, 18 UTC with WBGT as high as 34°C (93°F) forecast for a location near Jackson, Mississippi, U.S. 

[ click on images to enlarge ]

WBGT is a measure used by weather.gov to warn about expected heat stress when in direct sunlight. It estimates the effect of temperature, relative humidity, wind speed, and solar radiation on humans using a combination of temperatures from three thermometers:

  • A Wet bulb measures the temperature read by a thermometer covered in a wet cloth. As water evaporates from the cloth, evaporation cools the thermometer. This mirrors how the human body cools itself with sweat.
  • A black globe is used to measure solar radiation. Solar radiation heats the globe and wind blowing across it cools the globe.
  • A Dry bulb calculates the air temperature measured in the shade. It is the temperature you would see on your thermometer outside.
The images on the right earlier featured in a 2016 post

The top image, an animation from the EPA, illustrates that a relatively small rise in average temperature can have a huge impact and result in a lot more hot weather as well as in even more extreme hot weather.

[ from earlier post ]
The three images underneath, from the IPCC, show the effect on extreme temperatures when (a) the mean temperature increases, (b) the variance increases, and (c) when both the mean and variance increase for a normal distribution of temperature.

The thermodynamic wet-bulb temperature is determined by temperature, humidity and pressure (hPa), and it is the lowest temperature that can be achieved by evaporative cooling of a water-wetted ventilated surface.

As temperatures and humidity levels keep rising, there comes a point where the wind factor no longer matters, in the sense that wind can no longer provide cooling.

The human body can cool itself by sweating, which has a physiological limit that was long described as a 35°C wet-bulb temperature. Once the wet-bulb temperature reaches 35°C, one can no longer lose heat by perspiration, even in strong wind, but instead one will start gaining heat from the air beyond a wet-bulb temperature of 35°C. 

Accordingly, a 35°C wet-bulb temperature (equal to 95°F at 100% humidity or 115°F at 50% humidity) was long seen as the theoretical limit, the maximum a human could endure. 

A 2020 study (by Raymond et al.) warns that this limit could be regularly exceeded with a temperature rise of less than 2.5°C (compared to pre-industrial). A 2018 study (by Strona & Bradshaw) indicates that most life on Earth will disappear with a 5°C rise. Humans, who depend for their survival on many other species, will likely go extinct with a 3°C rise, as illustrated by the image below, from an earlier post.


A 2022 study (by Vecellio et al.) finds that the actual limit is lower — about 31°C wet-bulb or 87°F at 100% humidity — even for young, healthy subjects. The temperature for older populations, who are more vulnerable to heat, is likely even lower. In practice the limit will typically be lower and depending on circumstances could be as low as a wet-bulb temperature of 25°C.

The images below show high readings on the 'Misery Index', the perceived temperature that is used by nullschool.net, combining wind chill and the heat index (which in turn combines air temperature and relative humidity, in shaded areas).

The image below shows a forecast for June 29, 2023 20 UTC, with weather conditions prolonged by circular wind patterns at 250 hPa (Jet Stream), while the Jet Stream is crossing the Equator (bottom left). Temperatures as high as 39.9°C (103.7°F) combined with a relative humidity of 35% result in perceived temperatures as high as 45°C (112.9°F) at the green circle.


As it turned out, the perceived temperature was as high as 44.9°C or 112.7°F on June 29, 2023 19 UTC, due to a 39.1°C or 102.5°F temperature and a 38% relative humidity at the surface, and with conditions prolonged by a distorted Jet Stream (at 250 hPa), with circular wind patterns and winds crossing the Equator.


The image below shows high readings on the 'Misery Index' for parts of Pakistan. On June 22, 2023, an air temperature of 45.4°C (113.7°F) and a relative humidity of 25% resulted in a perceived temperature of 51°C (123.7°F) at the area marked by the green circle. 


The above image also shows the Jet Stream (wind at 250 hPa). Distortion of the Jet Stream can lead to circular wind patterns that amplify heatwaves. As temperature rise, the temperature difference between the Equator and the Arctic narrows, distorting the Jet Stream resulting in more extreme  weather.

Perceived (feels like) air temperatures as high as 53.1°C or 127.7°F were recorded in Pakistan on July 4, 2023, 09 UTC (at green circle), with a 46.7°C or 116.1°F temperature and a 24% relative humidity recorded at the surface. Also, Jet Stream deformation shows up (at 250 hPa), with circular wind patterns and wind crossing the Equator (at the image bottom).


Meanwhile, heatwave conditions have also been affecting China, Texas and Mexico recently, with all-time high temperature records broken in each of these places. 

The press release of a 2022 Unicef report has the title 559 million children currently exposed to high heatwave frequency, rising to all 2.02 billion children globally by 2050

Fire and smoke from fires

An additional hazard is fire and the smoke from fires. The image below shows biomass-burning aerosols from fires in Canada extending over the North Atlantic on June 25, 2023, 03 UTC.


The forecast for June 29, 2023 21 UTC below shows remnants of the Canadian forest fires reaching Western Europe.


Feedbacks

As temperatures rise, fire and smoke hazards increase due to self-reinforcing feedback loops, including: 
  • [ Two out of numerous feedbacks ]
    Albedo loss and Jet Stream distortion:
    - as sea ice melts away and gets covered by meltpools and rainwater pools, soot, dust, and algae, the resulting albedo loss further pushes up temperatures
    - the narrowing temperature difference between the Arctic and the Tropics causes Jet Stream distortion, resulting in more extreme weather, incl. stronger storms that come with more lightning and can carry more oxygen to fires and spread fires faster and wider, and more intense heatwaves that can dramatically push up local temperatures, further intensifying droughts and forest fires
  • a further self-reinforcing feedback loop is that water that was previously present in the soil, is increasingly moving up into the atmosphere, as the atmosphere sucks up more water vapor (7% more water vapor for every 1°C in temperature rise ), resulting in:
    - less evapotranspiration from vegetation, in turn resulting in less clouds and rain, thus pushing up temperatures and drying out soil and vegetation even more
    - erosion and less healthy vegetation that is more vulnerable to pests and diseases such as bark beetles, resulting in an increase in dead trees providing more fuel for fires
[ from earlier post ]
The image on the right, from a news release associated with a 2022 study, shows changes in atmospheric thirst, measured in terms of reference evapotranspiration from 1980-202 (in mm).

As temperatures rise due to people's emissions, more evaporation will take place over both land and oceans, but not all water will return as precipitation, so more water vapor will stay in the air and droughts affecting the soil and vegetation will intensify.

[ from earlier post ]
Water in the soil acts as a buffer, slowing down the temperature rise, so drier soil will heat up faster and further, causing land surface temperatures to rise even more and amplifying the impact of Urban heat island and Heat dome phenomena.

The image on the right, adapted from ESA, shows land surface temperatures as high as 65°C (149°F) in India on April 26, 2022. Note that land surface temperatures can be substantially higher than air temperatures.

The Copernicus image below shows Spain on 11 July 2023, where the Land Surface Temperature (LST), i.e. the temperature of the soil, in some areas of Extremadura (Spain) exceeded 60°C or 140°F, as measured by the Sea and Land Surface Temperature Radiometer (SLSTR) instrument, a feature of the Copernicus Sentinel-3 satellites. 


How high could temperatures rise?

The image below, from NASA, shows that February 2016 was 3.24°C or 5.83°F hotter on land than 1850-1890. Note that 1850-1890 is not pre-industrial, while the 2016 peak was reached during an El Niño, which raises the question how much hotter than pre-industrial it will be at the peak of the current El Niño. 


The image below says it even more poignantly: Looking at global averages over long periods is a diversion, peak temperature rise is the killer!

The above image shows that February 2016 was 3.28°C (5.904°F) hotter than 1880-1896 on land, and 3.68°C (6.624°F) hotter compared to February 1880 on land.


World temperature was at a new record high of 17.18°C or 62.92°F on July 4, 2023 (black). Both in 2022 (orange) and in 2016 (grey), the temperature reached 16.92°C or 62.46°F (on July 24, 2022 and August 13+14, 2016). The year 2016 is important, since it was a strong El Niño year and we're now again in an El Niño.

A 2023 study led by Tao Lian predicts the current El Niño to be strong. Moving from the bottom of a La Niña to the peak of a strong El Niño could make a difference of more than half a degree Celsius, as discussed in an earlier post.

Additionally, the June 2023 number of sunspots is more than twice as high as predicted, as illustrated by the image on the right, adapted from NOAA.

Furthermore, the 2022 Tonga submarine volcano eruption did add a huge amount of water vapor to the atmosphere, as discussed in an earlier post.

Alarm bells have been ringing for many years. As an example, the image below featured in a 2015 post, showing non-linear trends including a polynomial trendline (1: blue) pointing at global temperature anomalies of over 4°C by 2060. 

Moreover, a polynomial trend for the Arctic (2: red) threatens to cause major feedbacks to kick in, triggering runaway global warming (3: white) that looks set to catch up with accelerated warming in the Arctic and result in global temperature anomalies of 16°C by 2052.
[ from a 2015 post, click on image to enlarge ]
In the 2019 video below, Roger Hallam talks with Stephen Sackur from the BBC's HardTalk series. 


Climate change danger assessment

The image below, earlier discussed here, expands risk assessment beyond its typical definition as the product of the severity of impact and probability of occurrence, by adding a third dimension: timescale, in particular imminence.


Conclusion

Imminence alone could make that the danger constituted by rising temperatures needs to be acted upon immediately, comprehensively and effectively. While questions may remain regarding probability, severity and timescale of the dangers associated with climate change, the precautionary principle should prevail and this should prompt for action, i.e. comprehensive and effective action to reduce damage and improve the situation is imperative and must be taken as soon as possible. To combat rising temperatures, transforming society is needed, along the lines of this 2022 post in combination with declaration of a climate emergency.

Accordingly, everyone is encouraged to support and share this Climate Emergency Declaration.


Links

• Wet Bulb Globe Temperature
https://digital.mdl.nws.noaa.gov

• National Weather Service - Wet Bulb Globe Temperature: How and when to use it
https://www.weather.gov/news/211009-WBGT

• Nullschool.net
https://earth.nullschool.net

• Weather tracker: China issues heatstroke alert amid historic heatwave
https://www.theguardian.com/environment/2023/jun/23/weather-tracker-china-issues-heatstroke-alert-amid-historic-heatwave

• Peaks matter
https://arctic-news.blogspot.com/2018/08/peaks-matter.html

• It could be unbearably hot in many places within a few years time
https://arctic-news.blogspot.com/2016/07/it-could-be-unbearably-hot-in-many-places-within-a-few-years-time.html

• The emergence of heat and humidity too severe for human tolerance - by Colin Raymons et al. (2020)
https://www.science.org/doi/10.1126/sciadv.aaw1838

• Brief periods of dangerous humid heat arrive decades early

• Evaluating the 35°C wet-bulb temperature adaptability threshold for young, healthy subjects (PSU HEAT Project) - by Daniel Vecellio et al. (2022) 

• Co-extinctions annihilate planetary life during extreme environmental change, by Giovanni Strona and Corey Bradshaw (2018)
https://www.nature.com/articles/s41598-018-35068-1

• Jet Stream
https://arctic-news.blogspot.com/p/jet-stream.html

• When Will We Die?
https://arctic-news.blogspot.com/2019/06/when-will-we-die.html

• Copernicus - Biomass-burning aerosols
https://atmosphere.copernicus.eu/charts/packages/cams/products/aerosol-forecasts

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Will there be Arctic sea ice left in September 2023?
https://arctic-news.blogspot.com/2023/05/will-there-be-arctic-sea-ice-left-in-september-2023.html

• Clausius–Clapeyron relation
https://en.wikipedia.org/wiki/Clausius–Clapeyron_relation

• Urban heat island
https://en.wikipedia.org/wiki/Urban_heat_island

• Heat dome
https://en.wikipedia.org/wiki/Heat_dome

• ESA - Heatwave across India
https://www.esa.int/ESA_Multimedia/Images/2022/04/Heatwave_across_India

• Evaporative Demand Increase Across Lower 48 Means Less Water Supplies, Drier Vegetation, and Higher Fire Risk
https://www.drought.gov/news/evaporative-demand-increase-across-lower-48-means-less-water-supplies

• A Multidataset Assessment of Climatic Drivers and Uncertainties of Recent Trends in Evaporative Demand across the Continental United States - by Christine Albano et al. (2022)
https://arctic-news.blogspot.com/2022/04/carbon-dioxide-crosses-422-ppm.html

• 559 million children currently exposed to high heatwave frequency, rising to all 2.02 billion children globally by 2050
https://www.unicef.org/press-releases/heatwaves-report

• Copernicus - Scorching heatwave hits Spain 
https://www.copernicus.eu/en/media/image-day-gallery/scorching-heatwave-hits-spain

• NASA - custom plots 
https://data.giss.nasa.gov/gistemp/graphs_v4/customize.html

• Climate Reanalyzer - World Daily 2-meter Air Temperature (90-90°N, 0-360°E)
https://climatereanalyzer.org/clim/t2_daily

• NOAA - Solar cycle sunspot number progression
https://www.swpc.noaa.gov/products/solar-cycle-progression

• A Strong 2023/24 El Niño is Staged by Tropical Pacific Ocean Heat Content Buildup - by Tao Lian et al. (2023)


Friday, June 23, 2023

Arctic sea ice under threat - update 4

The image below, created by Eliot Jacobson, shows the North Atlantic sea surface temperature anomaly through June 20, 2023 (versus 1982-2023 mean).

The image below, created by Eliot Jacobson, shows the North Atlantic sea surface temperature on June 21, for the years 1982-2023.

The image below shows that the North Atlantic sea surface temperature was 23.3°C on June 21, 2023 (on the black line), 0.9°C higher than the 22.4°C on June 21, 2022 (on the orange line). A record high of 24.9°C was reached on September 4, 2022, even while La Niña then was suppressing the temperature, whereas now there's an El Niño.

[ click on images to enlarge ]

Global sea ice extent was at a record low for the time of year on June 23, 2023, i.e. only 21.57 million km², as illustrated by the image below.

[ click on images to enlarge ]

Contributing to this is very low Antarctic sea ice extent. The image below shows Antarctic sea ice extent up to June 23, 2023. Values in the column on the left are for February 16; Antarctic sea ice extent reached a record minimum on February 16, 2023. Values in the column on the right are for June 23. Highlighted are three years: 2023 (red), 2022 (blue) and 2016 (black). Antarctic sea ice extent was also very low at the end of the year 2016, which was a strong El Niño year, yet extent was even lower at the very end of the year in 2022, even though that was during a La Niña.


The image on the right, adapted from NOAA, shows ocean heat moving toward the Arctic along the path of the Gulf Stream on June 21, 2023, while sea surface temperatures on the map are as high as 32.5°C.

In addition, the Jet Stream is strongly deformed, and this threatens to strengthen heatwaves extending over the Arctic Ocean and causing hot water from rivers to enter the Arctic Ocean, and to strengthen storms accelerating the flow of ocean heat into the Arctic Ocean, while fires and storms contribute to darkening of the sea ice, further speeding up its demise.

The danger is that, as El Niño strengthens and as ocean heat keeps entering the Arctic Ocean from the Atlantic Ocean and the Pacific Ocean, a huge amount of heat will abruptly be pushed into the Arctic Ocean. 

This danger is illustrated by the image on the right, showing the Jet Stream pushing wind at a speed of 126 km/h (78 mph) up through Fram Strait (at the green circle) into the Arctic Ocean on June 21, 2023.

This situation threatens to cause massive loss of Arctic sea ice over the coming months, with water in the Arctic Ocean heating up strongly due to loss of the latent heat buffer and loss of albedo.

This in turn threatens to trigger methane eruptions from the seafloor of the Arctic Ocean, a threat that has been described many times before, such as here, here and here.

[ Latent heat loss, feedback #14 on the Feedbacks page ]
[ see the Extinction page ]
Loss of Arctic sea ice albedo, loss of the latent heat buffer and eruption of seafloor methane all constitute tipping points that threaten to abruptly accelerate the temperature rise in the Arctic, thus also further speeding up loss of permafrost in Siberia and North America and thus threatening to trigger further releases of greenhouse gases.

In addition, there are further events and developments that could unfold and make things even worse.

The upcoming temperature rise on land on the Northern Hemisphere could be of such a severity that much traffic, transport and industrial activity will grind to a halt, resulting in a reduction in cooling aerosols that are now masking the full wrath of global heating. Without these cooling aerosols, the temperature is projected to rise strongly, while there could be an additional temperature rise due to an increase in warming aerosols and gases as a result of more biomass and waste burning and forest fires. Furthermore, as traffic slows down, there will be less nitrogen oxide emissions, which could result in less hydroxyl to curtail methane.

The bar on the right depicts the threat, as discussed at the Extinction page.

In conclusion, the situation is dire and calls for support for a Climate Emergency Declaration.


Links

• Arctic sea ice under threat

• Arctic sea ice under threat - update 1

• Arctic sea ice under threat - update 2

• Arctic sea ice under threat - update 3

• Eliot Jacobson - North Atlantic sea surface temperature anomaly through June 20, 2023

• Eliot Jacobson - North Atlantic sea surface temperature on June 21, for the years 1982-2023
https://twitter.com/EliotJacobson/status/1672232859409723392/photo/1

• Climate Reanalyzer - Daily sea surface temperatures
https://climatereanalyzer.org/clim/sst_daily

• NOAA - The National Centers for Environment Prediction Climate Forecast System Version 2  

• NOAA - Climate Prediction Center - ENSO Diagnostic Discussions
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_advisory/ensodisc.shtml

• University of Bremen - sea ice concentration and thickness
https://seaice.uni-bremen.de/start

• NASA Worldview
https://worldview.earthdata.nasa.gov

• Wetland emission and atmospheric sink changes explain methane growth in 2020 - by Sushi Peng et al. 

• NOAA - sea surface temperature

• Nullschool.net

• Latent Heat

• Albedo

• Extinction

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Climate Emergency Declaration
https://arctic-news.blogspot.com/p/climate-emergency-declaration.html




Monday, June 19, 2023

Arctic sea ice under threat - update 3

The NASA Worldview satellite image below shows Arctic sea ice on June 18, 2023. While the sea ice on much of the picture is shrouded in clouds, Arctic sea ice clearly is in a poor condition, even close to the North Pole (on the bottom left of the image below). 


The Uni of Bremen image below shows Arctic sea ice thickness on June 18, 2023.

The danger is that, as El Niño strengthens, there will be massive loss of Arctic sea ice over the coming months, with water in the Arctic Ocean heating up strongly due to loss of the latent heat buffer and loss of albedo, while huge amounts of ocean heat keep entering the Arctic Ocean from the Atlantic Ocean and the Pacific Ocean.

The image below shows that the North Atlantic sea surface temperature was 23.1°C on June 18, 2023 (on the black line), 0.8°C higher than the 22.3°C on June 18, 2022 (on the orange line). A record high of 24.9°C was reached on Sept. 4, 2022, even while La Niña was suppressing the temperature. This time, there's an El Niño. 


Furthermore, the Jet Stream is strongly deformed, threatening to result in heatwaves that extend over the Arctic Ocean and that cause hot water from rivers to enter the Arctic Ocean, while storms accelerate the flow of ocean heat into the Arctic Ocean, and while fires and storms contribute to darkening of the sea ice, speeding up its demise.

All this threatens to trigger eruption of methane from the seafloor of the Arctic Ocean, as has been described many times before, such as in this post, in this post and in this post.

[ Latent heat loss, feedback #14 on the Feedbacks page ]
[ see the Extinction page ]
Loss of Arctic sea ice albedo, loss of the latent heat buffer and eruption of seafloor methane all constitute tipping points that threaten to abruptly accelerate the temperature rise in the Arctic, further speeding up loss of permafrost in Siberia and North America and thus threatening to trigger further releases of greenhouse gases.

In addition, there are further events and developments that could unfold and make things even worse.

The upcoming temperature rise on land on the Northern Hemisphere could be of such a severity that much traffic, transport and industrial activity will grind to a halt, resulting in a reduction in cooling aerosols that are now masking the full wrath of global heating. Without these cooling aerosols, the temperature is projected to rise strongly, while there could be an additional temperature rise due to an increase in warming aerosols and gases as a result of more biomass and waste burning and forest fires. Furthermore, as traffic slows down, there will be less nitrogen oxide emissions, which could result in less hydroxyl to curtail methane.

The bar on the right depicts the threat, as discussed at the Extinction page.

In conclusion, the situation is dire and calls for support for a Climate Emergency Declaration.


Links

• Arctic sea ice under threat

• Arctic sea ice under threat - update 1

• Arctic sea ice under threat - update 2

• NOAA - The National Centers for Environment Prediction Climate Forecast System Version 2  

• NOAA - Climate Prediction Center - ENSO Diagnostic Discussions
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_advisory/ensodisc.shtml

• University of Bremen - sea ice concentration and thickness
https://seaice.uni-bremen.de/start

• NASA Worldview
https://worldview.earthdata.nasa.gov