5.9 $trillion spent by governments on fossil fuel subsidies in 2020
by Andrew Glikson
As indicated by the International Monetary fund, greenhouse gas emissions are funded world-wide by government subsidies totaling $5.9 trillion in 2020, about 6.8% global GDP, expected to rise to 7.4% of GDP in 2025, or $11million a minute. In the view of some scientists fuel subsidies are ‘adding fuel to the fire of the climate crisis’.
Hollow words by dignitaries at COP-out-26 may have led many to believe “leaders” are serious when they raise the alarm of “one minute to midnight”, while at the same time allowing the development of new oil, gas and coal mines enhancing the accelerating trend toward an inhabitability of large parts of the planet. The consequences of the continued transfer of extractable carbon to the atmosphere and oceans were summed up by James Hansen, the renowned climate scientist:
“Burning all fossil fuels would create a very different planet than the one that humanity knows. The palaeoclimate record and ongoing climate change make it clear that the climate system would be pushed beyond tipping points, setting in motion irreversible changes, including ice sheet disintegration with a continually adjusting shoreline, extermination of a substantial fraction of species on the planet, and increasingly devastating regional climate extremes” and “this equates 400,000 Hiroshima atomic bombs per day 365 days per year”. James Hansen et al. 2012 and James Hansen 2012.
According to Climate 202 (6/12/2021), the Biden administration has approved more oil and gas drilling permits on public lands per month than the Trump administration did during the first three years of the Trump presidency.
In Europe, the year 2020 was supposed to be when the European Union would launch its ambitious plan to tackle the climate crisis, so why does Europe sabotage its own climate goals by subsidizing the fossil sector by more than €137 billion per year? (Figure 1)
Figure 1. Fossil fuel subsidies (in €) per capita in Europe (from Investigate Europe)
In Australia, business as usual continued, where fossil fuel subsidies reached $10.3 billion in 2020-21. Fossil fuel subsidies cost Australians a staggering $10.3 billion in 2020-21. Plans are made for a huge Beetaloo gas field in the Northern Territory. The Galilee coal project is proceeding and the Adani coal project gets ready to ship coal. Coal and gas works, if approved, would result in a nearly 30% increase in emissions within Australia.
Who or what would save nature and humanity from the accelerating destruction of the livable Earth atmosphere and oceans (Figure 2)?
Figure 2. The accelerating destruction of the livable Earth atmosphere and oceans (after Wil Steffen, 2012)
“Burning all fossil fuels would create a very different planet than the one that humanity knows. The palaeoclimate record and ongoing climate change make it clear that the climate system would be pushed beyond tipping points, setting in motion irreversible changes, including ice sheet disintegration with a continually adjusting shoreline, extermination of a substantial fraction of species on the planet, and increasingly devastating regional climate extremes” and “this equates 400,000 Hiroshima atomic bombs per day 365 days per year”
.
James Hansen et al. 2012 and James Hansen 2012.
Figure 1. The change in state of the planetary climate since the onset of the industrial age in the 18ᵗʰ century.
During its last 600 million years-long history planet Earth suffered at least five major mass extinctions, defining the ends of several eras of the Ordovician, Devonian, Permian, Jurassic and Cretaceous, triggered by extra-terrestrial impacts, massive volcanic eruptions, methane release or ocean anoxia. Each of these events included the release of greenhouse gases, inducing changes in atmospheric composition and temperature (Figures 1, 2 and 3). Excepting the role of methanogenic bacteria in releasing methane, the anthropogenic mass extinction constitutes an exception: For the first time in its history the atmosphere, the oceans and the biosphere are disrupted by a living organism, namely the activity of a carbon-emitting biped mammal species.
Fig 2. Temperature trends for the past 65 Ma and potential geo-historical analogs for future climates (Burke et al. (2018)
In the wake of the Pliocene (2.6-5.3 Ma-ago), with temperatures in the range of (+2°C to 3°C above pre-industrial levels) and sea levels (+25 meters) higher than at present, the development of glacial-interglacial conditions saw the appearance of Homo erectus and then Homo sapiens. Between about 10,000 and 7,000 years ago, the stabilization of the climate in the Holocene saw Neolithic agricultural civilization take hold. Anthropogenic processes during this period, denoted as the Anthropocoene (Steffen et al., 2007), led to deforestation and the demise of species, ever increasing carbon pollution of the atmosphere, temperature rise (Figures 1 and 2), acidification, radioactive contamination and a growing threat to the Earth’s life support systems.
Planetwide ecocide results from anthropogenic emission of greenhouse gases into the atmosphere, raising their combined forcing (CO₂ + CH₄ + N₂O, etc.) to levels over 500 ppm CO₂-equivalent, (Figure 3), almost doubling the pre-industrial CO₂ level of ~280 ppm, and corresponding to a rise of +3°C per doubling of CO₂ levels. The consequence of extraction and combustion of the buried products of ancient biospheres, threatens to return Earth to conditions which preceded the emergence of large mammals on land.
Figure 3. Pre-1978 changes in the CO₂-equivalent abundance and AGGI (Annual Greenhouse Gas Index). NOAA Global Monitoring Laboratory
The sharp glacial-interglacial oscillations of the Pleistocene (2.6 million to 10,000 years ago), with rapid mean global temperature changes of up to 5°C over a few millennia and abrupt stadials cooling events over a few years (Steffensen et al., 2008), required humans to develop an extreme adaptability, in particular mastering fire, a faculty no other species, perhaps with the exception of fire birds. Proceeding to manipulate the electromagnetic spectrum, split the atom and travel to other planets, a cultural evolution overtaking biological evolution, the power of sapiens appears to have gone out of control.
Humans have developed an absurd capacity to simultaneously create and destroy, culminating with the destruction of environments that allowed them to flourish in the first place. Possessed by a conscious fear of death and a craving for god-like immortality, there is no murderous obscenity some were not willing to perform, including the transfer of every accessible carbon molecule to the atmosphere.
Based on direct observations and the basic laws of physics, the life support systems of the biosphere are threatened by the rise of greenhouse gases and temperature by an average of more than 1.14°C since 1880, currently tracking toward 2°C. These values take little account of the masking effects of the transient mitigating effects of sulphate aerosols in the range of −0.3 to −1.8 Wm⁻², pushing mean global temperature to >1.5°C. Following the current acceleration (Figure 3), mean temperature could reach 2°C by 2030, 3°C by the 2050s and 4°C by 2100, inducing heat waves and major fires.
Figure 4. Jet Stream, summer, 1988, NASA. Increased undulation of the Arctic boundary zone, allowing penetration of cold air masses southward and warm air masses northward;
Overall warming of large ocean regions, reaching ~700 meter deep levels, reduces the ocean’s ability to absorb CO₂ while much of the gas is trapped in the atmosphere. As ocean heat contents rise oxygen is depleted and methane and hydrogen sulphide poisonous for marine life are produced. Models projecting global warming as a linear trajectory, outlined by the IPCC, take limited account of amplifying feedbacks and transient stadial cooling effects from the flow of ice melt water into near-polar oceans. As the circum-Arctic jet stream undulates and weakens (Figure 4), polar-ward shifts of climate zones (Figure 5) allow penetration of warm air masses into the Arctic, manifested by heat waves and fires. Conversely, injection of cold air masses from the Arctic into mid-latitudes ensues in freezing fronts producing violent snow storms, the so-called “Beast from the East”.
As stated by Baronsky et al. (2013) in the paper “Approaching a state shift in Earth's biosphere”: “Localized ecological systems are known to shift abruptly and irreversibly from one state to another when they are forced across critical thresholds. Here we review evidence that the global ecosystem as a whole can react in the same way and is approaching a planetary-scale critical transition as a result of human influence’’ and “Climates found at present on 10–48 % of the planet are projected to disappear within a century, and climates that contemporary organisms have never experienced are likely to cover 12–39 % of Earth. The mean global temperature by 2070 (or possibly a few decades earlier) will be higher than it has been since the human species evolved’’. Figure 6 outlines critical habitats and species involved in the transition.
Figure 6. Summary of major biodiversity-related environmental-change categories expressed as a percentage of human-driven change (in red) relative to baseline (blue); Corey J. A. Bradshaw; Paul R. Ehrlich; Andrew Beattie; et al. (13 January 2021). https://www.frontiersin.org/files/Articles/615419/fcosc-01-615419-HTML-r1/image_m/fcosc-01-615419-g001.jpg - “Underestimating the Challenges of Avoiding a Ghastly Future”, in Frontiers in Conservation Science, volume 1, 13 January 2021. Red indicates the percentage of the category that is damaged, lost, or otherwise affected, whereas blue indicates the percentage that is intact, remaining, or otherwise unaffected.
As $trillions are invested in future wars, who or what will defend life on Earth?
Andrew Glikson
A/Prof. Andrew Glikson
Earth and Paleo-climate scientist School of Biological, Earth and Environmental Sciences The University of New South Wales, Kensington NSW 2052 Australia
NASA temperature data as adjusted by Sam Carana on the right show the potential for a mean temperature anomaly from pre-industrial of 3°C anomaly to occur late in 2022 (blue trend). By extension, a 4°C anomaly could occur in late 2023 and a 5°C anomaly in late 2024.
Above data was used to determine a trend line for exponentially increasing atmospheric methane increase, as well as where along the trend lines the surface atmospheric temperature anomalies would occur.
A surface atmospheric temperature anomaly of 10°C was recorded in France in the summer of 2020 (Copernicus 2020) with the overlying methane global veil giving a concentration of 2008 ppb. In this case the Global Warming is only partly caused by the methane (about 85.5%) and the rest by the concentration of other greenhouse gases.
It seems that we only have a very short time left until total Planetary Extinction due to the Arctic Atmospheric Methane Global Warming Veil. It is now clear that we do not have time to extract the methane from the subsea Arctic methane reserves, because we are so close to total extinction in 3 years.
The blue color on the map on the right indicates depth (see scale underneath).
The image below, by Malcolm Light and based on Max & Lowrie (1993), from a recent post, shows vulnerable Arctic Ocean slope and deep water methane hydrates zones below 300 m depth.
Malcolm Light indicates three areas: Area 1. Methane hydrates on the slope; Area 2. Methane hydrates on the abyssal plane; Area 3. Methane hydrates associated with the spreading Gakkel Ridge hydro-thermal activity (the Gakkel Riidge runs in between the northern tip of Greenland and the Laptev Sea).
In addition, huge amounts of methane are contained in sediments at the bottom of the shallow parts of the Arctic Ocean, in particular the East Siberian Arctic Shelf (ESAS). Dr. Natalia Shakova warned in 2008 that some 50Gt of carbon in the form of methane can be released at any moment from the East Siberian Arctic Shelf alone, because of the high temperature of the invading Atlantic (Gulf Stream) waters. This threatens to cause a 10°C surface atmospheric temperature increase leading to Global Extinction.
The cataclysmic weather events occurring worldwide including giant droughts and city-destroying fires, floods and summer and winter storm systems have already devastated Canada and the United States.
From the sharp increase in catastrophic weather events, it is obvious that ‘Mother Earth’ has correctly identified the North American continent as the source of its gigantic pollution problems. Extreme Fossil Fuel pollution from the United States and Canada has previously heated up the Gulf Stream which flows north into the Arctic Ocean as the Svalbard current, where it is now destabilizing the shelf methane hydrates in the Laptev Sea and on the East Siberian Arctic Shelf.
The image below illustrates that huge amounts of heat are entering the Arctic Ocean, driven by ocean currents and temperature differences.
• Max, M.D. & Lowrie, A. 1993. Natural gas hydrates: Arctic and Nordic Sea potential. In: Vorren, T.O., Bergsager, E., Dahl-Stamnes, A., Holter, E., Johansen, B., Lie, E. & Lund, T.B. Arctic Geology and Petroleum Potential, Proceedings of the Norwegian Petroleum Society Conference, 15-17 August 1990, Tromso, Norway. Norwegian Petroleum Society (NPF), Special Publication 2 Elsevier, Amsterdam, 27-53. https://www.elsevier.com/books/arctic-geology-and-petroleum-potential/vorren/978-0-444-88943-0
The NASA image below shows the October 2021 temperature anomaly. The Arctic is heating up enormously, with anomalies showing up of up to 9.1°C.
The image below shows that the global temperature over the past century, i.e. from 1920 to 2020, has risen by 1.3°C. The image shows anomalies from 1900-1920. When adjusting data to reflect a pre-industrial base, ocean air (2m) temperatures and higher polar anomalies, temperatures may have crossed 2°C long ago.
The image below shows two trends, based on NASA 1880-October 2021 data, adjusted to reflect a pre-industrial base, ocean air (2m) temperatures and higher polar anomalies. The linear trend (green) misses the point that the temperature rise is accelerating. The polynomial trend (black) shows the potential for 3°C to be crossed by 2026.
Acceleration of the temperature rise may speed up further soon, for a number of reasons:
Aerosols: As cleaner alternatives become more economic, and as calls for cleaner air become stronger, this could result in a strong temperature rise soon, as sulfate cooling falls away and more black carbon may result from more wood burning and forest fires, as discussed at the aerosols page.
Sunspots: Within a few years time, sunspots will be reaching the peak of their cycle, and they are looking stronger than forecast, as illustrated by the image on the right showing sunspots up to October 2021.
ENSO: An upcoming El Niño could raise surface temperatures significantly. The image on the right shows that the current La Niña is forecast to end in 2022 and move toward a new El Niño. As the temperature keeps rising, ever more frequent strong El Niño events are likely to occur, as confirmed by a recent study. Authors also confirm concerns that the IPCC downplays the threat that a super El Nino event could occur soon.
The image below indicates that the difference between the top of El Niño and the bottom of La Niña could be more than half a degree Celsius.
As illustrated by the bar on the right, there are many further elements that could dramatically push up the temperature soon. Altogether, there could be a rise from pre-industrial of more than 18°C by end 2026, as discussed in earlier posts such as this one.
As the image at the top shows, the Arctic is heating up enormously, with anomalies showing up of up to 9.1°C.
Decline of Arctic snow and ice can result in huge albedo losses, loss of latent heat buffer, jet stream changes, more and more extreme weather events, and more. Slowing down of the Atlantic meridional overturning circulation (AMOC) and increasing ocean stratification can result in less heat getting transferred from the atmosphere to the depths of the ocean, as also described at this page.
One of the largest threats is seafloor methane and despite repeated warning from some of the best experts in the field, the IPCC simply waves away this threat. This and other elements in the bar have been discussed in detail in many earlier posts such as this one and on the extinction page.
The image below shows three trends, i.e. the same black polynomial and green linear trends, based on NASA 1880-October 2021 data, and a blue polynomial trend based on 2015-October 2021 data. Data are again adjusted to reflect a pre-industrial base, ocean air (2m) temperatures and higher polar anomalies.
The blue polynomial trend better reflects short-term climate forcing such as aerosols, sunspots and an upcoming El Niño, as discussed above. The blue trend also shows the potential for 3°C to be crossed by the end of 2022.
The current situation is extremely dangerous
Huge amounts of heat are entering the Arctic Ocean, driven by ocean currents and temperature differences. Sea ice acts as a buffer, by consuming energy in the process of melting, thus avoiding that this energy can raise the temperature of the water of the Arctic Ocean. Furthermore, huge amounts of heat get transferred to the atmosphere over the Arctic Ocean, as long as sea ice is low in extent.
The latent heat buffer has now virtually disappeared, while lower air temperatures are causing the sea ice to grow in extent, effectively sealing off the Arctic Ocean and reducing heat transfer from the Arctic Ocean to the atmosphere, as illustrated on the right by the 30-day navy.mil animation (up to November 12, the last 8 days are forecasts).
Heat that was previously melting the ice or that was getting transferred to the atmosphere is now instead heating up the water. Some 75% of ESAS (East Siberian Arctic Shelf) is shallower than 50 m. Being shallow, these waters can easily warm up all the way down to the sea floor, where heat can penetrate cracks and conduits, destabilizing methane hydrates and sediments that were until now sealing off methane held in chambers in the form of free gas in these sediments.
Methane can then be released abruptly from the seabed in the form of plumes, causing it to rapidly pass through a shallow water column. Such plumes can quickly deplete oxygen in the water, making it harder for microbes to break down the methane. Where such plumes reach the atmosphere, they will also quickly deplete hydroxyl, which is present only in very low quantities in the Arctic in the first place.
Ominously, methane recently reached very high levels. As illustrated by above image, the MetOp-B satellite (also known as MetOp-1) recorded a peak methane level of 3644 ppb and a mean level of 1944 ppb at 367 mb on November 21, 2021, pm.
Given that humans may go extinct with a 3°C rise, and a 5°C rise will likely end most life on Earth, the COP26 summit in Glasgow could have acted more decidedly. The situation is dire and calls for the most comprehensive and effective action, as described at the Climate Plan.