Showing posts with label climate. Show all posts
Showing posts with label climate. Show all posts

Wednesday, November 27, 2019

Accelerating greenhouse gas levels

The United Nations Environment Programme (UNEP) just released its annual Emissions Gap Report, warning that even if all current unconditional commitments under the Paris Agreement are implemented, temperatures are expected to rise by 3.2°C, bringing even wider-ranging and more destructive climate impacts.

The report adds that a continuation of current policies would lead to a global mean temperature rise of 3.5°C by 2100 (range of 3.4–3.9°C, 66% probability) and concludes that current policies will clearly not keep the temperature rise below 3°C and that temperatures may rise by much more than that.

Below is the UNEP video On the brink: Emissions Gap Report findings in 60 seconds.


[ image from earlier post ]
Indeed, the rise in greenhouse gas levels appears to be accelerating, despite pledges made under the Paris Agreement to holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels.

The World Meteorological Organization (WMO) recently reported carbon dioxide (CO₂) concentrations for 2018 of 407.8 ppm (parts per million), as illustrated by the image on the right. The WMO adds that CO₂ levels, as well as methane and nitrous oxide levels, had all surged by higher amounts than during the past decade.

In energy, fossil fuel consumption for heating and transport increased. While renewables grew strongly in 2018, an even larger part of the growth in electricity was generated by fossil fuel, particularly by coal and natural gas. 

As the image below shows, a trend based on NOAA March 1958 through October 2019 monthly mean CO₂ data at Mauna Loa points at CO₂ levels crossing the 415 ppm mark in 2020, when an El Niño is forecast to come, as discussed in an earlier post.


The added trend in the image points at CO₂ levels crossing 1200 ppm before the end of the century, triggering the cloud feedback tipping point that by itself could push up global temperatures by 8°C, within a few years. Importantly, the clouds feedback starts at 1200 ppm CO₂-equivalent. Besides a CO₂ rise, further elements could contribute to the 1200 ppm CO₂e tipping point getting reached, such as albedo changes due to disappearing Arctic sea ice and seafloor methane releases from a rapidly-warming Arctic Ocean.

In conclusion, a huge temperature rise could eventuate much earlier than by the end of the century. The image below illustrates the potential for a rise of 18°C or 32.4°F by 2026.

[ from an earlier post ]
As discussed in a recent post, a 2020 El Niño could be the catalyst triggering huge methane releases from the Arctic Ocean seafloor starting in 2020 and resulting in such a 18°C (or 32.4°F) temperature rise within a few years time. To put this into perspective, an earlier post concluded that humans will likely go extinct at a 3°C rise, as such an abrupt rise will make habitat for humans (and many other species) disappear.

In the video below, John Davis describes some of the extreme weather events that he experienced recently. “Disasters like this are man-made now”, John says, “they're not natural disasters. This is caused by climate change.”



Meanwhile, a recent study found that the consensus among research scientists on anthropogenic global warming has grown to 100%, based on a review of 11,602 peer-reviewed articles on “climate change” and “global warming” published in the first 7 months of 2019.

This further confirms the probability or likelihood that emissions by people are causing global warming, from a likely danger to certain danger. Furthermore, as discussed in many earlier posts, there are two additional dimensions to the danger of climate change; the severity of the impact makes it not merely a catastrophic danger, it is an existential threat; finally, regarding timescale, the danger is not just near, the danger is imminent and in many respects we're already too late.


Above image expresses this visually, with the red area depicting where we are now. There were readability problems with the text on the sides of the cube, reason why a version without text and the color on the sides was posted in an earlier post.

The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.


Links

• UN news release
https://www.unenvironment.org/news-and-stories/press-release/cut-global-emissions-76-percent-every-year-next-decade-meet-15degc

• Paris Agreement
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement

• United Nations Environment Programme (UNEP) - Emissions Gap Report
https://www.unenvironment.org/resources/emissions-gap-report-2019

• UNEP video: On the brink: Emissions Gap Report findings in 60 seconds
https://www.unenvironment.org/news-and-stories/video/brink-emissions-gap-report-findings-60-seconds

• WMO - Greenhouse gas concentrations in atmosphere reach yet another high
https://public.wmo.int/en/media/press-release/greenhouse-gas-concentrations-atmosphere-reach-yet-another-high

• NOAA Trends in Atmospheric Carbon Dioxide
https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html

• Most Important Message Ever
https://arctic-news.blogspot.com/2019/07/most-important-message-ever.html

• 2020 El Nino could start 18°C temperature rise
https://arctic-news.blogspot.com/2019/11/2020-el-nino-could-start-18-degree-temperature-rise.html

• Scientists Reach 100% Consensus on Anthropogenic Global Warming
https://journals.sagepub.com/doi/full/10.1177/0270467619886266

• The Threat Of Arctic Albedo Change
https://arctic-news.blogspot.com/2016/09/the-threat-of-arctic-albedo-change.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html




Sunday, September 8, 2019

Arctic Ocean overheating


The Arctic Ocean is overheating, as illustrated by above image.
[ from earlier post ]

Heating of the water in the Arctic Ocean is accelerating, as illustrated by above map that uses 4-year smoothing and that shows temperatures in the Arctic that are up to 4.41°C hotter than the average global temperature during 1880-1920.

The NOAA image on the right shows the sea surface temperature difference from 1961-1990 in the Arctic at latitudes 60°N - 90°N on September 7, 2019.

Where Arctic sea ice disappears, hot water emerges on the image, indicating that the temperature of the ocean underneath the sea ice is several degrees above freezing point.

The nullschool.net image on the right shows sea surface temperature differences from 1981-2011 on the Northern Hemisphere on September 8, 2019, with anomalies reaching as high as 15.2°C or 27.4°F (near Svalbard, at the green circle).

Accelerating heating of the Arctic Ocean could make global temperatures skyrocket in a matter of years.

Decline of the sea ice comes with albedo changes and further feedbacks, such as the narrowing temperature difference between the North Pole and the Equator, which slows down the speed at which the jet stream circumnavigates Earth and makes the jet stream more wavy.


Disappearance of the sea ice also comes with loss of the buffer that has until now been consuming ocean heat as part of the melting process. As long as there is sea ice in the water, this sea ice will keep absorbing heat as it melts, so the temperature will not rise at the sea surface. The amount of energy absorbed by melting ice is as much as it takes to heat an equivalent mass of water from zero to 80°C. Once the sea ice is gone, further heat must go elsewhere.

[ click on images to enlarge ]
The Naval Research Laboratory image on the right shows a forecast for Sep. 8, 2019, run on Sep. 7, 2019, of the thickness of the sea ice. Sea ice has become terribly thin, indicating that the heat buffer constituted by the sea ice has effectively gone. Only a very thin layer of sea ice remains in place throughout much of the Arctic Ocean.

This remaining sea ice is stopping a lot of ocean heat from getting transferred to the air, so the temperature of the water of the Arctic Ocean is now rising rapidly, with the danger that some of the accumulating ocean heat will reach sediments at the seafloor and cause eruptions of huge amounts of methane.


This situation comes at a time that methane levels are very high globally. Mean global methane levels were as high as 1911 parts per billion on the morning of September 3, 2019, a level recorded by the MetOp-1 satellite at 293 mb (image below).


[ from an earlier post ]
As the image on the right shows, mean global levels of methane (CH₄) have risen much faster than carbon dioxide (CO₂) and nitrous oxide (N₂O), in 2017 reaching, respectively, 257%, 146% and 122% their 1750 levels.

Compared to carbon dioxide, methane is some 150 times as potent as a greenhouse gas during the first few years after release.

Huge releases of seafloor methane alone could make marine stratus clouds disappear, as described in an earlier post, and this clouds feedback could cause a further 8°C global temperature rise.

In total, global heating by as much as 18°C could occur by the year 2026 due to a combination of elements, including albedo changes, loss of sulfate cooling, and methane released from the ocean seafloor.

from an earlier post (2014)  

In the image below, from an earlier post, a global warming potential (GWP) of 150 for methane is used. Just the existing carbon dioxide and methane, plus seafloor methane releases, would suffice to trigger the clouds feedback tipping point to be crossed that by itself could push up global temperatures by 8°C, within a few years time, adding up to a total rise of 18°C by 2026.


Progression of heating could unfold as pictured below.

[ from an earlier post ]

In the video below, John Doyle describes out predicament.



The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.


Links

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Arctic Sea Ice Gone By September 2019?
https://arctic-news.blogspot.com/2019/07/arctic-sea-ice-gone-by-september-2019.html

• July 2019 Hottest Month On Record
https://arctic-news.blogspot.com/2019/08/july-2019-hottest-month-on-record.html

• Cyclone over Arctic Ocean - August 24, 2019
https://arctic-news.blogspot.com/2019/08/cyclone-over-arctic-ocean-august-24-2019.html

• Most Important Message Ever
https://arctic-news.blogspot.com/2019/07/most-important-message-ever.html


Sunday, September 1, 2019

Blueprints of future climate trends

Blueprints of future climate trends

Extreme GHG and temperature rise rates question linear climate projections

Andrew Glikson
Earth and climate scientist
Australian National University
geospec@iinet.net.au

Abstract

The extreme greenhouse gas (GHG) and temperature rise rates since the mid-1970th raise questions over linear climate projections for the 21st century and beyond. Under a rise of CO₂-equivalent reaching +500 ppm and 3.0 W/m⁻² relative to 1750, the current rise rates of CO₂ by 2.86 ppm per and recent global temperature rise rate (0.15-0.20°C per decade) since 1975 are leading to an abrupt shift in state of the terrestrial climate and the biosphere. By mid-21st century at >750 ppm CO₂-e climate tipping points indicated by Lenton et al. 2008 and Schellnhuber 2009 are likely to be crossed. Melting of the Greenland and Antarctic ice sheets has increased by a factor of more than 5 since 1979–1990. As the ice sheets and sea ice melt, the albedo flip between reflective ice surfaces and dark infrared-absorbing water results in significant increase of radiative forcing, and complete removal of Arctic sea ice would result in a forcing of about 0.7 W/m⁻² (Hudson, 2011). The confluence of climate events, including a breach of the circum-Arctic jet stream boundary and a polar-ward migration of climate zones at a rate of 56-111 km per decade, induce world-wide extreme weather events including bushfires, methane release from Arctic permafrost and sediments. For a climate sensitivity of 3±1.5°C per doubling of atmospheric CO₂, global warming has potentially reached between +2°C to +3°C above mean pre-industrial temperatures at a rate exceeding the fastest growth rate over the last 55 million years. As ice melt water flow into the oceans temperature polarities between warming continents and cooling tracts of ocean would further intensify extreme weather events under non-linear climate trajectories. The enrichment of the atmosphere in GHG, constituting a shift in state of the terrestrial climate, is predicted to delay the onset of the next glacial state by some 50,000 years.

GHG and temperature rise

The paleoclimate record suggests that no event since 55 million years ago, the Paleocene-Eocene Thermal Maximum (PETM), when global temperatures rose by more than +5 to +8°C over a period of ~20,000 years, with a subsequent warming period of up to 200,000 years, has been as extreme as atmospheric disruption since the onset of the industrial age about 1750 AD (the Anthropocene), accelerating since 1975. During this period greenhouse gas levels have risen from ~280 ppm to above >410 ppm and to 496 ppm CO₂-equivalent (Figure 1), the increase of CO₂ reaching near-47 percent above the original atmospheric concentration. However, linear climate change projections are rare in the recent climate history (Figure 2) and linear future climate projections may not account for the effects of amplifying feedbacks from land and oceans. Given an Anthropocene warming rate faster by ~X200 times than the PETM (Figure 3), linear warming trajectories such as are projected by the IPCC may overlook punctuated tipping points, transient reversals and stadial events.
Figure 1. Growth of CO₂-equivalent level and the annual greenhouse gas Index (NOAA AGGI).
Measurements of CO₂ to the 1950s are from (Keeling et al., 2008) and from air trapped in ice and
snow between CO₂ concentrations and radiative forcing from all long-lived greenhouse gases.

According to NOAA, GHG forcing in 2018 has reached 3.101 W/m⁻² relative to 1750 (CO₂ = 2.044 W/m⁻²; CH₄ = 0.512 W/m⁻²; N₂O = 0.199 W/m⁻²; CFCs = 0.219 W/m⁻²) with a CO₂-equivalent of 492 ppm (Figure 1). The rise in GHG forcing during the Anthropocene since about 1800 AD, intensifying since 1900 AD and sharply accelerating since about 1975, has induced a mean of ~1.5°C over the continents above pre-industrial temperature, or >2.0°C when the masking role of aerosols is discounted, implying further warming is still in store.

According to Hansen et al. 2008, the rise in radiative forcing during the Last Glacial Termination (LGT - 18,000 -11,000 years BP), associated with enhancing feedbacks, has driven GHG radiative forcing by approximately ~3.0 W/m⁻² and a mean global temperature rise of ~4.5°C (Figure 2), i.e. of similar order as the Anthropocene rise since about 1900. However the latter has been reached within a time frame at least X30 times shorter than the LGT, underpinning the extreme nature of current global warming.
Figure 2. (Hansen et al. 2008). Glacial-temperature and GHG forcing for the last 420,000 years based on the Vostok
ice core, with the time scale expanded for the Anthropocoene. The ratio of temperature and forcing scales is 1.5°C
per 1 W/m⁻². The temperature scale gives the expected equilibrium response to GHG change including slow feedback
surface albedo change. Modern forcings include human-made aerosols, volcanic aerosols and solar irradiance.
The CO₂-equivalent levels and radiative forcing levels constitute a rise from Holocene levels (~280 ppm CO₂) to >410 ppm compared with Miocene-like levels (300-600 ppm CO₂), at a rate reaching 2 to 3 ppm/year, within a century or so, driving the fastest temperature rise rate recorded since 55 million years ago (Figure 3).

Figure 3. A comparison between rates of mean global temperature rise during: (1) the last Glacial Termination
(after Shakun et al. 2012); (2) the PETM (Paleocene-Eocene Thermal Maximum, after Kump 2011);
(3) the late Anthropocene (1750–2016), and (4) an asteroid impact. In the latter instance temperature
due to CO₂ rise would lag by some weeks or months behind aerosol-induced cooling

Considering the transient mitigating albedo effects of clouds, seasonal land surface albedo, ice albedo, atmospheric aerosols including sulphur dioxide and nitrate, the potential rise of land temperature could have reached -0.4 to -0.9 W/m⁻² in 2018, masking approximately 0.6 to 1.3°C potential warming once the short lived aerosol effect is abruptly reduced.

Accelerated melting of the ice sheets

The fast rate of the Anthropocoene temperature rise compared to the LGT and PETM (Figure 3) ensues in differences in terms of the adaptation of flora and fauna to new conditions. The shift in state of the Earth’s climate is most acutely manifested in the poles, where warming leads to weakening of the jet stream boundaries which are breached by outflow of cold air fronts, such as the recent “Beast from the East” event, and penetration of warm air masses.

As the poles keep warming, to date by a mean of ~2.3°C, the shrinking of the ice sheets per year has accelerated by a factor of more than six fold (Figure 4). Warming of the Arctic is driven by the ice-water albedo flip, where dark sea-water absorbing solar energy alternates with high-albedo ice and snow, and by the weakening of the polar boundary and jet stream.

Greenland. The threshold of collapse of the Greenland ice sheet, retarded by hysteresis, is estimated in the range of 400-560 ppm CO₂, already transgressed at the current 496 ppm CO₂equivalent (Figure 4). The Greenland mass loss increased from 41 ± 17 Gt/yr in 1990–2000, to 187 ± 17 Gt/yr in 2000–2010, to 286 ± 20 Gt/yr in 2010–2018, or six fold since the 1980s, or 80 ± 6 Gt/yr per decade, on average.

Antarctica. The greenhouse gas level and temperature conditions under which the East Antarctic ice sheet formed during the late Eocene 45-34 million years ago are estimated as ~800–2000 ppm and up to 4 degrees Celsius above pre-industrial values, whereas the threshold of collapse is estimated as 600 ppm CO₂ or even lower. The total mass loss from the Antarctic ice sheet increased from 40 ± 9 Gt/yr in 1979–1990 to 50 ± 14 Gt/yr in 1989–2000, 166 ± 18 Gt/yr in 1999–2009, and 252 ± 26 Gt/yr in 2009–2017. Based on satellite gravity data, the East Antarctic ice sheet is beginning to breakdown in places (Jones 2019), notably the Totten Glacier (Rignot et al., 2019), which may be irreversible. According to Mengel and Levermann (2014), the Wilkes Basin in East Antarctica alone contains enough ice to raise global sea levels by 3–4 meters.

Figure 4. (A) New elevation showing the Greenland and Antarctic current state of the ice sheets accurate to a few meters in height, with elevation changes indicating melting at record pace, losing some 500 km³ of ice per-year into the oceans; (B) Ice anomaly relative to the 2002-2016 mean for the Greenland ice sheet (magenta) and Antarctic ice sheet (cyan). Data are from GRACE; (C) the melting of sea ice 1978-2017, National Snow and Ice Data Center (NCIDC)

C. Migration of climate zones

The expansion of warm tropical zones and the polar-ward migration of subtropical and temperate climate zones are leading to a change in state in the global climate pattern. The migration of arid subtropical zones, such as the Sahara, Kalahari and central Australian deserts into temperate climate zones ensues in large scale droughts, such in inland Australia and southern Africa. In the northern hemisphere expansion of the Sahara desert northward, manifested by heat waves across the Mediterranean and Europe (Figure 5).
Figure 5. (A) Migration of the subtropical Sahara climate zone (red spots) northward into the Mediterranean climate
zone leads to warming, drying and fires over extensive parts of Spain, Portugal, southern France, Italy, Greece and
Turkey, and to melting of glaciers in the Alps. Migration, Environment and Climate Change, International
Organization for Migration Geneva – Switzerland (GMT +1); Source: https://environmentalmigration.iom.int/maps

Figure 5. (B) Southward encroachment of Kalahari Desert conditions (vertical lines and red spots) leading to
warming and drying of parts of southern Africa. Source: https://environmentalmigration.iom.int/maps
Figure 5. (C) Drying parts of southern Australia, including Western Australia, South Australia and parts of the
eastern States, accompanied with increasing bushfires. Source: https://environmentalmigration.iom.int/maps
Climate extremes

Since the bulk of terrestrial vegetation has evolved under glacial-interglacial climate conditions, where GHG range between 180 - 300 ppm CO₂, global warming is turning large parts of Earth into a tinderbox, ignited by natural and human agents. By July and August 2019, as fires rage across large territories, including the Amazon forest, dubbed the Planet’s lungs as it enriches the atmosphere in oxygen. When burnt the rainforest becomes of source of a large amount of CO₂ (Figure 6.B), with some 72,843 fires in Brazil this year and extensive bushfires through Siberia, Alaska, Greenland, southern Europe, parts of Australia and elsewhere, the planet’s biosphere is progressively transformed. As reported: ‘Climate change is making dry seasons longer and forests more flammable. Increased temperatures are also resulting in more frequent tropical forest fires in non-drought years. And climate change may also be driving the increasing frequency and intensity of climate anomalies, such as El Niño events that affect fire season intensity across Amazonia.’

Extensive cyclones, floods, droughts, heat waves and fires (Figure 6.B) increasingly ravage large tracts of Earth. However, despite its foundation in the basic laws of physics (the black body radiation laws of Planck, Kirchhoff' and Stefan Boltzmann), as well as empirical observations around the world by major climate research bodies (NOAA, NASA, NSIDC, IPCC, World Meteorological Organization, Hadley-Met, Tindale, Potsdam, BOM, CSIRO and others), the anthropogenic origin, scale and pace of climate change remain subject to extensively propagated denial and untruths.

Figure 6. (A) Extreme weather events around the world 1980-2018,
including earthquakes, storms, floods, droughts. Munich Re-insurance.
Figure 6. (B) A satellite infrared image of South America fires (red dots) during July and August, 2019, NASA.

An uncharted climate territory

Whereas strict analogies between Quaternary and Anthropocene climate developments are not possible, elements of the glacial-interglacial history are relevant for an understanding of current and future climate events. The rise of total greenhouse gas (GHG), expressed as CO₂-equivalents, to 496 ppm CO₂-e (Figure 1), within less than a century represents an extreme atmospheric event. It raised GHG concentrations from Holocene levels to the range of the Miocene (34–23 Ma) when CO₂ level was between 300 and 530 ppm. As the glacial sheets disintegrate, cold ice-melt water flowing into the ocean ensue in large cold water pools, a pattern recorded following peak interglacial phases over the last 450,000 years, currently manifested by the growth of cold regions in north Atlantic Ocean south of Greenland and in the Southern Ocean fringing Antarctica (Figure 7).

Warming of +3°C to +4°C above pre-industrial levels, leading to enhanced ice-sheet melt, would raise sea levels by at least 2 to 5 meters toward the end of the century and, delayed by hysteresis, likely by 25 meters in the longer term. Golledge et al. (2019) show meltwater from Greenland will lead to substantial slowing of the Atlantic overturning circulation, while meltwater from Antarctica will trap warm water below the sea surface, increasing Antarctic ice loss. Whereas the effect of low-density ice melt water on the surrounding oceans is generally not included in many models, depending on amplifying feedbacks, prolonged Greenland and Antarctic melting and consequent cooling of surrounding ocean sectors as well as penetration of freezing air masses through weakened polar boundaries may have profound effect on future climate change trajectories (Figure 8).

Figure 7. (A) Global warming map (NASA 2018). Note the cool ocean regions south of Greenland and 
along the Antarctic. Credits: Scientific Visualization Studio/Goddard Space Flight Center; 
(B) 2012 Ocean temperatures around Antarctica (NASA 2012).
Climate projections for 2100-2300 by the IPCC AR5 Synthesis Report, 2014 portray predominantly linear to curved models of greenhouse gas, global temperatures and sea level changes. These models however appear to take limited account of amplifying feedbacks from land and ocean and of the effects of cold ice-melt on the oceans. According to Steffen et al. (2018) “self-reinforcing feedbacks could push the Earth System toward a planetary threshold” and “would lead to a much higher global average temperature than any interglacial in the past 1.2 million years and to sea levels significantly higher than at any time in the Holocene”.

Amplifying feedbacks of global warming include:
  • The albedo-flip of melting sea ice and ice sheets and the increase of the water surface area and thereby sequestration of CO₂. Hudson (2011) estimates a rise in radiative forcing due to removal of Arctic summer sea ice as 0.7 W/m², a value close to the total of methane release since 1750.
  • Reduced ocean CO₂ intake due to lesser solubility of the gas with higher temperatures.
  • Vegetation desiccation and burning in some regions, and thereby released CO₂ and reduced evaporation and its cooling effect. This factor and the increase of precipitation in other regions lead to differential feedbacks from vegetation as the globe warms (Notaro et al. 2007).
  • An increase in wildfires, releasing greenhouse gases (Figure 6).
  • Release of methane from permafrost, bogs and sediments and other factors.
Linear temperature models appear to take limited account of the effects on the oceans of ice melt water derived from the large ice sheets, including the possibility of a significant stadial event such as already started in oceanic tracts fringing Greenland and Antarctica (Figure 7) and modeled by Hansen et al, (2016). In the shorter to medium term sea level rises would ensue from the Greenland ice sheet (6-7 meter sea level rise) and West Antarctic ice sheet melt (4.8 meter sea level rise). Referring to major past stadial events, including the 8200 years-old Laurentian melt and the 12.7-11.9 younger dryas event, a protracted breakdown of parts of the Antarctic ice sheet could result in major sea level rise and extensive cooling of southern latitudes and beyond, parallel with warming of tropical and mid-latitudes (Figure 8) (Hansen et al. 2016). The temperature contrast between polar-derived cold fronts and tropical air masses is bound to lead to extreme weather events, echoed among other in Storms of my grandchildren (Hansen, 2010).

Figure 8. (A) Model Surface-air temperature (°C) for 2096 relative to 1880–1920 (Hansen et al. 2016).
The projection betrays major cooling of the North Atlantic Ocean, cooling of the circum-Antarctic Ocean
and further warming in the tropics, subtropics and the interior of continents; (B) Modeled surface-air
temperatures (°C) to 2300 AD relative to 1880–1920 for several ice melt rate scenarios, displaying a stadial cooling event at a time dependent on the ice melt doubling time (Hansen et al., 2016). Courtesy Prof James Hansen;.
Within and beyond 2100-2300 projections (Figure 8.A, B) lies an uncharted climate territory, where continuing melting of the Antarctic ice sheet, further cooling of neighboring sectors of the oceans and climate contrasts with GHG-induced warming of land areas (Figure 8.A), ensue in chaotic climate disruptions (Figure 8.B). Given the thousands to tens of thousands years longevity of atmospheric greenhouse gases (Solomon et al., 2009; Eby et al 2009), the onset of the next ice age is likely to be delayed on the scale of tens of thousands of years (Berger and Loutre, 2002) through an exceptionally long interglacial period (Figure 9).

These authors state: ‘The present day CO₂ concentration (now >410 ppm) is already well above typical interglacial values of ~290 ppmv. This study models increases to up to 750 ppmv over the next 200 years, returning to natural levels by 1000 years. The results suggest that, under very small insolation variations, there is a threshold value of CO₂ above which the Greenland Ice Sheet disappears. The climate system may take 50,000 years to assimilate the impacts of human activities during the early third millennium. In this case, an “irreversible greenhouse effect” could become the most likely future climate. If the Greenland and west Antarctic Ice Sheets disappear completely, then today’s “Anthropocene” may only be a transition between the Quaternary and the next geological period.’

Figure 9. Simulated Northern Hemisphere ice volume (increasing downward) for the period 200,000 years BP to 130,000 years in the future, modified after a part of Berger and Loutre 2002. Time is negative in the past and positive in the future. For the future, three CO2 scenarios were used: last glacial-interglacial values (solid line), a human-induced concentration of 750 ppm (dashed line), and a constant concentration of 210 ppm inducing a return to a glacial state (dotted line).
As conveyed by leading scientists “Climate change is now reaching the end-game, where very soon humanity must choose between taking unprecedented action or accepting that it has been left too late and bear the consequences” (Prof. Hans Joachim Schellnhuber) …“We’ve reached a point where we have a crisis, an emergency, but people don’t know that ... There’s a big gap between what’s understood about global warming by the scientific community and what is known by the public and policymakers” (James Hansen).

Climate scientists find themselves in a quandary similar to medical doctors, committed to help the ill, yet need to communicate grave diagnoses. How do scientists tell people that the current spate of extreme weather events, including cyclones, devastating islands from the Caribbean to the Philippine, floods devastating coastal regions and river valleys from Mozambique to Kerala, Pakistan and Townsville, and fires burning extensive tracts of the living world, can only intensify in a rapidly warming world? How do scientists tell the people that their children are growing into a world where survival under a mean temperature higher than +2 degrees Celsius (above pre-industrial temperature) is likely to be painful and, in some parts of the world, impossible, let alone under +4 degrees Celsius projected by the IPCC?

Summary and conclusions
  1. The current growth rate of atmospheric greenhouse gas is the fastest recorded for the last 55 million years.
  2. By the mid-21st century, at the current CO₂ rise rates of 2 to 3 ppm/year, a CO₂-e level of >750 ppm is likely to transcend the climate tipping points indicated by Lenton et al. 2008 and Schellnhuber 2009.
  3. The current extreme rise rates of GHG (2.86 ppm CO₂/year) and temperature (0.15-0.20°C per decade since 1975) raise doubt with regard to linear future climate projections.
  4. Global greenhouse gases have reached a level exceeding the stability threshold of the Greenland and Antarctic ice sheets, which are melting at an accelerated rate.
  5. Allowing for the transient albedo-enhancing effects of sulphur dioxide and other aerosols, mean global temperature has reached approximately 2.0 degrees Celsius above per-industrial temperatures.
  6. Due to hysteresis the large ice sheets would outlast their melting temperatures.
  7. Land areas would be markedly reduced due to a rise to Miocene-like sea levels of approximately 40±15 meters above pre-industrial levels.
  8. Cold ice melt water flowing from the ice sheets into the oceans at an accelerated rate is reducing temperatures in large tracts in the North Atlantic and circum-Antarctic.
  9. Strong temperature contrasts between cold polar-derived and warm tropical air and water masses are likely to result in extreme weather events, retarding habitats and agriculture over coastal regions and other parts of the world.
  10. In the wake of partial melting of the large ice sheets, the Earth climate zones would continue to shift polar-ward, expanding tropical to super-tropical regions such as existed in the Miocene (5.3-23 million years ago) and reducing temperate climate zones and polar ice sheets.
  11. Current greenhouse gas forcing and global mean temperature are approaching Miocene Optimum-like composition, bar the hysteresis effects of reduced ice sheets (Figure 4.A).
  12. The effect of high atmospheric greenhouse gas levels would be for the next ice age to be delayed on a scale of tens of thousands of years, during which chaotic tropical to hyperthermal conditions would persist until solar radiation and atmospheric CO₂ subsided below ~300 ppm.
  13. Humans will survive in relatively favorable parts of Earth, such as sub-polar regions and sheltered mountain valleys, where gathering of flora and hunting of remaining fauna may be possible.

A Postscript

The author, while suggesting the projections made in this paper are consistent with the best climate science with which he is aware, sincerely hopes the implications of these projections would not eventuate.


Saturday, June 1, 2019

Climate Plan

What we're witnessing is more than a climate crisis, we're facing climate catastrophe and the outlook is grim. We're already in the Sixth Mass Extinction event and we're facing a potential global temperature rise of 18°C or 32.4°F by 2026. Merely declaring a climate emergency is not enough.

[ from earlier post ]
The Climate Plan advocates measures that can be taken in efforts to improve the situation regarding the climate, as well as regarding the health, prospects and wellbeing of people and life in general. These measures can and should be implemented immediately, in line with the current climate crisis.


Seventeen measures for immediate implementation

1. FOSSIL FUEL - Ban the use of coal and natural gas for heating, cooking and generating electricity. Stop supplying natural gas from utilities over pipelines. Ban sales of natural gas bottles. Use rationing of electricity supply from the grid to overcome bottlenecks in supply, until sufficient clean, renewable electricity can fully supply demand over the grid.

2. NUCLEAR POWER - Stop nuclear power plants from continuing to operate and start decommissioning existing plants. Study options for treating and storing waste from such plants.

3. WOOD AND BIOFUEL - Progressively ban the use of wood and other biomass for generating power, for driving vehicles or for other energy-related purposes. Impose fees on sales of biofuel, while using revenues to fund pyrolysis of biowaste and on return of the resulting biochar to the soil locally. Ban sales and installation of new woodburners. Ban sales or supply of firewood, woodchips, briquets, charcoal, etc. Impose annual fees through local rates on real estate that contain existing woodburners, open fireplaces, and traditional ovens and furnaces that use wood, while using revenues to fund rebates on local sales of clean electric alternatives such as heat pumps.

4. ROAD AND RAIL VEHICLES - Progressively electrify all trains and rail traffic, by imposing fees on trains that run on fossil fuel, while using revenues to fund conversion to or purchase of new electric trains. Progressively ban the use of vehicles with internal combustion in cities, first for one day in the week, then for two days a week, etc. Add fees to annual registration of vehicles with internal combustion engines, and use the revenues to fund rebates on registration of electric vehicles. Progressively close petrol stations and ban sales of products such as gas, diesel, petrol and further fossil fuel. Add fees to sales of fossil fuel and use revenues to fund rebates on clean public transport locally. Ensure there is public access to financial records. Set standards to reduce unnecessary vehicle noise, while ensuring sufficient sound is generated to warn people and wildlife.

5. AVIATION - Progressively ban aviation where flights are powered by jet fuel and other fossil fuel and biofuel. Impose fees on sales of such fuel and use revenues to fund rebates on electric airplanes that can take off and land on rooftops. Similarly, add fees to flights entering and leaving airports by airplanes using fossil fuel, while using revenues to fund electric airplanes that can take off and land on rooftops.

6. SHIPPING - Progressively prohibit use of bunker fuel and other fossil fuel in shipping. Impose fees on sales of bunker fuel, with revenues used to fund batteries and hydrogen fuel cells to replace traditional engines in ships. Impose fees on shipping of fossil fuel, with revenues used to clean up waterways and support wildlife conservation.

7. URBAN WASTE - Progressively make that zero % waste leaves each city through transport or through the sky, soil or waterways. Make that waste will be processed within each city, preferably pyrolyzed with biochar and nutrients returned to soils. Add sensors to rubbish bins and garbage collection trucks to ensure that no toxic products are disposed off, unless through collection points that ensure proper processing.

8. PLASTIC - Ensure that no plastic (or plastic parts) will be sold without permit and without fees high enough to ensure return of such items to approved collection points for safe disposal and processing. Ban single-use plastic, such as for packaging, containers, bags, etc.

9. DIET - Progressively ban sales of livestock products, unless supplied for medical purposes if no alternatives are available. Add fees to sales of livestock products, with revenues used to fund rebates on soil and water supplements that contain biochar and olivine sand in rural areas. In coastal areas, use revenues to assist enhanced weathering in waterways. Stop using antibiotics and hormones to stimulate growth in animals. Stop using crop to feed animals, unless for sales of petfood to pets held with a permit. Add fees on sales of products that have carbon dioxide, sugar, salt, flavors or coloring added, with revenues used to promote vegan-organic diet.

10. AGRICULTURE - Add fees on sales of nitrogen fertilizers and use revenues to fund rebates on biochar and enhanced weathering in oceans.

11. WILDLIFE CONSERVATION - Ban chemical pesticides. Remove walls and fences that stop wildlife. Provide ways for wildlife to cross roads and highways. Set aside progressively increasing areas where no urban, agricultural, industrial development is allowed. Move existing buildings, agriculture and industries from such areas. Fund progress through annual fees imposed on real estate in areas zones for industrial, urban and agricultural development.

12. CONSTRUCTION - Add fees on sales of Portland cement, with revenues used to fund carbon-negative construction material used locally. Fees must be high enough to progressively phase out use of Portland cement.

13. AGRICULTURE AND FORESTRY - Prohibit dumping of agricultural and other waste in landfalls, prohibit burning of waste in open fires. Prohibit cutting down large trees without permits. Where permits are supplied, add fees to minimize deforestation, while using revenues to support reforestation and afforestation. Ensure that biowaste gets pyrolyzed, with the biochar returned to the soil locally. Add fees on local rates where soil loses carbon content, with revenues used to fund rebates where soil carbon content increases, such as when biochar and olivine sand are added or when new trees are planted.

14. COOLING - Ban sales of new air-conditioners, fridges and freezers that work with gases. Impose annually rising fees on existing items, while using the revenues from the annual fees to fund rebates on solid state products, including heat pumps.

15. INDUSTRY - Progressively ban the use of fossil fuel in industrial processes by replacing them with clean electricity (i.e. generated by wind turbines or solar panels), or with hydrogen made with such clean electricity. Ban the use of solvents, cleaning substances, propellants and other products that result in further addition of greenhouse gases to the atmosphere. Ensure that manufacturers label products indicating the heating impact.

16. UNIVERSITIES - Encourage further study in the effectiveness of measures in all above areas. Compare what happens locally with what in other areas, to ensure the most effective policy tools are used locally to facilitate the necessary transitions. Government grants are to be given to studies that sufficiently care about above points.

17. FURTHER ACTION - Further lines of action will be needed to hold back the temperature rise. Some action requires further research and U.N. supervision. Some other action has low risk and, due to the urgency to keep temperatures down, testing and R&D should commence immediately. This applies in particular to ways to reduce overheating of the Arctic.

Examples of such measures are Marine Cloud Brightening off the east coast of North America, in efforts to cool the waters entering the Arctic Ocean. Proposals that need further study are the use of icebreakers during the northern Fall and Winter, to enable more heat to escape from the Arctic Ocean, thus reducing the risk of ocean heat destabilizing methane hydrates at the seafloor of the Arctic Ocean. That risk is high from late September when the sea ice starts closing off the Arctic Ocean, thus making it difficult for ocean heat to escape, while warm water is still being carried into the Arctic Ocean from the Atlantic Ocean. Denis Bonnelle has proposed to use icebreakers that travel in parallel and are interconnected to also clear the ice in between them.

While implementation of some of these lines of action requires U.N. supervision, much of the proposed action can readily be implemented locally without delay and the Climate Plan prefers speedy local implementation, with communities deciding what works best locally, provided that a community does take sufficient action to achieve the necessary dramatic reductions in each type of pollution, in line with the Paris Agreement to avoid a large temperature rise. Examples of implementation of some of these lines of action are depicted in the image below, showing examples of how progress can be achieved through local feebates.

[ from earlier post ]

The overview below also includes further possible action that could be considered. Importantly, the situation is that dire that even if all possible action as described is taken, this constitutes no guarantee that any humans will survive the coming decades.


The image below depicts how the above-mentioned measures line up in response to the threat.


In conclusion, the technologies and policy instruments are ready for implementation, so let's stop delaying what's needed so desperately, now is the time for comprehensive and effective action!



Monday, April 1, 2019

An infinite scream passing through nature


Wind patterns on March 30, 2019, resembled what Edvard Munch wrote in his diary in 1892, i.e. "I sensed an infinite scream passing through nature", a feeling Munch expressed in his iconic artwork The Scream, part of which is added on the right in above image.


Indeed, at the end of March 2019, it felt like an infinite scream passing through nature! On March 31, 2019, 12:00 UTC, the Arctic was 7.7°C or 13.86°F warmer than 1979-2000, as above image shows, while in parts of Alaska the anomaly was at the top end of the scale, i.e. 30°C or 54°F above 1979-2000, as discussed in an earlier post.

What caused this to eventuate? Firstly, as the Arctic is warming faster than the rest of the world, the temperature difference between the North Pole and the Equator is narrowing, which is slowing down the overall speed at which the jet stream is circumnavigating Earth, while it also is making the jet stream wavier, enabling warm air from the Atlantic Ocean and Pacific Ocean to more easily enter the Arctic, while also enabling cold air from the Arctic to more easily descend over Asia and North America.


At the same time, global warming is making oceans warmer. Sea surface temperatures were high in the path of the jet stream on March 15, 2019, as above image shows. The sea surface was 10.8°C or 19.4°F warmer than 1981-2011 at the green circle in the left panel of above image. On that day, surface air temperature there was as high as 7.9°C or 46.2°F, and there were cyclonic wind patterns, as the right panel of above image shows.

High sea surface temperatures are causing winds over oceans to get much stronger than they used to be at this time of year.

The image on the right shows that, on March 15, 2019, the jet stream reached speeds as high as 386 km/h or 240 mph at the green circle. These stronger winds then collide at high speed with the air in front of them. This collision occurs with an even greater force, due to low temperatures over North America and due to the lower overall speed at which the jet stream circumnavigates Earth. All this makes that air gets strongly pushed aside toward the Arctic and the Equator.

On March 30, 2019, strong winds pushed warm air into Bering Strait, resulting in temperatures as high as 2.5°C or 36.4°F, as the image below illustrates.


On March 30, 2019, Arctic sea ice extent fell to a record low for the time of year, as discussed in an earlier post. Ominously, methane reached peak levels as high as 2,967 ppb on March 29, 2019, as the image below shows.


With Arctic sea ice extent this low and with temperatures rising relentlessly, fears are that the sea ice won't be able to act as a buffer to absorb heat for long, and that a strong influx of warm, salty water will reach the seafloor of the Arctic Ocean and trigger methane eruptions from destabilizing hydrates.

The situation is dire and calls for comprehensive and effective action, as described at the Climate Plan.


Links

• Arctic Warming Up Fast
https://arctic-news.blogspot.com/2019/03/arctic-warming-up-fast.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html



Sunday, March 31, 2019

Arctic Warming Up Fast

On March 30, 2019, Arctic sea ice extent was 13.42 million km², a record low for the measurements at ads.nipr.ac.jp for the time of year.


[ click on images to enlarge ]
As the Arctic warms up faster than the rest of the world, the temperature difference between the North Pole and the Equator narrows, making the jet stream wavier, thus enabling warm air over the Pacific Arctic to move more easily into the Arctic.

The image on the right shows that, on March 31, 2019, the Arctic was 7.5°C or 13.5°F warmer than 1979-2000.

The earlier forecast below shows a temperature anomaly for the Arctic of 7.6°C or 13.68°F for March 31, 2019, 12:00 UTC and in places 30°C or 54°F warmer. The inset shows the Jet Stream moving higher over the Bering Strait, enabling air that has been strongly warmed up over the Pacific Ocean to move into the Arctic.


A wavier Jet Stream also enables cold air to more easily move out of the Arctic. The inset shows the Jet Stream dipping down over North America where temperatures lower than were usual were recorded.

The later forecast below shows a temperature anomaly for the Arctic of 7.7°C or 13.86°F for March 31, 2019, 12:00 UTC.


The image below shows that El Niño can be expected to push temperatures up higher in 2019 during the Arctic sea ice retreat.

A warmer sea surface can cause winds to grow dramatically stronger, and they can push warm, moist air into the Arctic, while they can also speed up sea currents that carry warm, salty water into the Arctic Ocean.

Rivers can also carry huge amounts of warm water from North America and Siberia into the Arctic Ocean, as these areas are getting hit by ever stronger heatwaves that are hitting the Arctic earlier in the year.

With Arctic sea ice at a low, it won't be able to act as a buffer to absorb heat for long, with the danger that an influx of warm, salty water will reach the seafloor and trigger methane eruptions.

As warmer water keeps flowing into the Arctic Ocean and as air temperatures in the Arctic are now starting to rise on the back of a strengthening El Niño, fears for a Blue Ocean Event in 2019 are rising, which would further accelerate the temperature rise as less sunlight gets reflected back into space.

The situation is dire and calls for comprehensive and effective action, as described at the Climate Plan.

Links

• Arctic sea ice extent
https://ads.nipr.ac.jp/vishop/#/extent

• Climate Reanalyzer
https://climatereanalyzer.org

• ENSO Update by Climate Prediction Center / NCEP 25 March 2019
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.pdf

• Blue Ocean Event
https://arctic-news.blogspot.com/2018/09/blue-ocean-event.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html