Thursday, May 22, 2014

The real budgetary emergency and the myth of "burnable carbon"

by David Spratt


How fast and how profoundly we act to stop climate change caused by human actions, and work to return to a safe climate, is perhaps the greatest challenge our species has ever faced, but are we facing up to what really needs to be done?

We have to come to terms with two key facts: practically speaking, there is no longer a "carbon budget" for burning fossil fuels while still achieving a two-degree Celsius (2°C) future; and the 2°C cap is now known to be dangerously too high.


No Carbon Budget Left - David Spratt from Breakthrough  -  "We have no carbon budget left
for burning of fossils fuels - emergency action is now the only viable path"  - 
David Spratt

For the last two decades, climate policy-making has focused on 2°C of global warming impacts as being manageable, and a target achievable by binding international treaties and incremental, non-disruptive, adjustments to economic incentives and regulations (1).

But former UK government advisor Professor Sir Robert Watson says the idea of a 2°C target "is largely out of the window”, International Energy Agency chief economist Fatih Birol calls it "a nice Utopia", and international negotiations chief Christiana Figueres says we need "a miracle". This is because, in their opinions, emissions will not be reduced sufficiently to keep to the necessary "carbon budget" (2).

The carbon budget has come to public prominence in recent years, including in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report in 2013, as being the difference between the total allowable greenhouse gas emissions for 2°C of warming, and the amount already emitted or spent. The budget varies according to the likelihood of overshooting the target: the higher the risk, the bigger the budget. In the IPCC report, no carbon budget is given for less than a one-in-three chance of failure.

At that one-in-three risk of failure, the IPCC says the total budget is 790 GtC (gigatons, or one billion tons, of carbon), less emissions to 2011 of 515 GtC, leaving a budget of 275 GtC in 2011, or ~245 GtC in 2014 (3).

What is less well understood is that if the risk is low, there is no carbon budget left (4).

Breakthrough National  Climate Restoration
Forum 21-22 June,  Melbourne
Climate change with its non-linear events, tipping points and irreversible events – such as mass extinctions, destruction of ecosystems, the loss of large ice sheets and the triggering of large-scale releases of greenhouse gases from carbon stores such as permafrost and methane clathrates – contains many possibilities for catastrophic failure.

Ian Dunlop, a former senior risk manager and oil and coal industry executive, says the management of catastrophic risk has to be very different from current processes. As serious, irreversible outcomes are likely, this demands very low probabilities of failure: management of catastrophic risk "must centre around contingency planning for high-impact and what were regarded as low-probability events, which unfortunately are now becoming more probable… Major, high-risk industrial operations, such as offshore oil exploration, provide a model, with detailed contingency planning and sequential barriers being put in place to prevent worst-case outcomes" (5).

If a risk-averse (pro-safety) approach is applied – say, of less than 10% probability of exceeding the 2°C target – to carbon budgeting, there is simply no budget available, because it has already been used up. A study from The Centre for Australian Weather and Climate Research shows that "the combination of a 2°C warming target with high probability of success is now unreachable" using the current suite of policy measures, because the budget has expired (6).

This is illustrated in Figure 1 where, as we move to the right (greater probability of meeting target) along the blue line which is the 2°C carbon budget, we reach a point around 90% probability (blue circle) where the total budget intersects with what we have already emitted.



As well, on-going greenhouse emissions associated with food production and deforestation are often conveniently pushed to one side in discussing carbon budgets. UK scientists have shown that if some reasonably optimistic assumptions are made about deforestation and food-related emissions for the rest of the century, then most emission reduction scenarios are incompatible with holding warming to +2ºC, even with a high 50% probability of exceeding the target. In other words, food and deforestation has taken up the remaining budget, leaving no space for fossil fuel emissions (7).

In addition, the carbon budget analysis makes optimistic and risky assumptions about the stability of Arctic, and of polar and other carbon stores such as permafrost. As one example, the modelling discussed in the IPCC report projects an area of summer Arctic sea-ice cover in the year 2100 higher that actually exists at the moment, yet there is a great deal more warming and sea-ice loss to come this century! In fact, many Arctic specialists think the Arctic will be sea-ice free in summer within the next decade, with consequences for global warming that the carbon budget calculations have significantly underestimated. (8)

Australian Climate Council member Prof. Will Steffen says the IPCC carbon budget may "be rather generous". The IPCC report says the modelling used does not include explicit representation of permafrost soil carbon decomposition in response to future warming, and does not consider slow feedbacks associated associated with vegetation changes and ice sheets. Recent research suggests these events could happen well below 2°C of warming, so they should be taken into account, but they are not.

Accounting for the possible release of methane from melting permafrost and ocean sediment implies a substantially lower budget (9). This reinforces the need to take a pro-safety, risk-averse approach to the carbon budget, especially since some research suggests that Arctic permafrost may be vulnerable at less than 2°C or warming (10).

For all these reasons – that is, prudent catastrophic risk management, accounting for food production and deforestation emissions, and for Arctic sea ice and carbon store instability – the idea of "burnable carbon" – that is, how much more coal, gas and oil we can burn and still keep under 2°C – is a dangerous illusion, based on unrealistic, high-risk, assumptions.

A second consideration is that 2°C of warming is not a safe target. Instead, it's the boundary between dangerous and very dangerous (11), and 1°C higher than experienced during the whole period of human civilisation (12), illustrated in Figure 2. The last time greenhouse gas levels were as high as they are today, modern humans did not exist (13), so we are conducting an experiment for which we have no direct observable evidence from our own history, and for which we do not know the full result.



However, we do understand that many major ecosystems will be lost, a 2°C sea-level rise will eventually be measured in the tens of metres (14), and much of human civilisation and large, productive river delta systems will be swamped. There is now evidence to suggest that the current conditions affecting the West Antarctic ice sheet are sufficient to drive between 1.2 and 4 metres of sea rise (15), and evidence that Greenland will contribute more quickly (16), and they are just two contributors to rising sea levels.

It is now clear that the incremental-adjustment 2°C strategy has run out of time, if for no other reason than the "budget" for burning more fossil fuels is now zero, yet the global economy is still deeply committed to their continuing widespread use.

We all wish the incremental-adjustment 2°C strategy had worked, but it hasn't. It has now expired as a practical plan.

We now have a choice to make: accept much higher levels of warming of 3–5°C that will destroy most species, most people and most of the world's ecosystems; a set of impacts some more forthright scientists say are incompatible with the maintenance of human civilisation.

Or we can conceive of a safe-climate emergency-action approach which would aim to reduce global warming back to the range of conditions experienced during the last 10,000 years, the period of human civilisation and fixed settlement. This would involve fast and large emissions reduction through radical energy demand reductions, whilst a vast scaling-up of clean energy production was organised, together with the remaking of many of our essential systems such as transport and food production, with the target being zero net emissions. In addition, there would need to be a major commitment to atmospheric carbon dioxide drawdown measures. This would need to be done at a speed and scale more akin to the "war economy", where social and economic priority is given to what is perceived to be an overwhelming existential threat.

After 30 years of climate policy and action failure, we are in deep trouble and now have to throw everything we can muster at the climate challenge. This will be demanding and disruptive, because there are no longer any non-radical, incremental paths available.

Prof. Kevin Anderson and Dr Alice Bows, writing in the journal Nature, say that "any contextual interpretation of the science demonstrates that the threshold of 2°C is no longer viable, at least within orthodox political and economic constraints" and that "catastrophic and ongoing failure of market economics and the laissez-faire rhetoric accompanying it (unfettered choice, deregulation and so on) could provide an opportunity to think differently about climate change" (17).

Anderson says there is no longer a non-radical option, and for developed economies to play an equitable role in holding warming to 2°C (with 66% probability), emissions compared to 1990 levels would require at least a 40% reduction by 2018, 70% reduction by 2024, and 90% by 2030. This would require "in effect a Marshall plan for energy supply". As well low-carbon supply technologies cannot deliver the necessary rate of emission reductions and they need to be complemented with rapid, deep and early reductions in energy consumption, what he calls a radical emission reduction strategy (18). All this suggests that even holding warming to a too-high 2°C limit now requires an emergency approach.

Emergency action has proven fair and necessary for great social and economic challenges we have faced before. Call it the great disruption, the war economy, emergency mode, or what you like; the story is still the same, and it is now the only remaining viable path.


keynote speaker, David Spratt, explains why there is no carbon budget left to burn.

Sources:
This article was originally published at ClimateCodeRed.org
Above video, NO CARBON BUDGET LEFT TO BURN, was uploaded by Breakthrough.



Notes
  1. Jaeger, C.C. and J. Jaeger (2011), "Three views of two degrees", Reg. Environ. Change, 11: S15-S26; Anderson, K. and A. Bows (2012) “A new paradigm for climate change”, Nature Climate Change 2: 639-70
  2. http://www.bbc.co.uk/news/science-environment-19348194; http://www.guardian.co.uk/environment/2011/may/29/carbon-emissions-nuclearpow; http://www.smh.com.au/environment/weather/climate-pioneers-see-little-chance-of-avoiding-dangerous-global-warming-20131105-2wyon.html
  3. IPCC (2013) "Working Group I Contribution to the IPCC Fifth Assessment Report Climate Change 2013; The Physical Science Basis: Summary for Policymakers"
  4. "For a 90% probability of not exceeding 2C of warming the carbon budget had reduced to zero by 2012, using a multi-agent (that is, the well-mixed greenhouse gases, including CO2 and CH4)", Raupach (2013, unpublished), based on Raupach, M. R., I.N. Harman and J.G. Canadell (2011) "Global climate goals for temperature, concentrations, emissions and cumulative emissions", Report for the Department of Climate Change and Energy Efficiency. CAWCR Technical Report no. 42. Centre for Australian Weather and Climate Research, Melbourne; Rogelj, J., W. Hare et al. (2011) "Emission pathways consistent with a 2°C global temperature limit", Nature Climate Change 1: 413-418 show at Table 1 no feasible pathways for limiting warming to 2°C during the twenty-first century with a "very likely" (>90%) chance of staying below the target, without carbon drawdown.
  5. Dunlop, I. (2011), "Managing catastrophic risk", Centre for Policy Development, 
  6. http://cpd.org.au/2011/07/ian-dunlop-managing-catastrophic-risk/
  7. Raupach, M. R., I.N. Harman and J.G. Canadell (2011) "Global climate goals for temperature, concentrations, emissions and cumulative emissions", Report for the Department of Climate Change and Energy Efficiency. CAWCR Technical Report no. 42. Centre for Australian Weather and Climate Research, Melbourne. 
  8. Anderson, K. and A. Bows (2008) “Reframing the climate change challenge in light of post-2000 emission trends”, Phil. Trans. R. Soc. A 366: 3863-3882; Anderson, K. and A. Bows (2011) “Beyond ‘dangerous’ climate change: emission scenarios for a new world”, Phil. Trans. R. Soc. A 369: 20–44
  9. Wadhams, P. (2012) “Arctic ice cover, ice thickness and tipping points”, AMBIO 41: 23–33; Maslowski, W., C.J. Kinney et al. (2012) "The Future of Arctic Sea Ice", The Annual Review of Earth and Planetary Sciences, 40: 625-654
  10. IPCC (2013) "Working Group I Contribution to the IPCC Fifth Assessment Report Climate Change 2013; The Physical Science Basis;
  11. Vaks, A., O.S. Gutareva et al. (2013) “Speleothems Reveal 500,000-Year History of Siberian Permafrost”, Science 340: 183-186; Schaefer, K., T. Zhang et al. (2011) "Amount and timing of permafrost carbon release in response to climate warming", Tellus 63:165-180
  12. Anderson, K. and A. Bows (2011) “Beyond ‘dangerous’ climate change: emission scenarios for a new world”, Phil. Trans. R. Soc. A 369: 20–44
  13. Marcott, S.A, J.D. Shakun et al. (2013) "A Reconstruction of Regional and Global Temperature for the Past 11,300 Years", Science 339: 1198-120; Hansen, J., P. Kharecha et al. (2013) "Assessing 'dangerous climate change': Required reduction of carbon emissions to protect young people, future generations and nature", Plos One 8: 1-26
  14. Tripadi, A.K., C.D. Roberts et al. (2009), "Coupling of CO2 and Ice Sheet Stability Over Major Climate Transitions of the Last 20 Million Years", Science 326: 1394-1397
  15. Rohling, E. J.,K. Grant et al. (2009) “Antarctic temperature and global sea level closely coupled over the past five glacial cycles”, Nature GeoScience, 21 June 2009 `af
  16. NASA (2014), "NASA-UCI Study Indicates Loss of West Antarctic Glaciers Appears Unstoppable", Media release, 12 May 2014, http://www.nasa.gov/press/2014/may/nasa-uci-study-indicates-loss-of-west-antarctic-glaciers-appears-unstoppable, accessed 19 May 2014; Rignot, E., J. Mouginot et al. (2014) "Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith and Kohler glaciers, West Antarctica from 1992 to 2011", Geophysical Research Letters, doi: 10.1002/2014GL060140; Joughin, I., B.E. Smith et al. (2014), "Marine Ice Sheet Collapse Potentially Under Way for the Thwaites Glacier Basin, West Antarctica", Science 344: 735 -738
  17. NASA (2014), "Hidden Greenland Canyons Mean More Sea Level Rise", Media release, 19 May 2014, http://www.nasa.gov/press/2014/may/hidden-greenland-canyons-mean-more-sea-level-rise, accessed 19 May 2014; Morlighem, M., E. Rignot et al. (2014), "Deeply incised submarine glacial valleys beneath the Greenland ice sheet", Nature Geoscience, doi:10.1038/ngeo2167
  18. Anderson, K. and A. Bows (2012) “A new paradigm for climate change”, Nature Climate Change 2: 639-70
  19. Anderson, K. (2014) "Why carbon prices can’t deliver the 2°C target", 13 August 2013, http://kevinanderson.info/blog/why-carbon-prices-cant-deliver-the-2c-target, accessed 19 May 2014; Anderson, K. (2012) "Climate change going beyond dangerous – Brutal numbers and tenuous hope", Development Dialogue, September 2012; Anderson, K. (2011) "Climate change going beyond dangerous – Brutal numbers and tenuous hope or cognitive dissonance", presentation 5 July 2011, slides available at http://www.slideshare.net/DFID/professor-kevin-anderson-climate-change-going-beyond-dangerous; plus (7) above.

Wednesday, May 21, 2014

The Art of Climate Change

by Dorsi Lynn Diaz

Help be a part of the solution! The Art of Climate Change on Kickstarter - an interactive social media & art show/exhibit this summer.

Climate change is HERE and climate change is happening NOW. It is not a figment of your imagination and the weather outside indeed is "frightening."

As I write this, the UK is getting battered by unprecedented storms and in California where I live, we are facing the possibility of a MEGA drought. As a long-time artist, writer and educator, I have been sounding the alarm bell for years. The question loomed large for me: How are we, as a collective society, going to tackle a huge problem?

That was when I had a light-bulb moment.

The idea came to me last year when I realized we need to have a multi-modal approach to addressing climate change. A hands-on, interactive dialogue with great visuals. In order to tackle the problem we needed to look at all the different aspects of climate change. And thus, the "The Art of Climate Change" was born - and the idea for a project: an art show and exhibit. But not your typical art show!

This show would be interactive and get people thinking about SOLUTIONS to climate change, challenge them to think out of the box, and most importantly, educate them about the how and wheres of climate change plus why places like the Arctic matter. This show could travel to cities and communities all over, and be a blue-print for teaching people about climate change and engage their own local artists, inventors and community in learning about "the problem."



But first I needed a venue to do the first show, and that would be one of the biggest hurdles. I connected with a local gallery, pitched the idea to them and they were impressed. In fact, they really liked my idea because it was "different" because it talked about solutions, not just doom and gloom. So now that I've been approved by their Board of Directors, I've got my venue and the show has taken on a life it its own.

The Art of Climate Change has its venue! Whoooppee!! The show is on the datebook - and it will be in run from June 19 - July 27, 2014 at The Sun Gallery in Hayward, Ca. (located in the Silicon Valley area)

I need help and support however to pull this off. This is a huge endeavor and the show has many different facets to it. I have many costs involved: Marketing, advertising, sign production, printing for the science graphics, some travel, equipment rentals (laptops and TV screens), art supplies, website hosting and building and other production costs... and this is why I am asking for your help. Not only will there be "art" on the walls but there will also be a series of artwork by children on endangered species that I have been teaching for the last several months.

The sections of the exhibit have been broken down into the following areas:

1. A section where we talk about "The Problem". This is where we talk turkey and explain the problem and take a good look at it.

2. There will be a section of the exhibit dedicated to extreme weather photos and art. Like they say, a picture can tell a thousand words, right?

3. Next we need to talk about "The Arctic and why it matters". Those record cold snaps happening in the US? Those are one of the strongest symptoms of our melting Arctic. That's due to our now meandering jet stream.

4. The Methane Monster. Yes there are monsters and this is probably one of the biggest ones we need to be worried about. Remember the dinosaur extinction? Well, scientists say that methane was their undoing. And we certainly don't want to go the way of the dinosaurs, right? So yes, we need to talk about the elephant in the room - that pesky methane monster. Which, by the way, is being released in some pretty scary amounts right now from underneath that warming Arctic water. No, it's not good. Not good at all.

5. A section just for THE CHILDREN and EDUCATION. This is the biggest reason I am doing this project. I want to be part of the solution to securing their future. One of the big parts of this project is teaching the kids. Right now I am doing a series of projects with them on endangered animal species. The way I look at it is if we can "teach the children we can touch the world." Their artwork will be prominently displayed in the art/show exhibit. So far they have done done art of endangered Polar Bear cubs, the Monarch Butterfly, Bees, Barn Owls and the Maui Dolphin.

6. A section with a "CALL TO ACTION"....this is where attendees are encouraged to engage with the problem so they can BE PART of the solution...which btw is the next big part of the art show/exhibit....

7. SOLUTIONS. This is where I have things planned that are definitely out of the box. Like inventions to slow down climate change by friends of mine that happen to be very creative too.

So that is my Kickstarter project in a very big nutshell. The really exciting thing though is how this blooming project has just sort of "vacuumed people" up...all kinds of people...from all around the world! Here are some of them that are going to be part of my project:
  • Climate Change Professor Paul Beckwith from the University of Ottawa, who will do a live Skype Q & A session with us. Attendees can sit down face to face with a leading climate change educator and ask questions about climate change from inside the show.
  • A life size mural of a Polar Bear with an Arctic scene, painted in the show/exhibit hall by muralist Lisa Hamblett-Montagnese.
  • Photographer Rose Gold will make the day even more special for kids by taking photos of them with the Polar bear.
  • A display of children and families climate change (endangered species) artwork from students of the Sun Gallery, A Joyful Noise Learning Center, Green Forest Art Studio, The Community Church of Hayward and Young Rembrandt's of the East Bay
  • A live viewing of Andy Lee Robinsons video on a flat screen TV which will be available for viewing all during the exhibits 5 1/2 weeks. Andy's video shows the decline of the Arctic ice accompanied by a musical composition by Andy called "Ice Dreams"
  • A graphic of "The Arctic Death Spiral" by Andy Lee Robinson, to be displayed in the Arctic section of the show.
  • A full size poster by Sam Carana (who set up the Arctic Methane Emergency Group on FB and edits the Arctic-News blog) on the effects of runaway climate change, designed by Sam and displayed in the Arctic section.
  • Original cartoons by Sam Carana, also an adviser on this project, displayed in the Methane section of the show.
  • Quotes with ideas by Harold Hensel, contributor to the Arctic-news blog and advisor on this project.
  • A full size poster of a tunnel invention as a possible solution to our warming waters by Patrick McNulty. Posted in Solutions.
  • A display of alternative fuel named "Bio-Fuel" with information by inventor Jay Toups. Posted in Solutions.
  • A live aquaponics display by Michael and Natalie Elola of Lucky Garden Hydroponics on how to grow vegetables and fruit indoors without using soil. Posted in Solutions.
  • A full size Polar bear costume mascot to be used for outreach. Designed and sewn by Nancy Martinez
  • A call for art by The Sun Gallery for extreme weather photos, climate change art and recycled and re-purposed art
  • A display of childrens books about climate change. Joe Santiago's books will also be featured. Displayed under Education.
  • The original video for the project will be displayed on a flat-screen video at the show for 5 1/2 weeks. Video editing and production by Mead Rose at Web Design by Mead.
  • Artistically designed Climate change confections by pastry chef Cori Diaz for the Artists reception
  • A local rock/punk band that sings songs about climate change. They will sing at the Artists reception.
  • Educational tables set up by the City of Hayward with information about the cities climate change plan along with other entities like the EPA, Water Conservation Board, EBMUD and Waste Management.
  • Deagon B. Williams, friend and adviser on this project.
  • Advertising help with the project by Trish McDermott of Avatar Tech Pubs.
Endangered Animal Art series taught by Dorsi Diaz


he Arctic "Death" Spiral in The Art of Climate Change
Costs for The Art of Climate Change
The many people people contributing their talents to The Art of Climate Change
The main reason I am doing the show is for them
Sam Carana's contribution to the show - a very telling graphic
The types of climate change disasters we need to talk about

This is what we need to be talking about.
Risks and challenges

I have been working on this project already for over 4 months, successfully pulling people together to either create art for the exhibit, or to contribute educational material. The biggest obstacle for the show was of course the venue but I have the venue for the art show/exhibit set in stone from June 19 - July 27 of this year. A solid foundation has been made, the main thing I need help with now is the financial expenses that the show will cost me - like the rental of equipment to do the live Skyping session with Professor Paul Beckwith, and the special art projects I plan to do within our community. I also have plans to do more community outreach to reach more local public agencies and I plan to have more events centered around the show (how much I can do will be determined by how much funding I get)

How will I deal with any special surprises or costs that I might not have possibly factored in? I will do what I always did in business, I will work with the issue and either adjust or downsize that particular part, - possibly even bartering for services, or ask for donations to help with a particular cost.

What unique challenges might I have after the project is funded? Well I don't foresee any emergencies but if there are any, I have a network of people that will help and advise me through any major problems. The only thing I see is that I may not be able to accommodate all the art that may come in, but that's a good problem to have! Better to have more than not enough - and director Liesa Lietzke and Jacqueline Cooper at The Sun Gallery where the show is will be able to help walk me through any major hiccups if there are any.

Questions?

Have a question? If the info above doesn't help, you can ask questions at Kickstarter to the project creator.

Donate

To donate to this project, go to Kickstarter.

Friday, May 16, 2014

More extreme weather can be expected



The heaviest rains and floods in 120 years have hit Serbia and Bosnia this week, Reuters and Deutsche Welle report.

The animation below shows the Jet Stream's impact on the weather. Cold temperatures have descended from the Arctic to Serbia and Bosnia in Europe and all the way down to the Gulf of Mexico in North America, while Alaska, California, and America's East Coast are hit by warm temperatures. In California, 'unprecedented' wildfires and fierce winds lead to 'firenadoes', reports CNN.

Friday, May 9, 2014

Outlook for sea ice remains bleak



In April 2014, Arctic sea ice reached its annual maximum volume. It was the second lowest on record, according to calculations by the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) at the Polar Science Center. The ice volume in March 2014 also was the second lowest on record, as discussed in an earlier post. The fall in volume over the years is illustrated in the graph below, by Wipneus.
Another way of depicting the continuing fall in sea ice volume is the Arctic Death Spiral below, by Andy Lee Robinson.

The graph below, from the Danish Metereological Institute, shows mean temperatures that have been much higher than they used to be at higher latitudes. Mean 2 m temperatures for the region north of the 80th northern parallel as a function of the day of year are shown (red line), against the 1958 - 2002 mean (green line).


High levels of methane over the Arctic will have contributed to these high temperatures. Furthermore, the Jet Stream is changing as the difference in temperature between the Arctic and the equator decreases, causing more extreme weather events such as heatwaves and storms that could speed up the demise of snow and ice cover in the Arctic.

The graph below, by the Japan Aerospace Exploration Agency, shows that Arctic sea ice extent was 12,469,546 km² on May 8, 2014.

In addition, an El Niño event could cause even more ferocious heatwaves and storms to hit the Arctic. The image below, from IRI at Columbia University, shows that the chance of an El Niño event developing in the course of 2014 is close to 80%.


The outlook for the sea ice remains bleak and the possibility that a total collapse could occur in September calls for comprehensive and effective action, as discussed at the climate plan blog.

Sunday, May 4, 2014

Will the Anthropocene last for only 100 years?

On November 9, 2013, methane levels as high as 2662 ppb (parts per billion) were recorded, as indicated by the red dot on the image below.

This image, from an earlier post, gives an idea of the height of this level compared to historic methane levels, and how fast levels of methane (CH4) have been rising compared to levels of two other greenhouse gases, i.e. carbon dioxide (CO2) and nitrous oxide (N2O).

CO2 concentrations in the atmosphere have now risen to levels well above the 400 parts per million (ppm), as illustrated by the graph below, from keelingcurve.ucsd.edu. This 400 ppm is 143% the pre-industrial peak level of 280 ppm.

Paleorecords show that greenhouse gases levels go up and down in lockstep with temperatures in history. The image below shows that carbon dioxide levels back in history typically moved between approximately 180 ppm and 280 ppm, a difference of 100 ppm. Since 1950, CO2 levels have risen by roughly the same difference.


In a fascinating lecture, Dr Jan Zalasiewicz suggests that the Anthropocene started around 1950, when levels of greenhouse gases started to rise exponentially, in line with the rise of fossil fuel use, as also illustrated by the image below.


The image below, from an earlier post, shows that temperatures typically moved up and down by roughly 10 degrees Celsius between a glacial and interglacial phase of the ice ages, suggesting that a 100 ppm rise of carbon dioxide and 300 ppb rise of methane go hand in hand with a 10°C temperature rise.

Many eminent scientists have warned that the high current carbon dioxide levels have already locked us in for a future temperature rise of several degrees Celsius, a rise that is yet to fully manifest itself and that is only held off by the temporary masking effect of sulfur dioxide that is emitted when burning fuel (especially coal) and by the (decreasing) capacity of oceans, ice sheets and glaciers to act as a buffer for heat. Once the masking effect of sulfur dioxide ends and the Arctic sea ice collapses, a huge sudden rise in temperature can be expected, hitting vulnerable pools (see image below) which would accelerate the temperature rise even more and could cause temperatures to rise by another 10°C within decades.


The scenario of such a huge rise in temperature becomes a distinct possibility when considering the combined warming impact of carbon dioxide, methane, nitrous oxide, water vapor and albedo changes, and the vulnerability of some of the terrestrial and marine carbon pools. Also note that, while the above Unesco image gives an estimate of 104 or 10,000 Gt C for ocean methane hydrates, several studies give even higher estimates, as illustrated by the image below, from Pinero et al.


The amount of carbon stored in hydrates globally was in 1992 estimated to be 10,000 Gt (USGS), while a later source gives a figure of 63,400 Gt C for the Klauda & Sandler (2005) estimate of marine hydrates. A warming Gulf Stream is causing methane eruptions off the North American coast. Furthermore, methane appears to be erupting from hydrates on Antarctica, on the Qinghai-Tibetan Plateau and on Greenland. In just one part of the Arctic Ocean alone, the East Siberian Arctic Shelf (ESAS), up to 1700 Gt of methane is contained in sediments in the form of methane hydrates and free gas. A sudden release of just 3% of this amount could add over 50 Gt of methane to the atmosphere, i.e. some seven times what is in the atmosphere now, and experts consider such an amount to be ready for release at any time.

Importantly, methane levels have risen even more strongly than carbon dioxide levels. As the image at the top of this post shows, the current methane level is 250% its pre-industrial peak level, i.e. 1100 ppb above the pre-industrial peak level of 700 ppb. Historically, methane has only moved by some 300 ppb between a glacial and interglacial phase of the ice ages. IPCC/NOAA figures suggest that global mean methane levels have been rising by 5 or 6 ppb annually over recent years and there are some worrying indications that the rise of methane levels might accelerate even further.

To obtain mean methane abundance, measurements are typically taken at an altitude of 586 mb, as methane typically shows up most prominently at this altitude. Indeed, mean methane levels were highest at this altitude in April 2013, at just under 1800 ppb. Looking at mean global methane levels in April 2014 at this altitude, one could at first glance conclude that the situation had not changed much, and that 2014 methane levels had merely risen by a few ppb, in line with IPCC data. So, at first glance one might conclude that there may appear to be only a minimal rise (if any at all) in global mean methane levels when taking measurements at lower altitudes.

The image below illustrates this. What should be added is that the analysis used only selected altitudes and only used part of all data. So, further analysis may be necessary to verify these findings.



Importantly, closer examination of above graph shows that the situation is dramatically different when looking at the rise in methane levels at higher altitudes. A huge rise in mean methane levels appears to have taken place, to the extent that the highest mean level is now reached at 469 mb. Overall, the average rise in methane across the altitudes that are highlighted in the image is no less than 16 ppb.

The table below shows the altitude equivalents in mb (millibar) and feet.
56925 feet44689 feet36850 feet30569 feet25543 feet19819 feet14383 feet8367 feet1916 feet
74 mb147 mb218 mb293 mb367 mb469 mb586 mb742 mb945 mb

As the image below illustrates, this rise appears to go hand in hand with much higher peak readings, especially at higher altitudes. It appears that the additional methane originates from the higher latitudes of the Northern Hemisphere and has over the past few months moved closer to the equator, which is what typically occurs as methane rises in altitude.


Peak readings in above image are averages over April. On specific days, peak readings could be much higher, e.g. on April 28, 2014, methane levels were recorded as high as 2551 ppb at 469 mb.

As said, there appears to be a 16 ppb rise when comparing global mean methane levels between April 2013 and April 2014. Indeed, the culprit appears to be the rapid rise of methane emissions from hydrates that has been documented by this blog and that I estimated to amount to 99 Tg annually, as illustrated by the image below, from an earlier post.


So, it appears that the rise of methane in the atmosphere is accelerating. What can we expect? As temperatures can be expected to continue to rise and as feedbacks start to kick in, this may well constitute a non-linear trend. The image below shows a polynomial trend that is contained in IPCC AR5 data from 1955 to 2011, so they didn't include this recent steep rise. Nonetheless, the polynomial trendline points at methane reaching mean global levels higher than 3000 ppb by the year 2030. If methane starts to erupt in large quantities from clathrates underneath the seafloor of the Arctic Ocean, this may well be where we are heading.
So, how high could temperatures rise? Worryingly, a non-linear trend is also contained in the temperature data that NASA has gathered over the years, as described in an earlier post. A polynomial trendline points at global temperature anomalies of 5°C by 2060. Even worse, a polynomial trend for the Arctic shows temperature anomalies of 4°C by 2020, 7°C by 2030 and 11°C by 2040, threatening to cause major feedbacks to kick in, including albedo changes and methane releases that will trigger runaway global warming that looks set to eventually catch up with accelerated warming in the Arctic and result in global temperature anomalies of 20°C+ by 2050.


Without action, it appears that the Antropocene will lead to extinction of the very human beings after which the era is named, with the Anthropocene only running from 1950 to 2050, a mere 100 years and much too short to constitute an era. In that case a better name would be the Sixth Extiction Event, as also illustrated by the image below, from an earlier post.


In conclusion, it's high time that we start acting as genuinely wise modern human beings and commit to comprehensive and effective action as discussed at the Climate Plan blog.

Saturday, April 26, 2014

M5.1 Earthquake hits Greenland Sea

An earthquake with a magnitude of 5.1 on the Richter scale hit the Greenland Sea on April 26, 2014, at 03:55:33 UTC at a depth of 10.00 km (6.21 mi). The epicenter of the earthquake is located right on the faultline that crosses the Arctic Ocean, at 73.479°N 7.974°E, some 567km (352mi) SSW of Longyearbyen, Svalbard.

[ click on image to enlarge ]
This follows four further recent earthquakes close to Svalbard or on the faultline north of Greenland, as indicated on above map. All these earthquakes struck at a depth of 10.00 km (6.21 mi).

Some of these earthquakes have also been discussed in earlier posts:
M4.6 - North of Franz Josef Land, 2014-04-13 02:12:19 UTC, also discussed in this post
M4.2 - North of Franz Josef Land, 2014-04-04 07:01:30 UTC
M4.4 - 262km NE of Nord, Greenland, 2014-04-22 10:30:23 UTC, also discussed in this post
M4.3 - 148km SSE of Longyearbyen, Svalbard, 2014-04-24 08:33:06 UTC
M5.1 - Greenland Sea, 2014-04-26 03:55:33 UTC
M4.5 - Gakkel Ridge, 2014-03-06 11:17.17.0 UTC, also discussed in this post

There have been a large number of earthquakes around Greenland since early 2014, as illustrated by the image below. This could be an indication of isostatic rebound, as also discussed in this earlier post.

[ click on image to enlarge ]

As melting of the Greenland Ice Sheet speeds up, isostatic rebound could cause earthquakes around Greenland to become stronger and occur more frequently. Earthquakes in this region are very worrying, as they can destabilize hydrates contained in the sediment under the seafloor of the Arctic Ocean. Furthermore, one earthquake can trigger further earthquakes, especially at locations closeby on the same faultline.

Tuesday, April 22, 2014

M4.4 Earthquake hits Arctic Ocean north of Greenland

An earthquake with a magnitude of 4.4 on the Richter scale hit the Arctic Ocean north of Greenland on April 22, 2014, at 10:30:23 UTC at a depth of 10.00 km (6.2 mi).

[ click on image to enlarge ]
The epicenter of the quake is located right on the faultline that crosses the Arctic Ocean, at 83.328°N 4.568°W, 262km (163mi) NE of Nord, Greenland.

The earthquake follows another earthquake that hit the Arctic Ocean closeby on this faultline, on April 13, 2014, north of Franz Josef Land.

Earthquakes at this location are very worrying, as they can destabilize hydrates contained in the sediment under the seafloor of the Arctic Ocean. Furthermore, one earthquake can trigger further earthquakes, especially at locations closeby on the same faultline.

Arctic Sea Ice in Steep Descent

Arctic sea ice area is in steep descent, as illustrated by the image below. Sea ice area was only smaller at this time of the year in 2007, for all years for which satellite data are available.

[ click on image to enlarge ]
Earlier this year, on March 9, 2014, Arctic sea ice area was at a record low for the time of the year. Since then, area did show some growth for a while, to the north of Scandinavia. This growth could be attributed largely to strong winds that made the sea ice spread with little or no growth in volume. The 30-day Naval Research Laboratory animation below shows recent sea ice speed and drift.


Indeed, sea ice volume in March 2014 was the 2nd lowest on record. Only March 2011 had a lower volume as discussed in a recent post. The 30-day Naval Research Laboratory animation below shows recent sea ice thickness. 



Low sea ice volume and area jointly suggest there could be a total collapse of the sea ice later this year, in line with observation-based non-linear trends. For years, this blog has warned that observation-based projections point at Arctic sea ice disappearance within years, with dire consequences for the Arctic and for the world at large.

As said, winds are responsible for much of sea ice variability, and winds could either slow down or speed up such a collapse. On this point, it's good to remember what Prof. Peter Wadhams said in 2012:
". . apart from melting, strong winds can also influence sea ice extent, as happened in 2007 when much ice was driven across the Arctic Ocean by southerly winds. The fact that this occurred can only lead us to conclude that this could happen again. Natural variability offers no reason to rule out such a collapse, since natural variability works both ways, it could bring about such a collapse either earlier or later than models indicate.

In fact, the thinner the sea ice gets, the more likely an early collapse is to occur. It is accepted science that global warming will increase the intensity of extreme weather events, so more heavy winds and more intense storms can be expected to increasingly break up the remaining ice, both mechanically and by enhancing ocean heat transfer to the under-ice surface."
The image on the right, produced with NOAA data, shows mean coastal sea surface temperatures of over 10°C (50°F) in some areas in the Arctic on August 22, 2007.

In shallow waters, heat can more easily reach the bottom of the sea. In 2007, strong polynya activity caused more summertime open water in the Laptev Sea, in turn causing more vertical mixing of the water column during storms in late 2007, found a 2011 study, and bottom water temperatures on the mid-shelf increased by more than 3°C (5.4°F) compared to the long-term mean.

Another study found that drastic sea ice shrinkage causes increase in storm activities and deepening of the wind-wave-mixing layer down to depth ~50 m (164 ft) that enhance methane release from the water column to the atmosphere. Indeed, the danger is that heat will warm up sediments under the sea, containing methane in hydrates and as free gas, causing large amounts of this methane to escape rather abruptly into the atmosphere.

Such warming would come on top of ever-warmer water that is carried by the Gulf Stream into the Arctic Ocean and that has already been blamed for large methane releases from the seafloor of the Arctic Ocean last year.

The prospect of an El Niño event, as discussed in an earlier post, makes the situation even more dire.

The consequences of sea ice collapse will be devastating, as all the heat that previously went into transforming ice into water will be asbsorbed by even darker water, from where less sunlight will be reflected back into space. The danger is that further warming of the Arctic Ocean will trigger massive methane releases that could lead to extinction at massive sclae, including extinction of humans.

Hopefully, more people will realize the urgency of the situation and support calls for comprehensive and effective action as discussed at the Climate Plan blog.

Wednesday, April 16, 2014

Near-Term Human Extinction

Global Warming and Feedbacks

Is there a mechanism that could make humanity go extinct in the not-too-distant future, i.e. within a handful of decades?

Most people will be aware that emissions due to human activity are causing global warming, as illustrated by the arrow marked 1 in the image on the left. Global warming can cause changes to the land, to vegetation and to the weather. This can result in wildfires that can in turn cause emissions, thus closing the loop and forming a self-reinforcing cycle that progressively makes things worse.

Furthermore, less forests and soil carbon also constitute a decrease in carbon sinks, resulting in carbon that would otherwise have been absorbed by such sinks to instead remain in the atmosphere, thus causing more global warming, as illustrated by the additional downward arrow in the image on the right. In conclusion, there are a number of processes at work that can all reinforce the impact of global warming.

Emissions can also contribute more directly to land degradation, to changes in vegetation and to more extreme weather, as indicated by the additional arrow pointing upward in the image on the right. A recent study by Yuan Wang et al. found that aerosols formed by human activities from fast-growing Asian economies can cause more extreme weather, making storms along the Pacific storm track deeper, stronger, and more intense, while increasing precipitation and poleward heat transport.

Accelerated Warming in the Arctic

Similar developments appear to be taking place over the North Atlantic. Huge pollution clouds from North America are moving over the North Atlantic as the Earth spins. In addition, the Gulf Stream carries ever warmer water into the Arctic Ocean. As the image below shows, sea surface temperature anomalies at the highest end of the scale (8 degrees Celsius) are visible off the coast of North America, streching out all the way into the Arctic Ocean.


As said, feedbacks as are making the situation progressively worse. Feedback loops are causing warming in the Arctic to accelerate. Warming in the Arctic is accelerating with the demise of the snow and ice cover in the Arctic, and this is only feedback #1 out out many feedbacks that are hitting the Arctic, as described in an earlier post. As the temperature difference between the equator and the Arctic decreases, the Jet Stream is changing, making it easier for cold air to move out of the Arctic and for warm air from lower latitudes to move in (feedback #10).


Abrupt Climate Change leading to Extinction at Massive Scale

The danger is that, as temperatures over the Arctic Ocean warm up further and as the Gulf Stream carries ever warmer water into the Arctic Ocean, large quantitities of methane will erupt abruptly from the seafloor of the Arctic Ocean, adding a third kind of warming, runaway warming resulting in abrupt climate change, and leading to mass death, destruction and extiction of species including humans.

Persistence of such a progression makes it inevitable that the rest of Earth will follow the huge temperature rises in the Arctic. Massive wildfires will first ignite across higher latitudes, adding further greenhouse gas emissions and causing large deposits of soot on the remaining snow and ice on Earth, with a huge veil of methane eventually spreading around the globe. The poster below, from an earlier post, illustrates the danger.

[ click on image to enlarge - note that this is a 1.8 MB file that may take some time to fully load ]
Views by Contributors

How likely is it that the above mechanism will cause human extinction within the next few decades? What views do the various contributors to the Arctic-news blog have on this?

Guy McPherson has long argued that, given the strengths of the combined feedbacks and given the lack of political will to take action, near-term human extinction is virtually inevitable.

In the video below, Paul Beckwith responds to the question: Can climate change cause human extinction?


Further contributors are invited to have their views added to this post as well. While many contributors may largely share Paul Beckwith's comments, it's important to highlight that contributors each have their own views, and this extends to their preference for a specific plan of action.

Geo-engineering

One of the more controversial issues is the use of geo-engineering. Guy McPherson doesn't believe geo-engineering will be successful. In the video below, Paul Beckwith gives his (more positive) views on this.


I must admit that the lack of political will to act is rather depressing, especially given the huge challenges ahead. So, I can understand that this can make some of us pessimistic at times. Nonetheless, I am an optimist at heart and I am convinced that we can get it right by giving more support to a Climate Plan that is both comprehensive and effective, as discussed at ClimatePlan.blogspot.com

Monday, April 14, 2014

M4.5 Earthquake hits Arctic Ocean

An earthquake with a magnitude of 4.5 on the Richter scale hit the Arctic Ocean on April 13, 2014, at 02:12:19 UTC at a depth of 10.00 km (6.21 mi).


The epicenter of the quake is located right on the faultline that crosses the Arctic Ocean, at 86.687°N 45.393°E, some 800 km north of Franz Josef Land.

Earthquakes at this location are very worrying, as they can destabilize hydrates contained in the sediment under the seafloor of the Arctic Ocean. Furthermore, one earthquake can trigger further earthquakes, especially at locations closeby on the same faultline.