Friday, March 18, 2022

Signs of the rise to come

Arctic sea ice extent has fallen strongly over the past few weeks and looks set to keep falling rapidly over the next few months. 


Ocean heat is at record levels, as illustrated by the image below and as discussed in an earlier post


The image below shows the temperature at the North Pole reaching 0.7°C or 33.3°F (at 1000 hPa, at the green circle) on March 16, 2022, with ocean currents depicted at the background.


How could the temperature at the North Pole get this high, in March? 

As said, ocean heat is at record levels. This is heating up the air over the Atlantic Ocean. At times, huge amounts of heat are getting pushed into the Arctic due to a distorted Jet Stream. The image on the right shows the Jet Stream on the Northern Hemisphere on March 16, 2022, with strong winds at 250 hPa pushing heat from the Atlantic Ocean into the Arctic.

Furthermore, the Gulf Stream is pushing huge amounts of ocean heat toward the Arctic. 

The image below shows that sea surface temperatures were as much as 14.1°C or 25.3°F higher than 1981-2011 off the North American coast (green circle) on March 5, 2022.


The image below shows that, on March 16, 2022, the temperature in the Arctic was 3.5°C higher than 1979-2000. 


Below, a Climate Reanalyzer forecast for March 18, 2022, of very high temperature anomalies over Antarctica combined with a forecast of a diversion over Antarctica of the Southern Polar Jet Stream (wind at 250 hPa).


As the combination image below shows, the temperature on Antarctica was 12.5°C or 54.4°F at 1000 hPa at the green circle on March 17, 2022 at 17:00 UTC. The image in the left panel shows high sea surface temperature anomalies south of Australia, while the Jet Stream (250 hPa) moves over Antarctica. The image in the right panel shows wind and temperature at 1000 hPa. 


What causes such distortions of the Jet Stream?

• Emissions by people heat up the air, and heat up oceans and make winds stronger, as discussed in an earlier post.

• Another mechanism affecting the Jet Stream is that, as oceans heat up, the temperature difference between land and oceans widens both in Summer and in Winter and this can cause the Jet Stream to divert deeper from the narrow path it used to follow, as discussed in an earlier post

• What especially affects the Jet Stream on the Northern Hemisphere is that, as the Arctic gets hit hard by temperature rises, the temperature difference narrows between the Arctic and the Equator, slowing the Jet Stream; this can prolong and amplify extreme weather events.


Signs of the things to come

The above events could be seen as signs of the strength and the speed of the rise to come.  


Rise due to La Niña and high sunspots

The image below indicates that the global temperature difference between the top of an El Niño and the bottom of a La Niña period could be more than half a degree Celsius.


The highest temperature anomalies have over the years shown up at the highest latitudes North, i.e. the Arctic Ocean, in particular during El Niño periods.

This is illustrated by the image on the right, created with a NASA image that shows temperature anomalies of up to 4.1°C (versus 1951-1980) over the Arctic Ocean.

The next image on the right, by Climate Reanalyzer, illustrates that very high temperature anomalies can show up at the highest latitudes North during Winter on the Northern Hemisphere, in this case a temperature anomaly (vs 1979-2000) of 7°C for the Arctic as a whole on February 28, 2022. 

It is ominous for such high anomalies to show up in the Arctic during a La Niña period, and when it's Winter on the Northern Hemisphere when there's only very little sunlight reaching the Arctic. 

For comparison, the next image on the right shows a temperature anomaly (vs 1979-2000) of 7.7°C for the Arctic as a whole on November 18, 2016, when there was an El Niño. 

We're currently in the depth of a persistent La Niña, as illustrated by the next image on the right, adapted from NOAA. This has been suppressing the temperature and it will keep suppressing the temperature until the start of the next El Niño. The next El Niño could push temperatures up even more strongly than the average El Niño, for a number of reasons.

As the temperature keeps rising, ever more frequent strong El Niño events are likely to occur, as discussed in an earlier post. Furthermore, a 2019 study analyzes how tipping the ENSO into a permanent El Niño can trigger state transitions in global terrestrial ecosystems, as mentioned in an earlier post.

Currently, the temperature rise is additionally suppressed by low sunspots. Within a few years time, sunspots can be expected to reach the peak of their current cycle. Observed sunspots look stronger than predicted, as described at the sunspots page. According to IPCC AR4, warming by solar irradiance ranges from 0.06 to 0.3 W/m².


Rise due to further elements

[ from the Extinction page ]
On top of the temperature rise that can be expected to unfold over the next few years due to variables such as an upcoming  El Niño and high sunspots, there is the temperature rise due to further elements.

One of these elements causing the temperature to rise is the falling away of sulfate aerosols, while there could be a further temperature rise due to releases of other aerosols that have a net warming impact, such as black and brown carbon, which can increase dramatically as more wood burning and forest fires take place.

As the temperature of the atmosphere rises, this will trigger self-reinforcing feedbacks such as an increase in water vapor combined with a decrease in lower clouds decks, further increasing the temperature, as described at the clouds feedback page.

What could further push up temperatures a lot over the next few years is the compound impact of feedbacks in the Arctic, including decline of the snow and ice cover, releases of greenhouse gases from degrading subsea and terrestrial permafrost, and further distortion of the Jet Stream causing more extreme weather events.


Conclusion

The situation is dire and calls for the most comprehensive and effective action, as described at the Climate Plan.


Links

• Albedo loss in Antarctica
https://arctic-news.blogspot.com/2022/02/albedo-loss-in-antarctica.html

• NSIDC - Charctic interactive Sea Ice Graph
https://nsidc.org/arcticseaicenews/charctic-interactive-sea-ice-graph

• Nullschool.net
https://earth.nullschool.net

• Climate Reanalyzer
https://climatereanalyzer.org

• Accelerating loss of global snow and ice cover
https://arctic-news.blogspot.com/2022/02/accelerating-loss-of-global-snow-and-ice-cover.html

• Why stronger winds over the North Atlantic are so dangerous

• NOAA - ENSO: Recent Evolution, Current Status and Predictions
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.pdf

• Historical change of El Niño properties sheds light on future changes of extreme El Niño - by Bin Wang et al. 
https://www.pnas.org/content/116/45/22512

• Tipping the ENSO into a permanent El Niño can trigger state transitions in global terrestrial ecosystems - by Mateo Duque-Villegas et al. 
https://esd.copernicus.org/articles/10/631/2019

• Accelerating loss of global snow and ice cover 

• Clouds feedback

• Feedbacks in the Arctic



Saturday, March 12, 2022

Methane rise is accelerating


NOAA's globally averaged marine surface monthly mean methane reading for November 2021 of 1909.3 parts per billion (ppb) is 17.6 ppb higher than the reading for November 2020. By comparison, NOAA's annual global mean methane increase of 15.57 ppb for 2020 was at the time the highest on record.

Keep in mind that this 1909.3 ppb reading is for November 2021; it now is March 2022. Furthermore, NOAA's data are for marine surface measurements; more methane tends to accumulate at higher altitudes.

The image below shows that the MetOp-B satellite recorded a mean methane level of 1936 ppb at 321 mb on March 7, 2022 pm.


Carbon dioxide

Carbon dioxide levels are currently very high over the Arctic, as illustrated by the image below that shows carbon dioxide levels approaching 430 parts per million (ppm) recently at Barrow, Alaska. 


Clouds tipping point

[ from earlier post ]
The danger is that high greenhouse gas levels could combine to push the carbon dioxide equivalent (CO₂e) level over the 1200 ppm clouds tipping point, at first in one spot, causing low-altitude clouds in various neighboring areas to break up there, and then propagating break-up of clouds in further areas, as discussed at the clouds feedback page.

The MetOp-B satellite recorded a mean methane level of 1958 ppb on October 25, 2021 am at 295 mb. When using a 1-year GWP of 200, this translates into 391.6 ppm CO₂e. Together with a global mean CO₂ level of 420 ppm, that's 811.6 ppm CO₂e, i.e. only 388.4 ppm CO₂e away from the 1200 ppm CO₂e clouds tipping point. 

The image on the right shows a trend based pointing at a methane level of almost 4000 ppb by end 2026, from an earlier post.

Alternatively, an additional 5 Gt of methane from abrupt release from the seafloor could raise the global mean methane concentration by about 2000 ppb, and even earlier than 2026.

At a 1-year GWP of 200, an extra 2000 ppb would translate into an extra 400 ppm CO₂e, thus pushing the joint impact of just two greenhouse gases (carbon dioxide and methane) above the 1200 ppm CO₂e clouds tipping point and raising the global temperature by 8°C due to the clouds feedback alone, i.e. on top of the additional rise caused by other warming elements, as further discussed below.


Seafloor methane eruptions could trigger a huge temperature rise 

Warnings about the potential for seafloor methane releases have been given repeatedly, such as in this 2017 analysis, in this 2019 analysis (image below) and in a recent analysis (2022). Researchers in 2019 found amounts of methane in the air over the East Siberian Sea up to nine times the global average.


2021 analysis indicates that massive methane seepage from the seafloor of the Arctic Ocean occurred during ice sheet wastage over the last and penultimate deglaciation periods (i.e. the Holocene, ~20-15 ka, respectively the Eemian, ~140-130 ka).

At the time, seafloor methane entering the atmosphere could be accommodated without resulting in huge temperature rises, because such releases were spread out over relatively long periods, while the level of methane in the atmosphere at the time was relatively low and since the lifetime of methane is limited to a decade or so. 

Today, circumstances are much more dire in many respects. While high heat peaks may have occurred locally during the last and penultimate deglaciation, today's global mean temperature is higher, as James Hansen et al., confirmed in a 2017 analysis. Furthermore, a 2012 analysis indicates that oceanic heat transport to the Arctic today is higher.

Greenhouse gas levels are very high at the moment and their rise is accelerating. As a result of the rapidity of today's rise, new seafloor methane eruptions can occur while previous methane releases haven't yet been broken down in the atmosphere. 
  
Seafloor methane eruptions can thus trigger a huge temperature rise, as illustrated by the image on the right, from the extinction page


Conclusions

The situation is dire and calls for the most comprehensive and effective action, as described at the Climate Plan.


Links

• NOAA - globally averaged marine surface monthly mean methane data
https://gml.noaa.gov/webdata/ccgg/trends/ch4/ch4_mm_gl.txt

• NOAA - globally averaged marine surface annual mean methane growth rates
https://gml.noaa.gov/webdata/ccgg/trends/ch4/ch4_gr_gl.txt

• NOAA - Infrared Atmospheric Sounding Interferometer (IASI) Sounding Products (MetOp-B)
https://www.ospo.noaa.gov/Products/atmosphere/soundings/iasi

• NOAA - Trends in Atmospheric Carbon Dioxide
https://gml.noaa.gov/ccgg/trends/gl_trend.html

• NOAA - Carbon Cycle Gases, Barrow Atmospheric Baseline Observatory, United States
https://gml.noaa.gov/dv/iadv/graph.php?code=BRW

• NOAA - Trends in Atmospheric Carbon Dioxide, Mauna Loa, Hawaii
https://gml.noaa.gov/ccgg/trends/graph.html

• Clouds feedback
https://arctic-news.blogspot.com/p/clouds-feedback.html

• Human Extinction by 2022?
https://arctic-news.blogspot.com/2021/11/human-extinction-by-2022.html

• Terrifying Arctic methane levels
https://arctic-news.blogspot.com/2021/12/terrifying-arctic-methane-levels.html

• Terrifying Arctic methane levels continue
https://arctic-news.blogspot.com/2022/01/terrifying-arctic-greenhouse-gas-levels-continue.html

• Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf - by Nataia Shakhova et al. (2017)
https://www.nature.com/articles/ncomms15872

• Understanding the Permafrost–Hydrate System and Associated Methane Releases in the East Siberian Arctic Shelf - by Nataia Shakhova et al. (2019)
https://www.mdpi.com/2076-3263/9/6/251

• CNN - Russian scientists say they've found the highest-ever 'flares' of methane in Arctic waters
https://edition.cnn.com/2019/10/12/us/arctic-methane-gas-flare-trnd/index.html

• In-situ temperatures and thermal properties of the East Siberian Arctic shelf sediments: Key input for understanding the dynamics of subsea permafrost - by Evgeny Chuvilin et al. (2022)
https://www.sciencedirect.com/science/article/abs/pii/S0264817222000289

• When Will We Die?
https://arctic-news.blogspot.com/2019/06/when-will-we-die.html

• Arctic methane release due to melting ice is likely to happen again 
https://www.geosociety.org/GSA/News/pr/2021/21-15.aspx

• Ice-sheet melt drove methane emissions in the Arctic during the last two interglacials - by Pierre-Antoine Dessandier et al. (2021)
https://pubs.geoscienceworld.org/gsa/geology/article-abstract/49/7/799/595627/Ice-sheet-melt-drove-methane-emissions-in-the

• Contrasting ocean changes between the subpolar and polar North Atlantic during the past 135 ka - by Henning Bauch et al. (2012) 
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2012GL051800

• Young people's burden - by James Hansen et al. 

• Extinction

• Climate Plan

Monday, February 28, 2022

What the IPCC impacts report is hiding

[ click on images to enlarge ]

Above image is adapted from content by IPCC AR6 WGII and Peter Carter, expert IPCC reviewer and director of the Climate Emergency Institute

The IPCC keeps hiding how much the temperature could already have risen and could rise over the next few years, the associated dangers, and the policies that could most effectively improve the situation. 



1. Hiding the potential rise that has already unfolded
One of the first issues that springs to mind is the IPCC's use of 1850-1900 as a baseline, which isn't pre-industrial as the Paris Agreement called for.


Above image, adapted from a NASA image, shows a January 2022 temperature rise of 1.31°C versus 1885-1915. As the box underneath indicates, a further 0.1°C could be added for ocean air temperatures and another 0.1°C for higher polar anomalies. When calculating the temperature rise from pre-industrial, a further 0.79°C could be added for the period from 3480 BC to 1900, resulting in a total temperature rise from pre-industrial to January 2022 of 2.3°C.


2. Hiding the potential rise to come

While a huge temperature rise has already unfolded, the rise is accelerating, as discussed at earlier posts such as this one and as illustrated by the image below, an example from an earlier post


In other words, an even larger temperature rise threatens to unfold soon, i.e. this could happen over the course of at few years, as illustrated by the stacked bar next to the cartoon above and as discussed at the extinction page.


3. Hiding the largest dangers

The rise that has already unfolded, i.e. the rise from pre-industrial to 2020, could be as much as 2.3°C, as discussed above and at the pre-industrial page. Furthermore, the temperature rise is accelerating. In other words, Earth is already in the danger zone and the question remains what the implications are of a 3°C, 4°C and 5°C rise.



What would be the impact of a 3°C, a 4°C, or a 5°C rise? 

At a 3°C rise, humans will likely go extinct, as habitat for humans (and many other species) will disappear. Such a rise will cause a rapid decline of the snow and ice cover around the globe, in turn making that less sunlight gets reflected back into space. Associated changes are discussed in more detail at this page and this page, and include that the jet stream will further get out of shape, resulting in more extreme weather events such as droughts, heatwaves and firestorms. Changes to the jet stream will also contribute to a further strengthening of storms, which threatens to at times push large amounts of hot, salty water into the Arctic Ocean, triggering eruptions of more and more seafloor methane, as discussed in an earlier post.

[ from an earlier post  ]
From a 4°C rise, Earth will experience a moist-greenhouse scenario. As the temperature rise gains further momentum, runaway heating may well turn Earth into a lifeless planet, a danger that was discussed in this 2013 post, warning that, without anything stopping the rise, it will continue to eventually destroy the ozone layer and the ice caps, while the oceans would be evaporating into the atmosphere's upper stratosphere and eventually disappear into space.

At 5°C rise, most life on Earth will have gone extinct. A 2018 study by Strona & Bradshaw indicates that most life on Earth will disappear with a 5°C rise (see box on the right). As the temperature keeps rising, chances are that all life on Earth will go extinct, as Earth would be left with no ozone layer to protect life from deadly UV-radiation. Furthermore, Earth would no longer have water, an essential building block of life. Soil moisture, groundwater and water in oceans would evaporate and eventually disappear into space, as discussed in an earlier post.

Much of the above was discussed earlier at Most Important Message Ever.

[ from the post When will we die? ]

A rise of more than 5°C could happen within a decade, possibly by 2026. Humans will likely go extinct with a 3°C rise and most life on Earth will disappear with a 5°C rise. In the light of this, we should act with integrity.


4. Hiding the very policies that can most effectively improve the situation

The IPCC creates a perception that pollution can continue for decades to come. The IPCC does so by downplaying the size of the temperature rise and the threat of a huge rise within years. The IPCC promotes the idea that there was a “carbon budget” to be divided among polluters that would enable polluters to keep polluting for decades to come. Most importantly, the IPCC has once more failed to do what the Paris Agreement calls for, i.e. for the IPCC to specify the pathways that can best improve the situation, specifically the policies that are needed to facilitate a better future. 

The speed at which a huge temperature rise can unfold makes that many adaption efforts could be wasted or even counter-productive. A 2021 report by Neta Crawford estimates the budgetary costs and future obligations of the post-9/11 wars at about $8 trillion in 2021 dollars. Much of that money was spent on securing the supply and transport of fossil fuel. Governments spend $1.8tn a year on subsidies that harm the environment, a study by Doug Koplow et al. finds. Globally, fossil fuel subsidies were $5.9 trillion in 2020 or about 6.8% of GDP and are expected to rise to 7.4% of GDP in 2025, a 2021 IMF report finds. 

Perverse subsidies are even higher when also including money that now goes into constructing transport infrastructure such as roads, highways, tunnels, bridges, railways, airports, etc. Redirecting such funding could enable more people to work and study from home with time to spare and gardens to grow their own food, instead of commuting by car over roads to offices, schools, etc.

[ from earlier post ]
Electric VTOL air taxis can replace a huge part of the traffic that now demands expensive infrastructure such as roads, railways including service stations, parking buildings and strips, bridges, tunnels, etc. Air taxis can facilitate a dramatic reduction in the need for traffic infrastructure, which also includes space now used for garages and parking.

If much of this traffic instead takes place by air taxis, then urban design can have more space for outdoor dining, parks, markets, tree-lined footpaths, bike-tracks, etc. 

Furthermore, drones could be used for transport and delivery of cargo, pharmaceuticals, etc. In many places, cities can become more compact and buildings can be put closer together, thus reducing overall cost and enabling people to reach destinations quicker, either by walking or cycling. Air taxis can bring people to many destinations fast, while people can also using online facilities to further reduce the need for transport and travel infrastructure.

In other places, the space now used for roads and parking could instead be used to create urban forests, to extend gardens and to create community gardens and markets where people can get locally-produced vegan-organic food such as fruit and vegetables.

Much additional infrastructure can also change, such as traffic lights and road signs, streetlights and the electricity grid. Supply of natural gas could be replaced by electric devices such as heat-pumps, induction-cookers and electric water-heaters. Organic waste can be pyrolysed with the resulting biochar added to the soil.

For more on the Urban Heat Island effect, see:
https://www.facebook.com/groups/airtaxis/posts/419568755612304


For more on biochar and pyrolysis, see:
https://www.facebook.com/groups/biochar


Conclusion

The situation is dire and calls for the most comprehensive and effective action, as described at the Climate Plan.


Links

• IPCC AR6 WGII - Climate Change 2022: Impacts, Adaptation and Vulnerability

• Is the IPCC creating false perceptions, again?

• Human Extinction by 2022?

• NASA GISS Surface Temperature Analysis (v4)
• Pre-industrial
https://arctic-news.blogspot.com/p/pre-industrial.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Aerosols
https://arctic-news.blogspot.com/p/aerosols.html

• Clouds feedback
https://arctic-news.blogspot.com/p/clouds-feedback.html

• When Will We Die?
https://arctic-news.blogspot.com/2019/06/when-will-we-die.html

• Could Earth go the same way as Venus?
• Accelerating Methane Rise
https://arctic-news.blogspot.com/2022/02/accelerating-methane-rise.html

• Protecting Nature by Reforming Environmentally Harmful Subsidies: The Role of Business Prepared - by Doug Koplow and Ronald Steenblik (2022) 
https://www.earthtrack.net/sites/default/files/documents/EHS_Reform_Background_Report_fin.pdf

• The U.S. Budgetary Costs of the Post-9/11 Wars - by Neta Crawford (2021)
https://watson.brown.edu/costsofwar/files/cow/imce/papers/2021/Costs%20of%20War_U.S.%20Budgetary%20Costs%20of%20Post-9%2011%20Wars_9.1.21.pdf

• IMF - Still Not Getting Energy Prices Right: A Global and Country Update of Fossil Fuel Subsidies
https://www.imf.org/en/Publications/WP/Issues/2021/09/23/Still-Not-Getting-Energy-Prices-Right-A-Global-and-Country-Update-of-Fossil-Fuel-Subsidies-466004

• Which policy can help EVs most?
• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html




Tuesday, February 22, 2022

Albedo loss in Antarctica


As above image shows, Antarctic sea ice extent was only 1.973 million km² on February 23, 2022, the lowest on record since satellite measurements began in 1979.


Earlier, on February 20, 2022, Antarctic sea ice extent was only 1.983 million km². On February 20, 2008, it was 3.783 million km². That's a difference of 1.8 million km², or some 0.36% of the total surface of Earth (which is 510,072,000 km²).



As illustrated by above image, adapted from IPCC AR5, incoming solar radiation at Top Of Atmosphere (TOA) is 340.4 W/m². This 340.4 W/m² is an average. The value varies depending on the seasons, i.e. the more the surface of Earth is facing the Sun, the higher this value will be (see image below, from the insolation page). 

                     The June Solstice in 2021 occurred on June 21, 2021.
Another variable is how many clouds and aerosols are in the sky. Much of this radiation can be reflected or absorbed by the atmosphere and some of the radiation that reaches the surface can also be reflected. Yet, on a cloud-free day, where the sky is clear from aerosols, much of the incoming solar radiation will reach the surface. It further depends on the albedo of the surface, how much will in the end be absorbed or reflected at the surface.

[ from the Albedo page ]

Albedo refers to the reflectivity of the surface. Earth average albedo is 0.3 or 30%. The albedo of sea ice can be as high as 0.9 (i.e. 90% when covered with fresh snow). Currently, albedo of the sea ice is about 0.6 (the sea ice is partly covered with melt pools). Open water has an albedo of 0.06. So, disappearance of the sea ice makes an albedo difference of at least 0.5.

So, when taking half of 340 W/m² and multiplying this by 0.36% (i.e. the part of Earth's surface), that gives a radiative forcing of 0.612 W/m². That would mean that some 0.612 W/m² that was previously reflected (Feb 20, 2008) is now instead absorbed by the ocean (on Feb 20, 2022). If Antarctic sea ice would disappear altogether, that would correspond to another loss of some 0.612 W/m², and together with the difference between 2008 and 2022, that would add up to a total radiative forcing of 1,224 W/m².

That's almost half as much as all human-caused global warming in 2019. As the image below shows, radiative forcing was 2.72 W/m² in 2019 relative to 1750, according to IPCC AR6


If anyone can add to or improve the above calculation, please add a comment (see box below). 

The situation is dire and calls for the most comprehensive and effective action, as described at the Climate Plan.


Links

• NSIDC - Charctic interactive Sea Ice Graph
https://nsidc.org/arcticseaicenews/charctic-interactive-sea-ice-graph

• Wikipedia - Earth
https://en.wikipedia.org/wiki/Earth

• IPCC - Figure 2.11 (AR5/WG1/Chapter 2)
https://www.ipcc.ch/report/ar5/wg1/observations-atmosphere-and-surface/fig2-11_orig-pptx-2

• The global energy balance from a surface perspective - by Martin Wild et al. (2012)

• NASA - Earth albedo

• Albedo

• Insolation

• IPCC AR6 WG1 SPM

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html