Showing posts sorted by date for query Arctic News Home. Sort by relevance Show all posts
Showing posts sorted by date for query Arctic News Home. Sort by relevance Show all posts

Sunday, January 7, 2024

2024 looks to be worse than 2023


The year 2024 looks to be worse than the year 2023. The above chart shows sea surface temperatures that were extremely high in 2023 followed by a steep rise in 2024, crossing 21°C in early January 2024.

The chart below illustrates this further, showing the daily sea surface temperature anomaly using 1 Sep. 1981 to 31 Dec. 2023 data versus the 1982-2011 mean for latitudes between 60°S and 60°N.

The importance of sea surface temperatures

Slowing down of the Atlantic meridional overturning circulation (AMOC) results in less ocean heat reaching the Arctic Ocean and, instead, a huge amount of ocean heat has been accumulating in the North Atlantic in 2023.

Much of the heat in the North Atlantic could soon be pushed abruptly into the Arctic Ocean, as storms can temporarily speed up currents strongly, carrying huge amounts of ocean heat with them into the Arctic Ocean.


The mechanism behind this has been described often in earlier posts and this page. Meltwater and rain can cause a freshwater lid to form and grow at the surface of the North Atlantic and this, in combination with greater stratification as ocean temperatures rise (above image), can enable more ocean heat to increasingly travel underneath this lid from the North Atlantic into the Arctic Ocean, and especially so at times when Jet Stream changes are causing storms that speed up ocean currents along this path.


The danger is illustrated by the above image, showing a forecast for January 11, 2024, with the Jet Stream moving almost vertically over the North Atlantic to the north. The image below shows heat over the North Atlantic, with temperatures reaching as high as 10.5°C or 50.8°F over Greenland (at the green circle) at 1000 hPa on January 10, 2024, 07:00 UTC.


The image below shows 2 meter temperature anomalies on January 11, 2024. 


Very high sea surface temperature anomalies can occur in the path of the Gulf Stream, as illustrated by the image below showing high sea surface temperatures on January 3, 2024, as high as 11.7°C (21°F) at the green circle, over the counterpart of the Gulf Stream in the Pacific, off the coast of Japan. 


Earlier posts have warned about this, such as this post and this video, almost seven years ago. This could cause events during which much ocean heat moves abruptly into the Arctic Ocean, resulting in seafloor methane releases, overwhelming of the latent heat buffer and causing sea ice loss (and thus albedo loss), as well as loss of lower clouds (thus causing further albedo loss), while open oceans are also less efficient than sea ice when it comes to emitting in the far-infrared region of the spectrum and while an ice-free Arctic Ocean will also release more ocean heat into the atmosphere.


Arctic sea ice volume is very low for the time of year, as illustrated by the above image.

A large part of the thicker sea ice is located off Greenland's East Coast, as illustrated by the above image. Much of the sea ice will therefore rapidly disappear as the water heats up in 2024.


The above image, adapted from tropicaltidbits.com, shows a forecast for October 2024 of the 2-meter temperature anomaly in degrees Celsius, based on 1984-2009 model climatology. The anomalies are forecast to be very high for the Arctic Ocean.

In the video below, Jennifer Francis is interviewed by Nick Breeze. 



The importance of daily air temperatures, Northern Hemisphere


[ from the Extinction page ]
The situation is dire. The Northern Hemisphere is getting hit hardest by high temperatures, as illustrated by the above image. 

The Northern Hemisphere is home to some 90% of the world population of more than 8 billion people, with much of them living in South-East Asia.

As more people become aware of the dire situation, widespread panic may set in.

People may stop showing up for work, resulting in a rapid loss of the aerosol masking effect, as industries that now co-emit cooling aerosols (such as sulfates) grind to a halt.

Many people may start to collect and burn more wood, resulting in an increase in emissions that speed up the temperature rise.

As temperatures rise, more fires could also break out in forests, peatlands and urban areas including landfills and waste dumps, further contributing to emissions that speed up the temperature rise.

The image on the right illustrates how fast a huge temperature could unfold.

As a somewhat sobering footnote, humans will likely go extinct with a 3°C rise and most life on Earth will disappear with a 5°C rise, as discussed in an earlier post.


Climate Emergency Declaration

The situation is dire and the precautionary principle calls for rapid, comprehensive and effective action to reduce the damage and to improve the situation, as described in this 2022 post, where needed in combination with a Climate Emergency Declaration, as discussed at this group.



Links
• Climate Reanalyzer 
https://climatereanalyzer.org

• Nullschool

• Danish Meteorological Institute - Arctic sea ice volume and thickness
https://ocean.dmi.dk/arctic/icethickness/thk.uk.php

• New Record Ocean Temperatures and Related Climate Indicators in 2023 - by Lijing Checg et al. (2024)

• Cold freshwater lid on North Atlantic
https://arctic-news.blogspot.com/p/cold-freshwater-lid-on-north-atlantic.html

• Extinction







Sunday, October 30, 2022

Transforming Society


How can the problems of war, climate collapse and famine best be addressed? 

Earlier this year, the U.N. issued a warning about famine, pointing out that war is compounding the problems of climate disruption and famine, adding that the "main costs to farmers are fertilizers and energy". The U.N. statement follows many news media reports about the rising cost of living.  

How can these problems best be addressed? For more than two decades, two sets of feebates have been recommended to help achieve agriculture reform and a rapid transition to clean, renewable energy, as depicted in the images in this post and as discussed in many earlier posts and the text below.


Agricultural Reform

Agriculture uses half of habitable land. Agriculture uses 70% to 90% of the freshwater supply. Most farmland is used to produce meat and diary. A 2019 Greenpeace analysis found over 71% of EU farmland to be dedicated to meat and dairy. Much agricultural land is used unsustainably in many ways; there is growing dependence on chemical fertilizers and weedkillers & herbicides, fungicides, insecticides, rodenticides and other pesticides; there is also a growing dependency on fossil fuel in many agricultural and food-related activities; and there is a growing demand for water. This causes huge emissions of greenhouse gases, pollution with toxic compounds, depletion of groundwater, salinification and erosion of soil and loss of soil nutrients and soil carbon content, and loss of diversity of many of the plants, the wildlife and the microorganisms that helped the world population grow to 8 billion people


Changing from food that is rich in meat and dairy to vegan-organic food can free up large areas of land that can instead be used for other purposes such as community gardens and food forests. It can bring down the cost of food and it can, in combination with biochar, restore the soil's carbon, moisture and nutrients content.

Instead of adding chemical nitrogen fertilizers - typically produced with natural gas - in annually-planted monocultures, it's better to have a diversity of vegetation including a variety of perennial plants such as legumes and trees. Furthermore, pyrolyzing biowaste should be encouraged, as this reduces fire hazards and produces biochar that can be added to soil to sequester carbon and to increase nutrients and moisture in the soil. According to Schmidt et al., 400,000 pyrolysis plants need to be built to process 3.8 billion tons of biowaste annually.

Local councils could encourage this by adding extra fees to rates for land where soil carbon falls, while using the revenue for rebates on rates for land where soil carbon rises.

That way, adding biochar effectively becomes a tool to lower rates, while it will also help improve the soil's fertility, its ability to retain water and to support more vegetation. That way, real assets are built, as illustrated by the image on the right, from the 2014 post Biochar Builds Real Assets.

Two sets of feebates can strongly reduce the greenhouse gases in the atmosphere, specifically carbon dioxide (C₂O), methane (CH₄) and nitrous oxide (N₂O).

[ from earlier post ]
The contribution of agriculture to emissions of carbon dioxide and especially methane is huge. The image on the right illustrates the difference between using a Gobal Warming Potential (GWP) for methane of 171 over a few years versus 28 over 100 years.

Nitrous oxide is also important, as a potent greenhouse gas and also as an ozone depleting substance (ODS). The impact of nitrous oxide as an ODS has grown relative to the impact of CFCs, as the abundance of nitrous oxide has kept rising in the atmosphere.

The IPCC in AR6 gives nitrous oxide a lifetime of 109 years and a GWP of 273. A 2017 study warns about increased nitrous oxide emissions from Arctic peatlands after permafrost thaw.

Furthermore, a recent study finds that nitrous oxide emissions contribute strongly to cirrus clouds, especially when ammonia, nitric acid and sulfuric acid are present together. Cirrus clouds exerts a net positive radiative forcing of about 5 W m⁻², according to IPCC AR6.

Much of current nitrous oxide emissions is caused by nitrogen fertilizers. Legumes include beans, peas, peanuts, lentils, lupins, mesquite, carob, tamarind, alfalfa, and clover. Legumes can naturally fix nitrogen to the soil, thus reducing the need for nitrogen fertilizer and in turn reducing the associated emissions, including emissions of methane and nitrous oxide.

Adding nitrogen fertilizer can also cause the formation of dead zones in lakes and oceans. Dead zones occur when the water gets too many nutrients, such as phosphorus and nitrogen from fertilizers, resulting in oxygen depletion at the top layer of oceans, which can also increase nitrous oxide releases.

In the video on the right, Jim McHenry discusses ways to improve the situation. 

All too often, chemical nitrogen fertilizers are added unnecessarily. The intent may be to help the plants grow, e.g. when leaves of plants turn yellow or when there is little growth. But it may actually be that the plants get too little water because the roots of the plants were damaged or too short, or that there was too little shade and too much sun. Excessive nitrogen fertilization and irrigation can then result in a lot of green leaves, but this growth can come at the expense of good food.

Instead, with a good mix of vegetation, there's little or no need to add chemical nitrogen fertilizer, since nitrogen-fixing plants such as legumes can help fast-growing plants get the necessary nitrogen, while the fast-growing plants provide shade for the legumes and the soil. Next to providing shade, the tall, sturdy stalks of plants such as corn can give the vines of beans something to attach themselves to. Fast-growing pants can provide a lot of shade to other plants and to the soil, thus keeping the soil moist, while also preventing the infiltration and growth of weeds and while also deterring pests with their spiny leaves.

Trees can lower surface temperatures by providing shade and by holding colder air under their canopy, thus avoiding extreme temperatures that could also cause the soil to get too dry. The roots of trees prevent erosion and guide rainwater to reach greater depth, thus avoiding that the soil gets too wet in case of heavy rain. Trees then pump water up from deep in the ground with their roots and much of the water comes out again through leaves (evapotranspiration), which stimulates rainfall. Furthermore, trees release pheromones (that attract pollinators) and other aerosols such as terpenes. Trees are typically narrower at the top and wider below, and through their shape and by standing up high they can guide the wind upward, while water vapor released from leaves also helps lift these aerosols into the air.  Raindrops forming around these aerosols will further stimulate the formation of lower cloud decks that provide shade, that reflect sunlight back into space and that produce more rainfall locally.

Furthermore, olivine sand can be used to create borders for gardens, footpaths and bicycle paths. Where needed, olivine sand could also be added on top of biochar, as the light color of olivine sand reflects more sunlight, while olivine can also soak up excess water and sequester carbon, while adding nutrients to the soil. By redesigning urban areas, more space can be used for trees, which also reduces the urban heat island effect and thus lowers temperatures.

In the video below, Paul Beckwith discusses global food shortages.


Also important is the transition to a vegan-organic diet. This can dramatically reduce the need for land and water, while additionally reducing greenhouse gas emissions. A good mix and variety of vegetation can help each of the plants through symbiotic interaction grow an abundance of vegan-organic food locally in a sustainable way.

Pyrolysis of biowaste is recommended as this can turn most carbon into biochar, resulting in high carbon sequestration rates, and increased capacity of the soil to retain carbon, nutrients and moisture, thus reducing erosion, fire hazards and greenhouse gas emissions, while increasing vegetation growth resulting in additional drawdown of carbon from the atmosphere. 

Most of the biowaste can be pyrolyzed and returned to the soil in the form of biochar. Some of the biowaste can also be used to construct buildings. Instead of cutting down the largest and most healthy trees to do so, which now all too often happens, it makes more sense to instead remove only dead trees and biowaste from the forest floor. Such use of biowaste could provide funding for the process of waste removal from the forest floor. For most biowaste (including kitchen and garden waste, and sewage), it makes sense to turn it into biochar that is added to the soil.

"The carbon content of biochar varies with feedstock and production conditions from as low as 7% (gasification of biosolids) to 79% (pyrolysis of wood at above 600 °C). Of this initial carbon, 63-82% will remain unmineralized in soil after 100 years at the global mean annual cropland-temperature of 14.9 °C", a 2021 study concludes. 

[ from earlier post ]
The above image shows how policies described in the Climate Plan can reduce the cost of energy and the cost of food, and facilitate the necessary transformation of society. The image shows examples of feebates that can help transform society in sectors such as agriculture, forestry, oceans, waste management and construction (center panel). The image also shows examples of local feebates to facilitate the transition to clean, renewable energy (top panel), as further discussed below.

Reducing the Cost of Energy and the Cost of Conflict

[ from earlier post, click on image to enlarge ]
As said, the cost of energy can best be reduced by a rapid transition to clean, renewable energy.

Much land is currently used for mining and drilling, refining and transport of fossil fuel (including roads, railways, ports and military protection to secure supply lines). 

Much land is also used to grow crops and trees that are burned for energy, such as wood used for heating, wood fed into power plants and crops grown for biofuel to power vehicles.

Mining, drilling and power plants are also large users of water. They need a lot of water, mainly for cooling, and they can pollute the water they use. 

Instead, by using electricity that is generated by wind turbines and solar panels, the total amount of water and the total area of land that is needed to produce energy can be reduced dramatically. 

Currently, much fossil fuel is transported by ship. International shipping emissions are not included in national totals of greenhouse gas emissions, despite the huge part of international shipping in global trade, carrying 70% of that trade by value and more than 80% by volume. Near the coast, batteries are increasingly powering shipping, but in international waters, shipping is almost entirely powered by fossil fuel, mainly bunker oil. Some 43% of maritime transport is busy merely moving fuel across the globe, so terminating fuel usage on land could in itself almost halve international shipping emissions.

In addition to commercial emissions caused by shipping of fuel, there are also military emissions that are excluded in national totals, such as international use by the military of bunker fuels and jet fuel, greenhouse gas emissions from energy consumption of bases abroad and the manufacture of equipment used by the military abroad. A large part of the military is busy securing and protecting global supply lines for fossil fuel, while burning huge amounts of fuel in the process. A 2019 analysis found that the US military's global supply chain and heavy reliance on carbon-based fuels make it the largest institutional consumer of oil and one of the largest greenhouse gas emitters, more than many countries worldwide.


Disputes over possession of fossil fuel are behind many international conflicts. Instead, nations can each cater for their power needs more independently and securely by transitioning to clean, renewable energy. A large part of a nation's infrastructure is used to transport fuel domestically, including trucks driving on roads and highways, while also using tunnels and bridges, parking places and stations for refuelling, while additionally fuel is transported by trains, planes and vessels that need ports, railways stations and tracks, and a lot of fossil fuel is burned in the process of transporting the fuel and constructing and maintaining these facilities.

Furthermore, part of the wood from forests and crops from farmland is used to supply biofuel, for use either to power vehicles, for heating or as fuel for power plants. Reducing the use of fuel will therefore also reduce nations getting into conflict with other nations, not only conflict over the possession of fossil fuel and over water to cool power plants, but also conflict over land and water that is used for agriculture and forestry to grow biofuel.

The easiest way to reduce the cost of conflict is to take away the reason for conflict, which in this case is the use of land to produce fuel.

In the video below, Robert Llewellyn interviews Mark Jacobson about The Climate Crisis.


Clean, renewable energy in the form of electricity generated by solar panels and wind turbines is already more economic than burning fuel for energy. Shifting to clean energy will thus lower the cost of energy, while people will also be less burdened by the cost of associated conflicts, which is more than the cost of the military and police taking care to avoid conflict, as the cost is even larger than that if conflicts do escalate and cause destruction of infrastructure, damage to soil and ecosystems and loss of lives, health and livelihood for all involved.

The comprehensive and effective action proposed by the Climate Plan can terminate the use of fuel and thus also reduce conflict, while additionally reducing the threat of runaway warming, and while additionally providing many environmental benefits and further benefits such as the termination of perceived needs for military forces to police global fuel supply lines and associated infrastructure.

In conclusion, reducing the use of fuel will in itself further reduce demand for fuel and the cost of energy. Replacing fuel by clean, renewable energy can additionally cut the need for energy through greater efficiencies of electric motors, appliances and devices. As said, this will also reduce the need for land and water, and - this cannot be said enough - avoid or delay climate collapse and catastrophe.

Air Taxis and Urban Redesign can further facilitate the necessary transformation



Electric vertical take-off and landing (eVTOL) air taxis can be an important component of the transformation of the way we travel, live, work and eat.

Using eVTOL air taxis can reduce the need for roads and associated infrastructure, further freeing up land, while the transition to electricity generated with solar panels and wind turbines can additionally free up land that is now used by utilities and their associated infrastructure such as power plants, power poles and towers, communication poles, etc. This land can instead be used for community gardens, (food) forests, parks, etc.

This doesn't have to be an instant shift. In existing cities, there already is a strong and growing movement to restrict the use of cars in city centers, and to instead add more walkways and bikeways. In this case, the roads will still be there, it's just their usage that changes. Another example is pipes. Many cities want to disconnect pipes that now supply natural gas to buildings, as it makes more sense to use electricity instead. The pipes will still be there, they just won't be used anymore, if at all. Digging up the pipes may make sense, but this may take some effort and time and it's therefore important that this issue is not used as an excuse to delay the rapid transition to the use of clean energy that is so urgently needed.

It's important to look at longer-term and more radical redesign. The transition toward greater use of air taxis enables space previously used for roads to instead be used for more walkways and bikeways, as well as for trees, community gardens, etc. This should be incorporated as part of wider and longer-term planning and redesign of urban areas.

In some places, this can lead to a more compact urban design, especially in city centers. After all, a lot of space becomes available as the use of roads for vehicle movements and for parking is reduced in an urban area, and this allows for more compact construction of new buildings and renovation of existing buildings that also reduces the distance between buildings, thus shortening the time it takes for trips by foot or bike in the city center, while there also will be plenty of opportunities for spaces to be created for air taxis to land and take off, e.g. in parks and on top of buildings.

At the same time, air taxis enable trips of up to a few hundred miles to be completed fast, while using little energy and causing little emissions. Furthermore, more remote places can be economically reached by air taxis without a need for roads to lead them to these places or for railway stations to be located nearby. Drone delivery of goods and air taxis can enable more people to live outside urban areas. More people will be able to have goods delivered to their home and to reach urban amenities if and when they want to, and more economically compared to using cars and roads.

The need for land and water to produce food and energy, and the need for land to transport goods and food can be reduced with the transitions to clean energy and to vegan-organic food. These transitions can also reduce the need for infrastructure such as pipes and poles for water supply, sewage, communications and power. Instead, we can have solar panels, microgrids, WiFi, rainwater tanks, biochar units, food forests and community gardens.

The image below illustrates how policies recommended in the Climate Plan can further reduce the need for infrastructure by supporting eVTOL air taxis, while transforming the space thus gained into community gardens, walkways, bikeways, etc.

[ from an earlier post ]

In conclusion, the situation can best be addressed through action as described in the Climate Plan, where needed in combination with a Climate Emergency Declaration.


Links

• Climate Plan (page)
https://arctic-news.blogspot.com/p/climateplan.html

• Climate Plan (post)
https://arctic-news.blogspot.com/2019/06/climate-plan.html

• Climate Plan (group)
https://www.facebook.com/groups/ClimatePlan

• Air Taxis (group)
https://www.facebook.com/groups/AirTaxis

• Biochar (group)
https://www.facebook.com/groups/biochar

• Vegan Organic Food (group)
https://www.facebook.com/groups/VeganOrganicFood

• Secretary-General Warns of Unprecedented Global Hunger Crisis, with 276 Million Facing Food Insecurity, Calling for Export Recovery, Debt Relief (June 24, 2022)
https://press.un.org/en/2022/sgsm21350.doc.htm

• Confirm Methane's Importance
https://arctic-news.blogspot.com/2021/03/confirm-methanes-importance.html

• Land Use - by Hannah Ritchie and Max Roser
https://ourworldindata.org/land-use

• FAO - Water for Sustainable Food and Agriculture

• Global agricultural green and blue water consumption under future climate and land use changes - by Zhongwei Huang et al. 
https://www.sciencedirect.com/science/article/abs/pii/S002216941930383X

• UN - population

• 400,000 Pyrolysis Plants to Save the Climate - by Hans-Peter Schmidt and Nikolas Hagemann (2021) 

• Greenhouse Gas Inventory Model for Biochar Additions to Soil - by Dominic Woolf et al. 
https://pubs.acs.org/doi/full/10.1021/acs.est.1c02425

• Nitrogen fertiliser use could ‘threaten global climate goals’
https://www.carbonbrief.org/nitrogen-fertiliser-use-could-threaten-global-climate-goals

• IPCC AR6 WG1 Chapter 7
https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter_07.pdf

• Synergistic HNO3 H2SO4 NH3 upper tropospheric particle formation - by Mingyi Wang et al. (2022) 
https://www.nature.com/articles/s41586-022-04605-4

• IPCC AR6 WG1 Chapter 4
https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter_04.pdf

• Low oxygen eddies in the eastern tropical North Atlantic: Implications for N2O cycling - by D. Grundle et al. (2017) 
https://www.nature.com/articles/s41598-017-04745-y

• Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw - by Carolina Voigt et al. (2017) 
https://www.pnas.org/doi/10.1073/pnas.1702902114

• Low-cost solutions to global warming, air pollution, and energy insecurity for 145 countries - by Mark Jacobson et al.
• Numerous Benefits of 100% Clean, Renewable Energy

• How Much Water Do Power Plants Use? 
https://blog.ucsusa.org/john-rogers/how-much-water-do-power-plants-use-316

• Why does the Carmichael coal mine need to use so much water?

• View your government’s military emissions data
https://militaryemissions.org

• Military emissions
https://militaryemissions.org/wp-content/uploads/2022/06/military-emissions_final.pdf

• Emissions from fuels used for international aviation and maritime transport

• Decarbonizing the maritime sector: Mobilizing coordinated action in the industry using an ecosystems approach

• Assessing possible impacts on States of future shipping decarbonization

• News release: No environmental justice, no positive peace — and vice versa
https://www.hiroshima-u.ac.jp/en/news/73129

• Study: A global analysis of interactions between peace and environmental sustainability - by Dahylia Simangan et al.
https://www.sciencedirect.com/science/article/pii/S2589811622000210

• Also discussed at:

• Costs of War - Neta Crawford



Monday, February 28, 2022

What the IPCC impacts report is hiding

[ click on images to enlarge ]

Above image is adapted from content by IPCC AR6 WGII and Peter Carter, expert IPCC reviewer and director of the Climate Emergency Institute

The IPCC keeps hiding how much the temperature could already have risen and could rise over the next few years, the associated dangers, and the policies that could most effectively improve the situation. 



1. Hiding the potential rise that has already unfolded
One of the first issues that springs to mind is the IPCC's use of 1850-1900 as a baseline, which isn't pre-industrial as the Paris Agreement called for.


Above image, adapted from a NASA image, shows a January 2022 temperature rise of 1.31°C versus 1885-1915. As the box underneath indicates, a further 0.1°C could be added for ocean air temperatures and another 0.1°C for higher polar anomalies. When calculating the temperature rise from pre-industrial, a further 0.79°C could be added for the period from 3480 BC to 1900, resulting in a total temperature rise from pre-industrial to January 2022 of 2.3°C.


2. Hiding the potential rise to come

While a huge temperature rise has already unfolded, the rise is accelerating, as discussed at earlier posts such as this one and as illustrated by the image below, an example from an earlier post


In other words, an even larger temperature rise threatens to unfold soon, i.e. this could happen over the course of at few years, as illustrated by the stacked bar next to the cartoon above and as discussed at the extinction page.


3. Hiding the largest dangers

The rise that has already unfolded, i.e. the rise from pre-industrial to 2020, could be as much as 2.3°C, as discussed above and at the pre-industrial page. Furthermore, the temperature rise is accelerating. In other words, Earth is already in the danger zone and the question remains what the implications are of a 3°C, 4°C and 5°C rise.



What would be the impact of a 3°C, a 4°C, or a 5°C rise? 

At a 3°C rise, humans will likely go extinct, as habitat for humans (and many other species) will disappear. Such a rise will cause a rapid decline of the snow and ice cover around the globe, in turn making that less sunlight gets reflected back into space. Associated changes are discussed in more detail at this page and this page, and include that the jet stream will further get out of shape, resulting in more extreme weather events such as droughts, heatwaves and firestorms. Changes to the jet stream will also contribute to a further strengthening of storms, which threatens to at times push large amounts of hot, salty water into the Arctic Ocean, triggering eruptions of more and more seafloor methane, as discussed in an earlier post.

[ from an earlier post  ]
From a 4°C rise, Earth will experience a moist-greenhouse scenario. As the temperature rise gains further momentum, runaway heating may well turn Earth into a lifeless planet, a danger that was discussed in this 2013 post, warning that, without anything stopping the rise, it will continue to eventually destroy the ozone layer and the ice caps, while the oceans would be evaporating into the atmosphere's upper stratosphere and eventually disappear into space.

At 5°C rise, most life on Earth will have gone extinct. A 2018 study by Strona & Bradshaw indicates that most life on Earth will disappear with a 5°C rise (see box on the right). As the temperature keeps rising, chances are that all life on Earth will go extinct, as Earth would be left with no ozone layer to protect life from deadly UV-radiation. Furthermore, Earth would no longer have water, an essential building block of life. Soil moisture, groundwater and water in oceans would evaporate and eventually disappear into space, as discussed in an earlier post.

Much of the above was discussed earlier at Most Important Message Ever.

[ from the post When will we die? ]

A rise of more than 5°C could happen within a decade, possibly by 2026. Humans will likely go extinct with a 3°C rise and most life on Earth will disappear with a 5°C rise. In the light of this, we should act with integrity.


4. Hiding the very policies that can most effectively improve the situation

The IPCC creates a perception that pollution can continue for decades to come. The IPCC does so by downplaying the size of the temperature rise and the threat of a huge rise within years. The IPCC promotes the idea that there was a “carbon budget” to be divided among polluters that would enable polluters to keep polluting for decades to come. Most importantly, the IPCC has once more failed to do what the Paris Agreement calls for, i.e. for the IPCC to specify the pathways that can best improve the situation, specifically the policies that are needed to facilitate a better future. 

The speed at which a huge temperature rise can unfold makes that many adaption efforts could be wasted or even counter-productive. A 2021 report by Neta Crawford estimates the budgetary costs and future obligations of the post-9/11 wars at about $8 trillion in 2021 dollars. Much of that money was spent on securing the supply and transport of fossil fuel. Governments spend $1.8tn a year on subsidies that harm the environment, a study by Doug Koplow et al. finds. Globally, fossil fuel subsidies were $5.9 trillion in 2020 or about 6.8% of GDP and are expected to rise to 7.4% of GDP in 2025, a 2021 IMF report finds. 

Perverse subsidies are even higher when also including money that now goes into constructing transport infrastructure such as roads, highways, tunnels, bridges, railways, airports, etc. Redirecting such funding could enable more people to work and study from home with time to spare and gardens to grow their own food, instead of commuting by car over roads to offices, schools, etc.

[ from earlier post ]
Electric VTOL air taxis can replace a huge part of the traffic that now demands expensive infrastructure such as roads, railways including service stations, parking buildings and strips, bridges, tunnels, etc. Air taxis can facilitate a dramatic reduction in the need for traffic infrastructure, which also includes space now used for garages and parking.

If much of this traffic instead takes place by air taxis, then urban design can have more space for outdoor dining, parks, markets, tree-lined footpaths, bike-tracks, etc. 

Furthermore, drones could be used for transport and delivery of cargo, pharmaceuticals, etc. In many places, cities can become more compact and buildings can be put closer together, thus reducing overall cost and enabling people to reach destinations quicker, either by walking or cycling. Air taxis can bring people to many destinations fast, while people can also using online facilities to further reduce the need for transport and travel infrastructure.

In other places, the space now used for roads and parking could instead be used to create urban forests, to extend gardens and to create community gardens and markets where people can get locally-produced vegan-organic food such as fruit and vegetables.

Much additional infrastructure can also change, such as traffic lights and road signs, streetlights and the electricity grid. Supply of natural gas could be replaced by electric devices such as heat-pumps, induction-cookers and electric water-heaters. Organic waste can be pyrolysed with the resulting biochar added to the soil.

For more on the Urban Heat Island effect, see:
https://www.facebook.com/groups/airtaxis/posts/419568755612304


For more on biochar and pyrolysis, see:
https://www.facebook.com/groups/biochar


Conclusion

The situation is dire and calls for the most comprehensive and effective action, as described at the Climate Plan.


Links

• IPCC AR6 WGII - Climate Change 2022: Impacts, Adaptation and Vulnerability

• Is the IPCC creating false perceptions, again?

• Human Extinction by 2022?

• NASA GISS Surface Temperature Analysis (v4)
• Pre-industrial
https://arctic-news.blogspot.com/p/pre-industrial.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Aerosols
https://arctic-news.blogspot.com/p/aerosols.html

• Clouds feedback
https://arctic-news.blogspot.com/p/clouds-feedback.html

• When Will We Die?
https://arctic-news.blogspot.com/2019/06/when-will-we-die.html

• Could Earth go the same way as Venus?
• Accelerating Methane Rise
https://arctic-news.blogspot.com/2022/02/accelerating-methane-rise.html

• Protecting Nature by Reforming Environmentally Harmful Subsidies: The Role of Business Prepared - by Doug Koplow and Ronald Steenblik (2022) 
https://www.earthtrack.net/sites/default/files/documents/EHS_Reform_Background_Report_fin.pdf

• The U.S. Budgetary Costs of the Post-9/11 Wars - by Neta Crawford (2021)
https://watson.brown.edu/costsofwar/files/cow/imce/papers/2021/Costs%20of%20War_U.S.%20Budgetary%20Costs%20of%20Post-9%2011%20Wars_9.1.21.pdf

• IMF - Still Not Getting Energy Prices Right: A Global and Country Update of Fossil Fuel Subsidies
https://www.imf.org/en/Publications/WP/Issues/2021/09/23/Still-Not-Getting-Energy-Prices-Right-A-Global-and-Country-Update-of-Fossil-Fuel-Subsidies-466004

• Which policy can help EVs most?
• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html




Tuesday, August 3, 2021

Climate Change Henchmen: Storm, Flood, Heat, Smoke and Fire

As climate change strikes with ever greater ferocity, five henchmen dominate the news: Storm, Flood, Heat, Smoke and Fire.


During the first 6 months of 2021, there have been 8 separate billion-dollar weather and climate disaster events across the United States. The U.S. has sustained 298 weather and climate disasters since 1980 where overall damages/costs reached or exceeded $1 billion (including CPI adjustment to 2020). The total cost of these 298 events exceeds $1.975 trillion. The total cost over the last 5 complete years (2016-2020) exceeds $630.0 billion — averaging more than $125.0 billion/year — both new records.

The image on the right shows very high temperatures over North America end July 2021, with fire radiative power as high as 247.3 MW.

The NASA Worldview satellite image below shows large smoke plumes on July 7, 2021, reaching Hudson Bay. Furthermore, large smoke plumes are also visible over British Columbia.


The NASA Worldview satellite image below shows smoke traveling from the West Coast to the East Coast of the U.S. on July 26, 2021.


The Copernicus image on the right shows Siberian fires spreading aerosols over the Arctic Ocean on August 2, 2021 

The NASA Worldview satellite image underneath on the right shows fires (red dots) in Siberia spreading smoke over the Arctic Ocean on August 2, 2021. 

Mainstream media do cover such disasters, often with sensational footage and while pointing at the extensive damage and loss of life caused by such events. 

However, mainstream media rarely point out that climate change is getting worse and and even more so due to feedbacks that can amplify extreme weather events and can further speed up how climate change unfolds.

One of these feedbacks is albedo loss, i.e. decline of the snow and ice cover resulting in less sunlight getting reflected back into space. Fires also come with soot that can settle on snow and ice, resulting in surface darkening that will speed up melting and albedo loss. 

The rapid thinning of Arctic sea ice was discussed in an earlier post and is again illustrated by the image on the right.

The image shows the sea ice (or rather the lack of it) north of Greenland on August 15, 2021. This is where years ago the thickest sea ice was located.

The melt season will continue for at least another month time, so the situation is very worrying, since the disappearance of the thicker sea ice means that the buffer is gone, i.e. that the latent heat tipping point of Arctic sea ice has been crossed.

Here's a link to compare the sea ice north of Greenland between July 29, 2021, and August 15, 2021.

The NSIDC image on the right shows that the proportion of multiyear ice in the Arctic during the first week of August was at 1.6 million km² (618,000 million miles²).

NSIDC adds: The loss of the multiyear ice since the early 1980s started in earnest after the 2007 record low minimum sea ice cover that summer, and while there have been slight recoveries since then, it has not recovered to values seen in the 1980s, 1990s, or early 2000s. This loss of the oldest and thickest ice in the Arctic Ocean is one of the reasons why the summer sea ice extent has not recovered, even when weather conditions are favorable for ice retention.

The Naval Research Lab animation on the right shows Arctic sea ice thickness (in m) for the 30 days up to August 27, 2021, with eight days of forecasts included. 

As the temperature difference between the North Pole and the Equator narrows, the wind flowing north on the Northern Hemisphere slows down, which changes the Jet Stream, resulting in more extreme weather events, including heatwaves and fires. 

One of the most dangerous feedbacks is that, as temperatures of the water of the Arctic Ocean keeps rising, more heat will reach sediments under the Arctic Ocean where huge amounts of methane are stored, causing destabilization. 

[ from the feedbacks page ]
This destabilization threatens to cause huge quantities of methane to erupt and enter the atmosphere, as has been discussed in many earlier posts such as this one and this one

This threat becomes dramatically larger as the latent heat threshold gets crossed and the buffer constituted by Arctic sea ice disappears, so further heat entering the Arctic Ocean from the Atlantic Ocean and the Pacific Ocean can no longer be consumed in the process of melting the subsurface sea ice. 

Ominously, the MetOp-2 satellite recorded a methane level of 2839 ppb at 469 mb on July 30, 2021 pm, as the image on the right shows.

[ peak methane level of 2839 ppb ]
The image underneath shows large quantities of methane over the East Siberian Arctic Shelf (ESAS) at 469 mb on August 4, 2021 pm. 

On August 4, 2021, there still was some sea ice present in the ESAS. While this remaining sea ice does prevent a lot of sunlight from reaching the water and heating it up, the sea ice also acts as a seal, preventing ocean heat from getting transferred to the atmosphere. The water in the ESAS is very shallow, less than 50 meter in most places, which makes it easier for heat to reach sediments, while it also makes it harder for methane that is rising through the water column to get decomposed by microbes in the water.

[ large quantities of methane over ESAS ]
The image underneath shows that on August 4, 2021 am, at 293 mb, the MetOp-1 satellite recorded a mean global methane level of 1942 ppb. 

At a 1-year Global Warming Potential (GWP) of 200, this translates into 388.2 ppm CO₂e. By comparison, the CO₂ level on August 4, 2021, was 414.89 ppm according to the Keeling Curve measurements at Mauna Loa, Hawaii. A GWP of 200 for methane is appropriate in the light of the danger of a huge burst of methane erupting from the seafloor of the Arctic Ocean, which would, due to the abrupt nature of such an eruption, make its impact felt instantaneously. 

[ mean global methane level of 1941 ppb ]
Methane levels are already very high over the Arctic, so additional methane erupting there will be felt most strongly in the Arctic itself, thus threatening to trigger even further methane releases.

The situation is dire and calls for immediate, comprehensive and effective action as described in the Climate Plan.


Links



• NOAA Billion-Dollar Weather and Climate Disasters: Time Series

• Copernicus - aerosols

• MetOp methane levels

• NSIDC: Arctic Sea Ice News & Analysis - August 18, 2021

• Heatwaves and the danger of the Arctic Ocean heating up 
https://arctic-news.blogspot.com/2021/06/heatwaves-and-the-danger-of-the-arctic-ocean-heating-up.html

• Arctic sea ice disappearing fast

• When will we die?

• Most Important Message Ever