Showing posts with label wildfires. Show all posts
Showing posts with label wildfires. Show all posts

Thursday, June 25, 2015

Accelerated Warming in the Arctic


Warming in the Arctic is accelerating. On June 25, 2015, high temperatures hit North America. Temperatures as high as 30.3°C (86.54°F) were recorded where the Mackenzie River is flowing into the Arctic Ocean.

June 25, 2015 - High temperatures over North America, close to the Arctic Ocean

On July 1, 2015, temperatures are forecast to be as high as 111.4°F (or 44.1°C) near Chico, north of San Francisco. Temperatures are forecast to be high over most of North America and Eastern Siberia, threatening to further warm up waters of the Arctic Ocean.

Forecast for July 1, 2015 - High temperatures over North America, close to the Arctic Ocean

The image below shows that on June 27, 2015, temperatures of well over 40°C (104°F) were recorded in Europe and in Pakistan, where temperatures earlier this month had reached 49°C (120.2°F) in some places. The heat wave reportedly killed 1233 people in Karachi alone. This in addition to the 2500 people killed earlier in India by high temperatures.

June 27, 2015 - High temperatures over Russia, close to the Arctic Ocean
High temperatures at such locations are very worrying, for a number of reasons, including:
  • They are examples of heatwaves that can increasingly extend far to the north, all the way into the Arctic Ocean, speeding up warming of the Arctic Ocean seabed and threatening to unleash huge methane eruptions. 
  • They set the scene for wildfires that emit not only greenhouse gases such as carbon dioxide and methane, but also pollutants such as carbon monoxide (that depletes hydroxyl that could otherwise break down methane) and black carbon (that when settling on ice causes it to absorb more sunlight).
  • They cause warming of the water of rivers that end up in the Arctic Ocean, thus resulting in additional sea ice decline and warming of the Arctic Ocean seabed. 
June 24, 2015 - Smoke from wildfires in Alaska - from: wunderground.com
The image below shows increased sea surface temperature anomalies in the Arctic. Note the warming in the area of the Beaufort Sea where the Mackenzie River is flowing into the Arctic Ocean.


Very warm water is also flowing from the Pacific Ocean through the Bering Strait into the Arctic Ocean.  As the image below shows, the water that is flowing into the Arctic Ocean from the Pacific is much warmer than it used to be, as much as 6.1°C (10.98°F) warmer.

View the flow of the water on the animated version of above image at earth.nullschool.net
As said above, warm water flowing from rivers into the Arctic Ocean is a major contributor to these sea surface temperature anomalies. As also illustrated by the NOAA image below, rivers carrying warm water into the Bering Strait include the Kobuk River, the Naotak River and the Yukon River that flows all the way from British Columbia, Canada, through Alaska and ends in the Bering Strait. Sea surface temperatures near the coast of Alaska were as high as 19°C (66.2°F) from June 21-24, 2015.

Sea surface temperatures near the coast of Alaska as high as 19°C (66.2°F) from June 21-24, 2015
The Naval Research Laboratory animation below shows changes to Arctic sea ice thickness. Sea ice thickness (in m) down to zero where the Mackenzie River flows into the Arctic Ocean and in the Bering Strait where warm water from the Pacific is entering the Arctic Ocean.


The situation is dire and calls for comprehensive and effective action, as discussed at the Climate Plan.


Related

- Gulf Stream brings ever warmer water into Arctic Ocean
http://arctic-news.blogspot.com/2015/06/gulf-stream-brings-ever-warmer-water-into-arctic-ocean.html

- High Temperatures in the Arctic

- Heat Wave Forecast For Russia Early June 2015http://arctic-news.blogspot.com/2015/06/heat-wave-forecast-for-russia-early-june-2015.html

Sea surface temperature anomalies in the Arctic. Note the warming in the area of the Beaufort Sea where the Mackenzie...
Posted by Sam Carana on Thursday, June 25, 2015

Friday, July 18, 2014

Smoke Blankets North America


A thick layer of smoke blankets large parts of North America, as also illustrated by the animation below based on images from July 15 to 18, 2014, from Wunderground.com.

[ note that this animation is a 2.3MB file that may take some time to fully load ]
The are also extensive wildfires throughout the boreal forest and tundra zones of Central Siberia in Russia.

Such wildfires can send huge amounts of carbon dioxide, methane, soot, dust and volatile organic compounds into the atmosphere. Much of this gets deposited at higher latitudes, discoloring land, snow and ice, and thus speeding up warming by absorbing more sunlight that was previously reflected back into space.

Soils at higher latitudes can contain huge amounts of carbon in the form of peat, as described in the earlier post The Threat of Wildfires in the North. There are further conditions that make the situation in the Arctic so dangerous.
Temperature anomaly March-April-May-June 2014 (JMA)

The Arctic is particularly vulnerable to warming due to geographics. Seas in the Arctic Ocean are often shallow and covered by sea ice that is disappearing rapidly. Largely surrounded by land that is also rapidly losing its snow and ice cover, the Arctic Ocean acts like a trap capturing heat carried in by the Gulf Stream, which brings in ever warmer water. Of all the heat trapped on Earth by greenhouse gases, 90% goes into oceans, while a large part of the remaining 10% goes into melting the snow and ice cover in the Arctic, as described in an earlier post. Such basic conditions make that the Arctic is prone to warming.

Then, there are huge amounts of methane held in sediments under the Arctic Ocean, in the form of hydrates and free gas. Unlike methane releases from biological sources elsewhere on Earth, methane can be released from the seafloor of the Arctic Ocean in large quantities, in sudden eruptions that are concentrated in one area.

Until now, permafrost and the sea ice have acted as a seal, preventing heat from penetrating these methane hydrates and causing further destabilization. As long as there is ice, additional energy will go into melting the ice, and temperatures will not rise. The ice also acts as a glue, keeping the soil together and preventing hydrate destabilization from pressure changes and shockwaves resulting from seismic activity. Once the ice is gone, sediments become prone to destabilization and heat can more easily move down along fractures in the sediment, reaching hydrates that had until then remained stable.
 
Temperature anomaly March-April-May 2014 (NASA)
When methane escapes from the seafloor of the Arctic Ocean and travels through waters that are only shallow, there is little opportunity for this methane to be broken down in the water, so a lot of it will enter the atmosphere over the Arctic Ocean. The Coriolis effect will spread the methane sideways, but latitudes over the Arctic are relatively short, making the methane return at the same spot relatively quickly, while the polar jet stream acts as a barrier keeping much of the methane within the Arctic atmosphere. In case of large methane eruptions, the atmosphere over the Arctic will quickly become supersaturated with methane that has a huge initial local warming potential.

Hydroxyl levels in the atmosphere over the Arctic are very low, extending the lifetime of methane and other precursors of stratospheric ozone and water vapor, each of which have a strong short-term local warming potential. In June/July, insolation in the Arctic is higher than anywhere else on Earth, with the potential to quickly warm up shallow waters, making that heat can penetrate deep into sediments under the seafloor.

created by Sam Carana, part of AGU 2011 poster
The initial impact of this methane will be felt most severely in the Arctic itself, given the concentrated and abrupt nature of such releases, with the danger that even relatively small releases of methane from the seafloor of the Arctic can trigger further destabilization of hydrates and further methane releases, escalating into runaway warming.

This danger is depicted in the image on the right, showing how albedo changes and methane releases act as feedbacks that further accelerate warming in the Arctic, eventually spiraling into runaway global warming.

The currently very high sea surface temperature anomalies are illustrated by the two images below.




As the image below right shows, sea surface temperatures as high as 18 degrees Celsius (64.4 degrees Fahrenheit) are currently recorded in the Arctic.

Albedo changes and methane releases are only two out of numerous feedbacks that are accelerating warming in the Arctic.

Also included must be the fact that Earth is in a state of energy imbalance. Earth is receiving more heat from sunlight than it is emitting back into space. Over the past 50 years, the oceans have absorbed about 90% of the total heat added to the climate system, while the rest goes to melting sea and land ice, warming the land surface and warming and moistening the atmosphere.

In a 2005 paper, James Hansen et al. estimated that it would take 25 to 50 years for Earth’s surface temperature to reach 60% of its equilibrium response, in case there would be no further change of atmospheric composition. The authors added that the delay could be as short as ten years.

Earth's waters act as a buffer, delaying the rise in land surface temperatures that would otherwise occur, but this delay could be shortened. Much of that extra ocean heat may enter the atmosphere much sooner, e.g. as part of an El Niño event. Another buffer, Arctic sea ice, could collapse within years, as illustrated by the image below.

[ click on image to enlarge ]
The demise of sea ice comes with huge albedo changes, resulting in more heat getting absorbed by the Arctic Ocean, in turn speeding up warming of the often shallow waters of the Arctic Ocean. This threatens to make heat penetrate subsea sediments containing huge amounts of methane. Abrupt release of large amounts of methane would warm up the Arctic even more, triggering even further methane releases in a spiral of runaway warming.

Particularly worrying is the currently very warm water that is penetrating the Arctic Ocean from the Atlantic Ocean and also from the Pacific Ocean, as illustrated by the image further above and the image on the right.

The danger is that the Arctic will warm rapidly with decline of the snow and ice cover that until now has acted as a buffer absorbing heat, with more sunlight gets absorbed due to albedo changes and as with additional emissions, particularly methane, resulting from accelerating warming in the Arctic.

The numerous feedbacks that accelerate warming in the Arctic are pictured in the image below.

[ from: climateplan.blogspot.com/p/feedbacks.html ]
Furthermore, the necessary shift to clean energy will also remove the current masking effect of aerosols emitted when burning fuel. One study finds that a 35% – 80% cut in people's emission of aerosols and their precursors will result in about 1°C of additional global warming.

In the video below and the video further down below, Guy McPherson discusses Climate Change and Human Extinction.





This is further illustrated by the image below, showing how surface temperature rises are accelerating in the Arctic compared to global rises, with trendlines added including one for runaway global warming, from How many deaths could result from failure to act on climate change?
[ click on image to enlarge ]
The situation is dire and calls for comprehensive and effective action, as discussed at the Climate Plan blog.

Hat tip to Jim Kirkcaldy for pointing at the wildfire development at an early stage.

Saturday, May 31, 2014

How many deaths could result from failure to act on climate change?

A recent OECD analysis concludes that outdoor air pollution is killing more than 3.5 million people a year globally. The OECD estimates that people in its 34 Member countries would be willing to pay USD 1.7 trillion to avoid deaths caused by air pollution. Road transport is likely responsible for about half.

[ from an earlier post ]
A 2012 report by DARA calculated that 5 million people were dying each year from climate change and carbon economies, mostly from indoor smoke and (outdoor) air pollution.

Back in 2012, a Reuters report calculated that this could add up to a total number of 100 million deaths over the coming two decades. This suggests, however, that failure to act on climate change will not cause even more deaths due to other causes.

Indeed, failure to act on climate change could result in many more deaths due to other causes, in particular food shortages. As temperatures rise, ever more extreme weather events can be expected, such as flooding, heatwaves, wildfires, droughts, and subsequent crop loss, famine, disease, heat-stroke, etc.

So, while currently most deaths are caused by indoor smoke and outdoor air pollution, in case of a failure to act on climate change the number of deaths can be expected to rise most rapidly among people hit by heat stress, famine, fresh water shortages, as well as wars over who controls access to land, food, fresh water, etc.

How high could figures rise? Below is an update of an image from the earlier post Arctic Methane Impact with a scale in both Celsius and Fahrenheit added on the right, illustrating the danger that temperature will rise to intolerable levels if little or no action is taken on climate change. The inset shows projected global number of annual climate-related deaths for these two scenarios, i.e. little or no action, and also shows a third scenario of comprehensive and effective action that instead seeks to bring temperature rise under control.

[ click on image to enlarge ]
For further details on comprehensive and effective climate action, see the ClimatePlan.


Links


• The Cost of Air Pollution | OECD analysis, published May 2014
http://www.oecd.org/environment/cost-of-air-pollution.htm

• DARA Climate Vulnerability Monitor
http://daraint.org/climate-vulnerability-monitor/climate-vulnerability-monitor-2012/

• 100 mln will die by 2030 if world fails to act on climate - report | REUTERS
http://www.reuters.com/article/2012/09/25/climate-inaction-idINDEE88O0HH20120925

• Arctic Methane Impact
https://arctic-news.blogspot.com/2013/11/arctic-methane-impact.html

• Is death by lead worse than death by climate? No. | by Paul Beckwith
https://arctic-news.blogspot.com/2012/10/is-death-by-lead-worse-than-death-by-climate-no.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html





Friday, May 16, 2014

More extreme weather can be expected



The heaviest rains and floods in 120 years have hit Serbia and Bosnia this week, Reuters and Deutsche Welle report.

The animation below shows the Jet Stream's impact on the weather. Cold temperatures have descended from the Arctic to Serbia and Bosnia in Europe and all the way down to the Gulf of Mexico in North America, while Alaska, California, and America's East Coast are hit by warm temperatures. In California, 'unprecedented' wildfires and fierce winds lead to 'firenadoes', reports CNN.

Saturday, April 5, 2014

Escalating extreme weather events to hammer humanity


By Paul Beckwith

Extreme weather events are rocketing upwards in their frequency of occurrence, intensity, and duration and are impacting new regions that are unprepared. These events, such as torrential rains, are causing floods and damaging crops and infrastructure like roads, rail, pipelines, and buildings. Cities, states, and entire countries are being battered and inundated resulting in disruption to many peoples lives as well as enormous economic losses. As bad as this is, it is going to get much worse by at least 10 to 20 times. Why?

Greenhouse gas emissions from humans have changed the chemistry of the atmosphere. The optical absorption of infrared heat has increased in the atmosphere which raises temperature, and thus water vapor content, and therefore fuels more intense storms. The jet streams that guide these storms are slower and wavier and more fractured and cause our weather gyrations and weird behavior. Areas far north can get very warm, while areas far south can get very cold. Some areas get persistent drought. Then, the pattern can flip. The jet streams are much wavier in the north-south direction since the Arctic temperatures have warmed 5 to 8 times faster than the global average. This reduces the temperature difference between the Arctic and equator and basic physics forces the jets to slow and get wavier.

Why is the Arctic warming greatly amplified? The region is darkening and thus absorbing more sunlight, since the land-based snow cover in spring and the Arctic sea ice cover volume are both declining exponentially. The white snow and ice is being replaced by dark surfaces like the ocean and the tundra. The most detailed computer model on sea ice decline is a U.S. Naval Graduate School model, and it shows the sea ice cover could be gone by late summer in 2016. If this happens, the Arctic warming will rocket upwards, the jets will distort much more, and the extreme weather events will rocket upwards in frequency, amplitude, and duration and civilization will be hammered.


Paul Beckwith
Paul Beckwith is part-time professor with the laboratory for paleoclimatology and climatology, department of geography, University of Ottawa. Paul teaches climatology/meteorology and does PhD research on 'Abrupt climate change in the past and present'. Paul holds an M.Sc. in laser physics and a B.Eng. in engineering physics and reached the rank of chess master in a previous life. Below are Paul's earlier posts at the Arctic-news blog.

Monday, August 12, 2013

More on Wildfires


Previous posts have highlighted the huge amounts of carbon dioxide, methane and soot being emitted as a result of wildfires. Apart from this, there are further important pollutants to consider in regard to their potential to contribute to warming, especially at high latitudes.

The image below, dated August 7, 2013, and kindly supplied by Leonid Yurganov, shows high levels of carbon monoxide as a result of wildfires in Siberia, reaching high up into the Arctic all the way to Greenland. 

[ click on image to enlarge ]
Formation of tropospheric ozone mostly occurs when nitrogen oxides (NOx), carbon monoxide (CO) and volatile organic compounds (VOCs) react in the atmosphere in the presence of sunlight. NOx, CO, and VOCs are therefore called ozone precursors. Apart from a health hazard, tropospheric ozone is an important greenhouse gas. Furthermore, carbon monoxide emissions contribute to hydroxyl depletion, thus extending the lifetime of methane.

While there appears to be little or no carbon dioxide from wildfires over North America on the above August 7 image, there are many recent wildfires raging over the North American continent, as illustrated by the August 12 map below, from Wunderground

[ click on image to enlarge ]
This point is illustrated even better on the image below [added later, ed.] showing a composite image with carbon monoxide over July 3-13, 2013. Carbon monoxide resulting from wildfires in Canada is seen crossing the Atlantic Ocean, due to the Coriolis effect, as well as reaching Greenland in large amounts.

[ click on image to enlarge ]


Related

- Wildfires even more damaging
http://arctic-news.blogspot.com/2013/07/wildfires-even-more-damaging.html

- The Threat of Wildfires in the North
http://arctic-news.blogspot.com/2013/06/the-threat-of-wildfires-in-the-north.html

- Wildfires in Canada affect the Arctic
http://arctic-news.blogspot.com/2013/07/wildfires-in-canada-affect-the-arctic.html

Friday, August 2, 2013

Where does the methane come from?

[ image July 29, 2013. Click on image to enlarge ]
Wildfires are still raging, sending huge amounts of smoke into the sky. Worryingly, much black carbon that comes with this smoke gets deposited at high latitudes, discoloring snow and ice, and thus speeding up the melt.

A lot of methane has been emitted over the last few days, and much appears to be due to wildfires, as illustrated by the image below, picturing the situation on July 31, 2013, p.m.

[ click on image to enlarge ]
Above image shows some methane on the right, over the Atlantic Ocean, which appears to originate from these wildfires and is visible in that location due to the Coriolis effect. The image below, picturing the situation on August 1, 2013, p.m., shows a lot of methane over Russia and elsewhere in Europe and Asia. Again, the methane on the left of Europe appears to originate from wildfires in North America.

[ click on image to enlarge ]
High levels of methane are recorded in many places on the Northern Hemisphere, and there is also a lot over the Southern Hemisphere, as illustrated by the image below.

[ click on image to enlarge ]
Where did the methane over the oceans on the Southern Hemisphere come from? It appears that it originates from hydrates under the ocean floor. For more about methane hydrates, also see the methane-hydrates blog.

Saturday, July 20, 2013

Heat, Fires and Methane

Here are two more images looking at links between high temperatures, fires and methane.



[ click on image to enlarge ]

In conclusion, rising temperatures increase the risk of fire and of methane releases. Let's act on global warming, preferably with a comprehensive and effective plan as at http://climateplan.blogspot.com

Wednesday, July 10, 2013

Wildfires even more damaging

Wildfires cause even more damage than many climate models assume. Much has been written about the threat that wildfires pose to people's safety and health, to crop yields, and the quality of soils and forests.

In addition, wildfires pose a huge threat in terms of climate change, not only due to the impact of emissions on the atmosphere, but there's also the impact of particles (soot, dust and volatile organic compounds) settling down on snow and ice, speeding up their demise through albedo changes. This contributes to the rapid decline of the sea ice and snow cover in the Arctic, a decline that has been hugely underestimated in many climate models.

Furthermore, global warming and accelerated warming in the Arctic cause extreme weather conditions in many places, an impact that is again underestimated in many climate models.

A team of scientists from Los Alamos and Michigan Technological University, led by Swarup China, points out that continued global warming will make conditions for wildfires worse, as was already noted in earlier studies, such as this 2006 study. They also point at the conclusion of a recent study that more biomass burning will lead to more ozone, less OH, and a nonlinear increase of methane's lifetime.

Mixing and classification of soot particles. Field-emission
scanning electron microscope images of four different
categories of soot particles: (a) embedded, (b) partly coated,
(c) bare and (d) with inclusions. Approximately 50% of the
ambient soot particles are embedded, 34% are partly coated
and 12% have inclusions. Only 4% of the particles are bare
soot (not coated or very thinly coated). Scale bars, 500 nm.
Right, spherical tar balls dominate in the emissions.
The scientists recently completed an analysis of particles from the Las Conchas fire that started June 26, 2011, and was the largest fire in New Mexico's history at the time, burning 245 square miles. One of the scientists, Manvendra Dubey, said

 “Most climate assessment models treat fire emissions as a mixture of pure soot and organic carbon aerosols that offset the respective warming and cooling effects of one another on climate. However Las Conchas results show that tar balls exceed soot by a factor of 10 and the soot gets coated by organics in fire emissions, each resulting in more of a warming effect than is currently assumed.”
“Tar balls can absorb sunlight at shorter blue and ultraviolet wavelengths (also called brown carbon due to the color) and can cause substantial warming,” he said. “Furthermore, organic coatings on soot act like lenses that focus sunlight, amplifying the absorption and warming by soot by a factor of 2 or more. This has a huge impact on how they should be treated in computer models.”

Finally, many climate models ignore the threat of large, abrupt methane releases in the Arctic. As discussed in many earlier posts at Arctic-news blog, accelerated warming in the Arctic threatens to spiral out of control as methane levels rise over the Arctic, causing destabilization of methane hydrates and further methane releases, escalating into runaway global warming. 

Saturday, July 6, 2013

Wildfires in Canada affect the Arctic

created by Sam Carana with screenshot from wunderground.com
Wildfires can cause a lot of emissions. Obviously, when wood burns, carbon dioxide is emitted into the atmosphere. Wildfires also cause further emissions, such as methane, soot and carbon monoxide. A large part of such emissions can be broken relatively quickly down by hydroxyl, but when large emissions take place, this can take a while. In other words, the lifetime of gases such as methane is extended, particularly in the Arctic where hydroxyl levels are already very low to start with.

Furthermore, the soot that is emitted by such wildfires can settle down on snow and ice, changing its albedo and thus contributing to the demise of the snow and ice cover. As the image shows, soot can be blown high up into the Arctic, depending on the direction of the wind.

Wildfires in Canada and Alaska have now been raging for quite some time. The above image dates back to late last month. Today's images can be quite similar, as illustrated by the two images below.

created by Sam Carana with screenshot from wunderground.com
created by Sam Carana with screenshot from wunderground.com
Smoke from wildfires can travel over quite long distances, as also evidenced by these NASA satellite images showing wildfire smoke crossing the Atlantic Ocean. The relation between wildfire smoke and methane concentrations is further illustrated by the image below.

methane levels July 5, 2013, over 1950 ppb in yellow in 6 layers from 718-840 mb
created by Sam Carana with methanetracker.org - sea ice data by SSMIS
Below, a similar image showing methane on the afternoon of July 6, 2013.

methane levels July 6, 2013, over 1950 ppb in yellow, 7 layers from 469-586 mb
created by Sam Carana with methanetracker.org - sea ice data by SSMIS
Below, a screenshot created with methanetracker, showing some methane still persisting on July 8, 2013.  On the right, the methane originating from the Quebec wildfires appears to have moved farther over the Atlantic Ocean, due to the Coriolis effect. The image also shows some worryingly high methane concentrations in spots above the Arctic sea ice. The spots north of Alaska were also examined in the video at Cruising for methane.

methane levels on the morning of July 8, 2013, over 1950 ppb in yellow, 10 layers from 545 to 742 mb
created by Sam Carana with methanetracker.org
Below, a NASA satellite picture showing wildfires in Manitoba, Canada, captured by Terra satellite on June 29, 2013.

NASA image courtesy Jeff Schmaltz, MODIS Rapid Response Team
In conclusion, while carbon pollution gets a lot of attention, the Arctic is also strongly affected by other emissions that can result from wildfires.

Thursday, June 27, 2013

The Threat of Wildfires in the North

NASA/NOAA image based on Suomi NPP satellite data from April 2012 to April 2013, with grid added
A new map has been issued by NOAA/NASA. The map shows that most vegetation grows in two bands, i.e. the Tropical Band (between latitudes 15°N and 15°S) and the Northern Band in between 45°N and 75°N, i.e. in North America, Europe and Siberia. On above image, the map is roughly overlayed with a grid to indicate latitude and longitude co-ordinates.


Vegetation in the Northern Band extends beyond the Arctic Circle (latitude 66° 33′ 44″ or 66.5622°, in blue on above image from Arcticsystem.no) into the Arctic, covering sparsely-populated areas such in Siberia, Alaska and the northern parts of Canada and Scandinavia. Further into the Arctic, there are huge areas with bush and shrubland that have taken thousands of years to develop, and once burnt, it can take a long time for vegetation to return, due to the short growing season and harsh conditions in the Arctic.



Above map with soil carbon content further shows that the top 100 cm of soil in the northern circumpolar region furthermore contains huge amounts of carbon.

May 16 2013 Drought 90 days Arctic
Global warming increases the risk of wildfires. This is especially applicable to the Arctic, where temperatures have been rising faster than anywhere else on Earth. Anomalies can be very high in specific cases, as illustrated by the temperature map below. High temperatures and drought combine to increase the threat of wildfires (see above image showing drought severity).

June 25, 2013 from Wunderground.com - Moscow broke its more than 100-year-old record for the hottest June 27
Zyryanka, Siberia, recently recorded a high of 37.4°C (99.3°F), against normal high temperatures of 20°C to 21°C for this time of year. Heat wave conditions were also recorded in Alaska recently, with temperatures as high as 96°F (36°C).

On June 19, 2013, NASA captured this image of smoke from wildfires burning in western Alaska. The smoke was moving west over Norton Sound. (The center of the image is roughly 163° West and 62° North.) Red outlines indicate hot spots with unusually warm surface temperatures associated with fire. NASA image by Jeff Schmaltz, LANCE/EOSDIS Rapid Response. Caption by Adam Voiland. - also see this post with NASA satellite image of Alaska.
Siberian wildfires June 21, from RobertScribbler 
from methanetracker.org

Wildfires raged in Russia in 2010. Flames ravaged 1.25 million hectares (4,826 mi²) of land including 2,092 hectares of peat moor.

Damage from the fires is estimated to be $15 billion, in a report in the Guardian.

Cost of fire-fighting efforts and agricultural losses alone are estimated at over $2bn, reports Munich Re, adding that Moscow's inhabitants suffered under a dense cloud of smoke which enveloped the city. In addition to toxic gases, it also contained considerable amounts of particulate matter. Mortality increased significantly: the number of deaths in July and August was 56,000 higher than in the same months in 2009. 


[From: Abrupt Local Warming, May 16, 2012]

Wildfires in the North threaten to cause large emissions of greenhouse gases and soot, which can settle on snow and ice in the Arctic and the Himalayan Plateau, with the resulting albedo changes causing a lot more sunlight to be absorbed, instead of reflected as was the case earlier. This in turn adds to the problem. Additionally, rising temperatures in the Arctic threaten to cause release of huge amounts of methane from sediments below the Arctic Ocean. This situation threatens to escalate into runway global warming in a matter of years, as illustrated by the image below.

How much will temperatures rise?
In conclusion, the risk is unacceptable and calls for a comprehensive and effective action plan that executes multiple lines of action in parallel, such as the 3-part Climate Action Plan below. Part 1 calls for a sustainable economy, i.e. dramatic reductions of pollutants on land, in oceans and in the atmosphere. Part 2 calls for heat management. Part 3 calls for methane management and further measures.


The Climate Action Plan set out in above diagram can be initiated immediately in any country, without the need for an international agreement to be reached first. This can avoid delays associated with complicated negotiations and on-going verification of implementation and progress in other nations.

In nations with both federal and state governments, such as the United States of America, the Climate Action Plan could be implemented as follows:
  • The President directs federal departments and agencies to reduce their emissions for each type of pollutant annually by a set percentage, say, CO2 and CH4 by 10%, and HFCs, N2O and soot by higher percentages.
  • The President demands states to each make the same cuts. 
  • The President directs the federal Environmental Protection Agency (EPA) to monitor implementation of states and to act step in where a state looks set to fail to miss one or more targets, by imposing (federal) fees on applicable polluting products sold in the respective state, with revenues used for federal benefits.
Such federal benefits could include building interstate High-Speed Rail tracks, adaptation and conservation measures, management of national parks, R&D into batteries, ways to vegetate deserts and other land use measurements, all at the discretion of the EPA. The fees can be roughly calculated as the average of fees that other states impose in successful efforts to meet their targets.

This way, the decision how to reduce targets is largely delegated to state level, while states can similarly delegate decisions to local communities. While feebates, preferably implemented locally, are recommended as the most effective way to reach targets, each state and even each local community can largely decide how to implement things, provided that each of the targets are reached.

Similar targets could be adopted elsewhere in the world, and each nation could similarly delegate responsibilities to local communities. Additionally, it makes sense to agree internationally to impose extra fees on international commercial aviation, with revenues used to develop ways to cool the Arctic.

- Climate Plan