Saturday, April 26, 2014

M5.1 Earthquake hits Greenland Sea

An earthquake with a magnitude of 5.1 on the Richter scale hit the Greenland Sea on April 26, 2014, at 03:55:33 UTC at a depth of 10.00 km (6.21 mi). The epicenter of the earthquake is located right on the faultline that crosses the Arctic Ocean, at 73.479°N 7.974°E, some 567km (352mi) SSW of Longyearbyen, Svalbard.

[ click on image to enlarge ]
This follows four further recent earthquakes close to Svalbard or on the faultline north of Greenland, as indicated on above map. All these earthquakes struck at a depth of 10.00 km (6.21 mi).

Some of these earthquakes have also been discussed in earlier posts:
M4.6 - North of Franz Josef Land, 2014-04-13 02:12:19 UTC, also discussed in this post
M4.2 - North of Franz Josef Land, 2014-04-04 07:01:30 UTC
M4.4 - 262km NE of Nord, Greenland, 2014-04-22 10:30:23 UTC, also discussed in this post
M4.3 - 148km SSE of Longyearbyen, Svalbard, 2014-04-24 08:33:06 UTC
M5.1 - Greenland Sea, 2014-04-26 03:55:33 UTC
M4.5 - Gakkel Ridge, 2014-03-06 11:17.17.0 UTC, also discussed in this post

There have been a large number of earthquakes around Greenland since early 2014, as illustrated by the image below. This could be an indication of isostatic rebound, as also discussed in this earlier post.

[ click on image to enlarge ]

As melting of the Greenland Ice Sheet speeds up, isostatic rebound could cause earthquakes around Greenland to become stronger and occur more frequently. Earthquakes in this region are very worrying, as they can destabilize hydrates contained in the sediment under the seafloor of the Arctic Ocean. Furthermore, one earthquake can trigger further earthquakes, especially at locations closeby on the same faultline.

Tuesday, April 22, 2014

M4.4 Earthquake hits Arctic Ocean north of Greenland

An earthquake with a magnitude of 4.4 on the Richter scale hit the Arctic Ocean north of Greenland on April 22, 2014, at 10:30:23 UTC at a depth of 10.00 km (6.2 mi).

[ click on image to enlarge ]
The epicenter of the quake is located right on the faultline that crosses the Arctic Ocean, at 83.328°N 4.568°W, 262km (163mi) NE of Nord, Greenland.

The earthquake follows another earthquake that hit the Arctic Ocean closeby on this faultline, on April 13, 2014, north of Franz Josef Land.

Earthquakes at this location are very worrying, as they can destabilize hydrates contained in the sediment under the seafloor of the Arctic Ocean. Furthermore, one earthquake can trigger further earthquakes, especially at locations closeby on the same faultline.

Arctic Sea Ice in Steep Descent

Arctic sea ice area is in steep descent, as illustrated by the image below. Sea ice area was only smaller at this time of the year in 2007, for all years for which satellite data are available.

[ click on image to enlarge ]
Earlier this year, on March 9, 2014, Arctic sea ice area was at a record low for the time of the year. Since then, area did show some growth for a while, to the north of Scandinavia. This growth could be attributed largely to strong winds that made the sea ice spread with little or no growth in volume. The 30-day Naval Research Laboratory animation below shows recent sea ice speed and drift.


Indeed, sea ice volume in March 2014 was the 2nd lowest on record. Only March 2011 had a lower volume as discussed in a recent post. The 30-day Naval Research Laboratory animation below shows recent sea ice thickness. 



Low sea ice volume and area jointly suggest there could be a total collapse of the sea ice later this year, in line with observation-based non-linear trends. For years, this blog has warned that observation-based projections point at Arctic sea ice disappearance within years, with dire consequences for the Arctic and for the world at large.

As said, winds are responsible for much of sea ice variability, and winds could either slow down or speed up such a collapse. On this point, it's good to remember what Prof. Peter Wadhams said in 2012:
". . apart from melting, strong winds can also influence sea ice extent, as happened in 2007 when much ice was driven across the Arctic Ocean by southerly winds. The fact that this occurred can only lead us to conclude that this could happen again. Natural variability offers no reason to rule out such a collapse, since natural variability works both ways, it could bring about such a collapse either earlier or later than models indicate.

In fact, the thinner the sea ice gets, the more likely an early collapse is to occur. It is accepted science that global warming will increase the intensity of extreme weather events, so more heavy winds and more intense storms can be expected to increasingly break up the remaining ice, both mechanically and by enhancing ocean heat transfer to the under-ice surface."
The image on the right, produced with NOAA data, shows mean coastal sea surface temperatures of over 10°C (50°F) in some areas in the Arctic on August 22, 2007.

In shallow waters, heat can more easily reach the bottom of the sea. In 2007, strong polynya activity caused more summertime open water in the Laptev Sea, in turn causing more vertical mixing of the water column during storms in late 2007, found a 2011 study, and bottom water temperatures on the mid-shelf increased by more than 3°C (5.4°F) compared to the long-term mean.

Another study found that drastic sea ice shrinkage causes increase in storm activities and deepening of the wind-wave-mixing layer down to depth ~50 m (164 ft) that enhance methane release from the water column to the atmosphere. Indeed, the danger is that heat will warm up sediments under the sea, containing methane in hydrates and as free gas, causing large amounts of this methane to escape rather abruptly into the atmosphere.

Such warming would come on top of ever-warmer water that is carried by the Gulf Stream into the Arctic Ocean and that has already been blamed for large methane releases from the seafloor of the Arctic Ocean last year.

The prospect of an El Niño event, as discussed in an earlier post, makes the situation even more dire.

The consequences of sea ice collapse will be devastating, as all the heat that previously went into transforming ice into water will be asbsorbed by even darker water, from where less sunlight will be reflected back into space. The danger is that further warming of the Arctic Ocean will trigger massive methane releases that could lead to extinction at massive sclae, including extinction of humans.

Hopefully, more people will realize the urgency of the situation and support calls for comprehensive and effective action as discussed at the Climate Plan blog.

Wednesday, April 16, 2014

Near-Term Human Extinction

Global Warming and Feedbacks

Is there a mechanism that could make humanity go extinct in the not-too-distant future, i.e. within a handful of decades?

Most people will be aware that emissions due to human activity are causing global warming, as illustrated by the arrow marked 1 in the image on the left. Global warming can cause changes to the land, to vegetation and to the weather. This can result in wildfires that can in turn cause emissions, thus closing the loop and forming a self-reinforcing cycle that progressively makes things worse.

Furthermore, less forests and soil carbon also constitute a decrease in carbon sinks, resulting in carbon that would otherwise have been absorbed by such sinks to instead remain in the atmosphere, thus causing more global warming, as illustrated by the additional downward arrow in the image on the right. In conclusion, there are a number of processes at work that can all reinforce the impact of global warming.

Emissions can also contribute more directly to land degradation, to changes in vegetation and to more extreme weather, as indicated by the additional arrow pointing upward in the image on the right. A recent study by Yuan Wang et al. found that aerosols formed by human activities from fast-growing Asian economies can cause more extreme weather, making storms along the Pacific storm track deeper, stronger, and more intense, while increasing precipitation and poleward heat transport.

Accelerated Warming in the Arctic

Similar developments appear to be taking place over the North Atlantic. Huge pollution clouds from North America are moving over the North Atlantic as the Earth spins. In addition, the Gulf Stream carries ever warmer water into the Arctic Ocean. As the image below shows, sea surface temperature anomalies at the highest end of the scale (8 degrees Celsius) are visible off the coast of North America, streching out all the way into the Arctic Ocean.


As said, feedbacks as are making the situation progressively worse. Feedback loops are causing warming in the Arctic to accelerate. Warming in the Arctic is accelerating with the demise of the snow and ice cover in the Arctic, and this is only feedback #1 out out many feedbacks that are hitting the Arctic, as described in an earlier post. As the temperature difference between the equator and the Arctic decreases, the Jet Stream is changing, making it easier for cold air to move out of the Arctic and for warm air from lower latitudes to move in (feedback #10).


Abrupt Climate Change leading to Extinction at Massive Scale

The danger is that, as temperatures over the Arctic Ocean warm up further and as the Gulf Stream carries ever warmer water into the Arctic Ocean, large quantitities of methane will erupt abruptly from the seafloor of the Arctic Ocean, adding a third kind of warming, runaway warming resulting in abrupt climate change, and leading to mass death, destruction and extiction of species including humans.

Persistence of such a progression makes it inevitable that the rest of Earth will follow the huge temperature rises in the Arctic. Massive wildfires will first ignite across higher latitudes, adding further greenhouse gas emissions and causing large deposits of soot on the remaining snow and ice on Earth, with a huge veil of methane eventually spreading around the globe. The poster below, from an earlier post, illustrates the danger.

[ click on image to enlarge - note that this is a 1.8 MB file that may take some time to fully load ]
Views by Contributors

How likely is it that the above mechanism will cause human extinction within the next few decades? What views do the various contributors to the Arctic-news blog have on this?

Guy McPherson has long argued that, given the strengths of the combined feedbacks and given the lack of political will to take action, near-term human extinction is virtually inevitable.

In the video below, Paul Beckwith responds to the question: Can climate change cause human extinction?


Further contributors are invited to have their views added to this post as well. While many contributors may largely share Paul Beckwith's comments, it's important to highlight that contributors each have their own views, and this extends to their preference for a specific plan of action.

Geo-engineering

One of the more controversial issues is the use of geo-engineering. Guy McPherson doesn't believe geo-engineering will be successful. In the video below, Paul Beckwith gives his (more positive) views on this.


I must admit that the lack of political will to act is rather depressing, especially given the huge challenges ahead. So, I can understand that this can make some of us pessimistic at times. Nonetheless, I am an optimist at heart and I am convinced that we can get it right by giving more support to a Climate Plan that is both comprehensive and effective, as discussed at ClimatePlan.blogspot.com