Saturday, June 23, 2012

How much methane is located in the Arctic?

Arctic sources of carbon have been studied by a team of researchers at Lawrence Livermore National Laboratory, Livermore, California, United States, led by Joshuah Stolaroff. Their estimates are illustrated in the image below, showing the potential total release, next to their characteristic annual release of methane and the geographic extent for each source.
Stolaroff et al., 2012, DOI: 10.1021/es204686w 
Note: Numbers in brackets behind the figures in above table relate to references below. If you cannot view these references, click here


For comparison, the NOAA image below shows the world's carbon dioxide emissions for each year in PgC (i.e. GtC or billions of tonnes of carbon).

Annual total emissions. The bars in this figure represent carbon dioxide emissions for each year in PgC yr-1 from the specified region. The final bar, labeled 'Mean', represents the 2001-2010 average. CarbonTracker models four types of surface-to-amosphere exchange of CO2, each of which is shown in a different color: fossil fuel emissions (tan), terrestrial biosphere flux excluding fires (green), direct emissions from fires (red), and air-sea gas exchange (blue). Negative emissions indicate that the flux removes CO2 from the atmosphere, and such sinks have bars that extend below zero. The net surface exchange, computed as the sum of these four components, is shown as a thick black line. 

Clearly, if merely a fraction of the sources at the top would end up in the atmosphere, we'd be in big trouble. Some of the carbon may be released gradually in the form of carbon dioxide, but it's much worse if large amounts of methane escape abruptly into the atmosphere, given factors such as methane's high Global Warming Potential. Anyway, it should be clear that the huge size of some of these sources poses a terrifying threat.  



Friday, June 22, 2012

Fires are raging again across Russia

NASA satellite image, acquired April 24, 2012 
Back in April, thousands of hectares were burning when NASA captured above image of fires in a rural area north of Omsk, a city in south central Russia near the Kazakhstan border, according to the NASA report accompanying the image.

In May 6, 2012, the Voice of Russia reported some 11000 hectares (about 42.4 square miles) of forests in Siberia to be on fire.

Lena River, Siberia - Wikipedia
Earlier this month, eight Russian paratroopers died fighting a massive forest fire in southern Siberia, reports UPI.

Russia has now declared a state of emergency in several eastern regions, due to hundreds of wildfires, reports NASA.

Smoke from fires burning in Siberia can travel across the Pacific Ocean and into North America. A NASA analysis of satellite images shows that aerosols from fires took six days to reach America's shores. In certain cases they saw smoke that actually circles the globe, describes NASA.

These fires are causing a lot of emissions, including soot that can be deposited on the ice in the Arctic, resulting in more sunlight to be absorbed which will speed up the melt.

Furthermore, high temperatures in Siberia will warm up the water in rivers, causing warm water to flow into the Arctic, as illustrated by above Wikipedia image highlighting the Lena River and the August 3, 2010, satellite image below, showing warm river water heat up the Laptev Sea (degrees Celsius).



The image below was edited from a report by NOAA’s National Climatic Data Center, describing that the globally-averaged temperature for May 2012 marked the second warmest May since record keeping began in 1880.

NOAA image, temperature anomalies for May 2012
The image below was edited from a recent NASA report describing a total of 198 fires burning across Russia. As the inset shows, the fires on the main image are part of an area where further fires are raging.

NASA satellite image, acquired June 18, 2012
Below are two maps from the NOAA Climate Prediction Center, showing temperature anomalies in Southern Russia for the week from June 10th to 16th, 2012, of over 7 degrees Celsius (12.6 degrees Fahrenheit), with temperatures in areas around the Caspian Sea reaching over 40 degrees Celsius (104 degrees Fahrenheit).

Perhaps even more worrying than high temperatures in Southern Russia are high temperature anomalies in Northern Siberia, some of which were in the 16-18 degrees Celsius range for the week from June 10-16th, 2012 (see NOAA image below).
Satellite image June 15, 2012 from DMI - http://ocean.dmi.dk/arctic/satellite/index.uk.php

Source: mapsofworld.com via Sam on Pinterest


Sunday, June 17, 2012

Arctic sea ice area falling rapidly



Above graph, produced by Neven Acropolis of the Arctic Sea Ice Blog from Cryosphere Today data, features in the recent post at Climate Progress, entitled: Death Spiral Watch: Arctic Sea Ice Takes A Nosedive.

As Neven adds, 2012 has over half a million of square kilometres less ice than record minimum years 2007 and 2011.


In above image, from the National Snow and Ice Data Center (NSIDC), Neven compares sea ice extent in March 2012 and June 2012, illustrating how much sea ice has disappeared within the past three months.

Note the difference between sea ice extent and area, as described in te NSIDC FAQ page:
A simplified way to think of extent versus area is to imagine a slice of Swiss cheese. Extent would be a measure of the edges of the slice of cheese and all of the space inside it. Area would be the measure of where there is cheese only, not including the holes. That is why if you compare extent and area in the same time period, extent is always bigger.
For more graphs, also read Neven's post ASI 2012 update 5: when graphs agree, and my earlier post Arctic sea ice volume on track to reach zero around 2015

I like to add an image that I made some time ago: