Showing posts with label tipping points. Show all posts
Showing posts with label tipping points. Show all posts

Monday, April 8, 2019

Blue Ocean Event Consequences

A Blue Ocean Event looks set to occur in the Arctic when there will be virtually no sea ice left. At first, the duration of this event will be a few weeks in September, but as more heat accumulates in the Arctic, the event will last longer each year thereafter.

Indeed, a Blue Ocean Event will come with accumulation of more heat, due to loss of latent heat, as a dark (blue) ocean absorbs more sunlight than the reflective ice, etc. Consequences will extend far beyond the Arctic, as shown on the image below that features Dave Borlace's Blue Ocean Top Ten Consequences.


Dave Borlace goes into more detail regarding these consequences in the video Blue Ocean Event : Game Over?


A Blue Ocean Event could happen as early as September 2019. The image below shows that Arctic sea ice extent on April 7, 2019, was 12.97 million km², a record low for measurements at ads.nipr.ac.jp for the time of year. By comparison, on May 28, 1985, extent was larger (13.05 million km²) while it was 51 days later in the year.


In the video below, Paul Beckwith also discusses the rapid decline of the sea ice and the consequences.


Clearly, the rapid decline of the sea ice has grave consequences. When also looking beyond what's happening in the Arctic, there are further events, tipping points and feedbacks that make things worse. An earlier post contains the following rapid warming scenario:
  1. a stronger-than-expected El Niño would contribute to
  2. early demise of the Arctic sea ice, i.e. latent heat tipping point +
  3. associated loss of sea ice albedo, 
  4. destabilization of seafloor methane hydrates, causing eruption of vast amounts of methane that further speed up Arctic warming and cause
  5. terrestrial permafrost to melt as well, resulting in even more emissions,
  6. while the Jet Stream gets even more deformed, resulting in more extreme weather events
  7. causing forest fires, at first in Siberia and Canada and
  8. eventually also in the peat fields and tropical rain forests of the Amazon, in Africa and South-east Asia, resulting in
  9. rapid melting on the Himalayas, temporarily causing huge flooding,
  10. followed by drought, famine, heat waves and mass starvation, and
  11. collapse of the Greenland Ice Sheet.


Importantly, depicted above is only one scenario out of many. Things may eventuate in different order and occur simultaneously, i.e. instead of one domino tipping over the next one sequentially, many events reinforcing each other. Further points should be added to the list, such as falling away of sulfate cooling due to economic changes, ocean stratification and stronger storms that can push large amounts of warm salty water into the Arctic Ocean.

Global sea ice extent is also at a record low for the time of year. Global sea ice extent on April 8, 2019, was 17.9 million km². On April 8, 1982, global sea ice extent was 22.32 million km², i.e. a difference of 4.42 million km². That constitutes a huge albedo loss.


As discussed in an earlier post, this all adds up to further global warming that may eventuate very rapidly. The image below shows how a total rise of 18°C or 32.4°F from preindustrial could eventuate by 2026.



The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.


Links

• Blue Ocean Event : Game Over? - by Dave Borlace
https://www.youtube.com/watch?v=qo3cznpfIpA

• Climate System Upheaval: Arctic Sea-Ice, Snow Cover, Jet-Stream, Monsoonal Consequences - by Paul Beckwith
https://www.youtube.com/watch?v=ZtpF--rqZZ8

• Jet Stream Center-of-Rotation to Shift 17 degrees Southward from North Pole to Greenland with Arctic Blue Ocean Event - by Paul Beckwith
https://www.youtube.com/watch?v=bFme3C9e-cs

• Blue Ocean Event
https://arctic-news.blogspot.com/2018/09/blue-ocean-event.html

• Stronger Extinction Alert
https://arctic-news.blogspot.com/2019/03/stronger-extinction-alert.html

• It could be unbearably hot in many places within a few years time
https://arctic-news.blogspot.com/2016/07/it-could-be-unbearably-hot-in-many-places-within-a-few-years-time.html

• Feedbacks
https://arctic-news.blogspot.com/p/feedbacks.html

• Latent Heat
https://arctic-news.blogspot.com/p/latent-heat.html

• Albedo and more
https://arctic-news.blogspot.com/p/albedo.html

• Warning of mass extinction of species, including humans, within one decade
https://arctic-news.blogspot.com/2017/02/warning-of-mass-extinction-of-species-including-humans-within-one-decade.html

• How much warming have humans caused?
https://arctic-news.blogspot.com/2016/05/how-much-warming-have-humans-caused.html

• The Threat
https://arctic-news.blogspot.com/p/threat.html

• A rise of 18°C or 32.4°F by 2026?
https://arctic-news.blogspot.com/2019/02/a-rise-of-18c-or-324f-by-2026.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html


Saturday, March 23, 2019

Climate Tipping Points

Paleoclimate perspectives of 21st-23rd centuries, IPCC projections and tipping points

by Andrew Glikson
Earth and paleo-climate scientist
Australian National University

Abstract

IPCC models of future climate trends contain a number of departures from patterns deduced from the paleoclimate evidence. With CO₂ levels reaching 411.8 ppm in January 2019 and CH₄ levels reaching 1.867 ppm in October 2018, for a greenhouse radiative forcing factor of CH₄=25 CO₂ equivalents, the total CO₂-equivalent of 457.5 ppm¹ approaches the stability limit of the Greenland ice sheet, estimated at a greenhouse gas forcing of approximately 500 ppm CO₂ although ephemeral ice may have existed as far back as the middle Eocene. As the concentration of greenhouse gases is rising and amplifying feedbacks from land, oceans and ice sheet melting increase, transient temperature reversals (stadials) accentuate temperature polarities between warming land masses and oceanic regions cooled by the flow of cold ice melt water from the ice sheets, leading to extreme weather events. The rise in Arctic temperatures, at a rate twice as fast as that of lower latitudes, weakens the polar boundary and results in undulation of the jet stream, allowing warm air masses to shift north across the boundary, further heating the polar region. The weakened boundary further allows cold air masses to breach the boundary shifting away from the Arctic. Combined with the flow of ice melt water from Greenland, these developments are leading to a cooling of sub-polar oceans and adjacent land. Similar growth of cold water pools occur along the fringes of Western Antarctica. The cold water pools cover deeper warmer salt water layers which melt the frontal glaciers. The slow-down of the AMOC is analogous to Pleistocene (2.6-0.01 Ma) and early Holocene stadial freeze events such as the Younger Dryas (12.9 – 11.7 kyr) and the 8.5 kyr Laurentide ice melt, where peak temperatures were followed closely by sharp cooling. Climate projections by Hansen et al. (2016) suggest a stadial event associated with significant sea level rise and involving sharp cooling of approximately -2°C, lasting several decades between the mid-21 st century and the mid-22nd century, a time dependent on the rate of Greenland and Antarctic ice melt. Accelerating ice melt and nonlinear sea level rise would reach multi-meters levels over a timescale of 50–150 years.

___________________
¹ January 2019: CO₂ = 410.8 ppm https://www.esrl.noaa.gov/gmd/ccgg/trends/ ; October 2018: CH₄ 1.8676 ppm (CO₂ equivalent x25 = 46.7 CO₂e) https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/

Paleoclimate records

Pleistocene paleo-climate records are marked by abrupt warming and cooling events during both glacial periods (Dansgaard-Oeschger (D-O) cycles; Ganopolski and Rahmstorf 2001; Camille and Born, 2019) and stadial interglacial periods, the latter defined as stadial freeze events (Figure 1). The paleo-climate record indicates that during the last ~450,000 years peak interglacial temperatures were repeatedly succeeded by temporary freeze events, attributed to the flow of cold ice melt water flow into the North Atlantic Ocean (Cortese et al. 2007) (Figure 1), associated with rapid rises in sea level, as during the last glacial termination (Figure 2). The rise in extreme weather events associated with current global warming to ~0.9°C above 1884 level (NASA, 2018) compares with temperatures and extreme weather events associated with the early Holocene Period (~11.6 –7.0 kyr), a period of major sea level rise of ~60 meters (Smith et al. 2011) and with the Eemian interglacial (128-116 kyr). During the Eemian tropical and extratropical North Atlantic cyclones may have been more intense than at present, and may have produced waves larger than those observed historically, as evidenced by large boulders transported by waves generated by intense storms and cliff erosion (Roverea et al. 2017). Sea levels during the Eemian, when temperatures were about +1°C or and sea levels were +6 to +9 m higher than during the late Holocene, offer analogies with current developments (Roverea A et al. 2017; Kaspar et al. 2007).

Figure 1. (A) Evolution of sea surface temperatures in 5 glacial-interglacial transitions recorded in ODP
1089 at the sub-Antarctic Atlantic Ocean. Lower grey lines – δ¹⁸O measured on Cibicidoides plankton;
Black lines – sea surface temperature. Marine isotope stage numbers are indicated on top of diagrams.
Note the stadial temperature drop events following interglacial peak temperatures, analogous
to the Younger Dryas preceding the onset of the Holocene (Cortese et al. 2007⁽²⁵⁾).
(B) Mean temperatures for the late Pleistocene and early Holocene.

With CO₂ levels reaching 411.8 ppm in January 2019 and CH₄ reaching 1.867 ppm in October 2018, for a greenhouse radiative forcing factor of CH₄=25 CO₂e, the total CO₂-equivalent of 457.5 ppm¹ approaches Miocene levels (Gasson et al. 2016). Levy et al. (2016), Tripati and Darby (2018) and other considered the implications of the rise of greenhouse levels above about 500 ppm CO₂ for the future of the Greenland ice sheet. Whereas due to hysteresis² of the ice sheets may delay complete melting, the extreme rate of warming (Figure 3) may in part override this effect.

Anthropocene tipping points

During the late Anthropocene³, accelerating since about 1960, the rise of radiative forcing due mainly to increasing greenhouse gas concentration above >457 ppm CO₂-equivalent, accounts for a rise of mean global temperatures by 0.98°C since 1880 (NASA (2018) A further rise by more than >0.5°C is masked by aerosols, mainly sulphur dioxide and sulfuric acid (Hansen et al., 2011).

The temperature rise is potentially further enhanced by amplifying feedbacks from land and oceans, including infrared absorption by water surfaces following sea ice melting, reduction of CO₂ concentration in warming water, release of methane and fires. However, climate change trajectories are likely to be highly irregular as a result of stadial ocean cooling events affected by flow of ice melt. Whereas similar temperature fluctuations including stadial events have occurred during past interglacial periods (Cortese et al. 2007; figure 1), with a further rise in atmospheric greenhouse gases the intensity and frequency of extreme weather events would enter uncharted territory unlike any recorded during the Pleistocene, potentially rendering large parts of the continents uninhabitable (Wallace-Wells, 2019).

Figure 2. Tipping points in the Earth system (Lenton et al., 2008)
https://www.pik-potsdam.de/services/infodesk/tipping-elements/kippelemente
Creative Commons BY-ND 3.0 DE license.

Expressions of climate tipping points include intensifying climate feedbacks such ice sheet and sea ice melting, declining Atlantic circulation, intensifying monsoons, increasing El-Nino events, heatwaves and fires, rainforest dieback, melting permafrost and breakdown of methane clathrates (Figure 2) (Lenton et al., 2008). According to the Potsdam Climate Impacts Institute (PIK), tipping points include transformation of the Amazon Rainforest, retreat of the Northern Boreal Forests, destruction of Coral Reefs and weakening of the Marine Carbon Pump, melting of the Arctic Sea Ice, loss of the Greenland Ice Sheet, collapse of the West Antarctic Ice Sheet, partial Collapse in East Antarctica, melting of the Yedoma Permafrost and methane Emissions from the Ocean (Schellnhuber, 2009).

Figure 3. Atmospheric carbon dioxide rise rates and global warming events: a comparison between current
global warming, the Paleocene-Eocene Thermal Event (PETM) and the last Glacial Termination. 

The rate at which atmospheric greenhouse gases and temperatures are rising exceeds global warming rates of the PETM and of last glacial termination and is the fastest recorded in Cenozoic record, excepting that associated with asteroid impacts (Figure 3). Ice mass loss would raise sea level by several meters in an exponential rather than linear response, with doubling time of ice loss yielding multi-meter sea level rise. Modelled 2055-2100 AIB model forcing of +1.19°C above 1880-1920 leads to a projected global warming trend which includes a transient drop in temperature, reflecting stadial freezing events in the Atlantic Ocean and the sub-Antarctic Ocean, reaching -2°C over several decades (Figure 7) (Hansen et al., 2016). These authors used paleoclimate data and modern observations to estimate the effects of ice melt water from Greenland and Antarctica, showing cold low-density meltwater tends to cap increasingly warm subsurface ocean water, affecting an increase ice shelf melting. This affects acceleration of ice sheet mass loss (Figure 4) and slowing of deep water formation (Figure 5).

Figure 4. Greenland and Antarctic ice mass change. GRACE data are extension of Velicogna et al. (2014)
gravity data. MBM (mass budget method) data are from Rignot et al. (2011). Red curves are gravity data for
Greenland and Antarctica only; small Arctic ice caps and ice shelf melt add to freshwater input. (Hansen et al. 2016)
Figure 5. (a) AMOC (in Sverdrup) at 28°N in simulations (i.e., including freshwater injection of 720 Gt year⁻¹ in 2011
                around Antarctica, increasing with a 10-year doubling time, and half that amount around Greenland).
(b) SST (°C) in the North Atlantic region (44–60°N, 10–50°W).

Future trends and Tipping points

Whereas the precise nature tipping point/s ensuing from the confluence of numerous processes (Figure 2) remains little defined, the weakened boundaries between the Arctic and sub-Arctic zones (Figure 7) and the build-up of cold ice melt pools in the oceans fringing Greenland and Antarctica represent an initial stage in the development of a stadial freeze. The warming of the Arctic, formed approximately 3.6-2.2 million years ago when CO₂ levels were about 400 ppm and polar temperatures near 2°C higher than in the late Holocene, heralds conditions somewhat similar to those of the Pliocene. Whereas reports of the International Panel of Climate Change (IPCC, 2018) (Figure 9), based on thousands of peer reviewed science papers and reports, offer a confident documentation of past and present processes in the atmosphere (Climate Council 2018), the portrayal of mostly linear temperature rise trends need to be questioned. Already early stages of a stadial event are manifest by the build-up of a large pools of cold water in the North Atlantic Ocean south of Greenland (Figure 6A) (Rahmstorf et al., 2015) and at the fringe of West Antarctica (Figure 6A) signify early stages in the development of a stadial freeze in large parts of the oceans, consistent with the decline in the Atlantic Meridional Ocean Circulation (AMOC) (Figure 6A).

Figure 6. (A) 2018 global temperature (NASA);
(B) projected 2055-2100 surface-air temperature to +1.19°C above 1880-1920
(AIB model modified forcing, ice melt to 1 meter) (Hansen et al., 2016).
These projections differ markedly from linear model trends (Figure 9) of IPCC models, which mainly assume long term ice melt (Ahmed, 2018). Rignot et al. (2011) report that in 2006 the Greenland and Antarctic ice sheets experienced a combined mass loss of 475 ± 158 Gt/yr, equivalent to 1.3 ± 0.4 mm/yr sea level rise”. For the Antarctic ice sheet the IEMB team (2017) states the sheet lost 2,720 ± 1,390 billion tonnes of ice between 1992 and 2017, which corresponds to an increase in mean sea level of 7.6 ± 3.9 millimeter (IMBIE team 2017). Hansen et al. (2008) consider global temperature higher than 1.0°Celsius due to CO₂ level of ~450 ppm would lead to irreversible ice sheet loss, given most climate models did not include amplifying feedbacks effects such as ice sheet disintegration, vegetation migration, and greenhouse gas release from soils, tundra, or ocean sediments. Such feedbacks can lead to climate tipping points leading to irreversible runaway climate change (Ahmed, 2018).

Figure 7. Global surface-air temperature to the year 2300 in the North Atlantic and Southern Oceans,
including stadial freeze events as a function of Greenland and Antarctic ice melt doubling time (Hansen et al., 2018)

According to NOAA (2018) Arctic surface air temperatures continue to warm at twice the rate relative to the rest of the globe (Figure 8B), leading to a loss of 95 percent of its oldest ice over the past three decades. Arctic air temperatures for 2014-18 have exceeded all previous records since 1900 and are driving broad changes within the Arctic as well he sub-Arctic through weakening of the jet stream which separates the Arctic from warmer climate zones. The recent freezing storms in North America represent penetration of cold air masses through a weakening and increasingly undulating jet stream barrier (Figure 8A). This weakening also allows warm air masses to move northward, further warming the Arctic and driving further ice melting. The freezing storms in North America (Figure 8C) are cheering those who refuse to discriminate between the climate and the weather.

Figure 8. – A. The weakened undulating Jet stream bounding the polar vortex.
Red represents the fastest air flow (Berwyn 2016). The "big freeze" in North America
results from a slow-moving depression of a Rossby wave⁵. The troughs and ridges of
these waves carry wind around the world and generally have a speed rating
of six or seven, with higher numbers representing faster moving winds;
B. The North American and Siberian freeze event 30 January 2019 (NOAA Global
Forecast system model) (Francis 2019). Predicted near-surface air temperature
differences from normal, relative to 1981-2010. Pivotal Weather, CC BY-ND (Francis 2019);
C. North America is experiencing the weather pattern on the left, while Europe enjoys the other one.

IPCC models of future climate change (Figure 9) contain a number of departures from patterns deduced from the paleoclimate evidence. The role of feedbacks from land and water, estimates of future ice melt rates, sea level rise rates, rates of methane release from permafrost and the extent of fires in enhancing atmospheric CO₂, and the already observed onset of ocean cooling south of Greenland and fringes of Antarctica freeze events need to be quantified. According to Hansen et al. (2016) ice mass loss would raise sea level by several meters in an exponential rather than linear response even within the 21st century. According to Rignot et al. (2011) the Greenland and Antarctic ice sheets experienced in 2006 a combined mass loss of 475 ± 158 billion tons per year.

According to a Met Office briefing evaluating the implications of the UN report, once we go past 1.5°C, we dramatically increase the risks of floods, droughts, and extreme weather that would impact hundreds of millions of people. According to the IPCC this would just be the beginning: as we are currently on track to hit 3-4°C by end of century (Figure 9), which would lead to a largely unlivable planet (Ahmed, 2018). The progressive melting of Greenland and the Arctic Sea ice, formed in the Pliocene approximately 3.6-2.2 million years ago when CO₂ levels were about 560-400 ppm (Stone et al. 2010). Future climate model projections by the IPCC (Figure 9) contain a number of significant departures from observations based on the paleoclimate evidence. This includes factors related to amplifying feedbacks from land and water, ice melt rates, temperature trajectories, sea level rise rates, methane release rates, the role of fires, and observed onset of transient stadial (freeze) events. As the Earth continues to heat, cold air masses breach the Arctic boundary and move southward and warm air penetrates into the Arctic, temperature contrasts between polar and subpolar climate zones decrease, further weakening the polar divide. Temperature contrasts between Arctic-derived cold air masses and subtropical air masses result in an increase in the intensity and frequency of extreme weather events.

Figure 9. IPCC AR5: Time series of global annual mean surface air temperature anomalies relative to 1986–2005
from CMIP5 (Coupled Model Inter-comparison Project) concentration-driven experiments.
Projections are shown for each RCP for the multi model mean (solid lines) and the 5–95% range
(±1.64 standard deviation) across the distribution of individual models (shading) (Easterbrook 2014).⁽⁴⁾

As the Earth warms, the increase in temperature contrasts across the globe, and thereby an increase in storminess and extreme weather events, occurring at present, need to be taken into account when planning adaptation measures, including preparation of coastal defenses, construction of channel and pipelines from heavy precipitation zones to draught zones. A non-linear climate warming trend, including stadial freeze events, bears significant implications for planning future adaptation efforts, including preparations for transient deep freeze events in parts of Western Europe and eastern North America for periods lasting several decades (Figure 7) and coastal defenses against enhanced sea levels and storms. In Australia this should include construction of water pipelines and channels from the flooded north to parched regions such as the Murray-Darling basin.

_________________________
² Hysteresis: The phenomenon in which the value of a physical property lags behind changes in the effect causing it, as for instance when magnetic induction lags behind the magnetizing force.
³ The Anthropocene is a proposed epoch dating from the commencement of significant human impact on the Earth's 
geology and ecosystems. https://en.wikipedia.org/wiki/Anthropocene
⁴ Steve Easterbrook, New IPCC Report (Part 6). Azimuth. https://johncarlosbaez.wordpress.com/2014/04/16/what-does-the-new-ipcc-report-say-about-climate-change-part-6/
https://oceanservice.noaa.gov/facts/rossby-wave.html
https://www.dw.com/en/understanding-the-polar-vortex/a-17347788


Andrew Glikson
Dr Andrew Glikson
Earth and Paleo-climate science, Australia National University (ANU) School of Anthropology and Archaeology,
ANU Planetary Science Institute,
ANU Climate Change Institute,
Honorary Associate Professor, Geothermal Energy Centre of Excellence, University of Queensland.

Books:
The Archaean: Geological and Geochemical Windows into the Early Earth
The Asteroid Impact Connection of Planetary Evolution
Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia
Climate, Fire and Human Evolution: The Deep Time Dimensions of the Anthropocene
The Plutocene: Blueprints for a Post-Anthropocene Greenhouse Earth
Evolution of the Atmosphere, Fire and the Anthropocene Climate Event Horizon
From Stars to Brains: Milestones in the Planetary Evolution of Life and Intelligence


References

• Ahmed N. (2018) The UN's Devastating Climate Change Report Was Too Optimistic. Motherboard.
https://motherboard.vice.com/en_us/article/43e8yp/the-uns-devastating-climate-change-report-was-too-optimistic

• Arctic Report Card (2018) Tracking recent environmental changes relative to historical records.
https://www.arctic.noaa.gov/Report-Card

• Berwyn B (2016) Wobbly Jet Stream Is Sending the Melting Arctic into 'Uncharted territory. Inside Climate News.
https://insideclimatenews.org/news/08062016/greenland-arctic-record-melt-jet-stream-wobbly-global-warming-climate-change

• Camille Li, Born A. (2019) Coupled atmosphere-ice-ocean dynamics in Dansgaard-Oeschger events Quaternary Science Reviews 203, 1-20.
https://www.sciencedirect.com/science/article/pii/S0277379118305705

• Climate Council (1918) The good the bad and the ugly: limiting temperature rise to 1.5°C.
https://www.climatecouncil.org.au/resources/limiting-temperature-rise/

• Cortese G, Abelmann A, Gersonde A (2007) The last five glacial‐interglacial transitions: A high‐resolution 450,000‐year record from the sub-Antarctic Atlantic. Paleogeography and Paleoclimatology (22) Part 4.
https://www.researchgate.net/publication/228524417_The_last_five_glacial-interglacial_transitions_A_high-resolution_450000-year_record_from_the_subantarctic_Atlantic

• Easterbrook S (2014) New IPCC Report (Part 6). Azimuth.
https://johncarlosbaez.wordpress.com/2014/04/16/what-does-the-new-ipcc-report-say-about-climate-change-part-6/

• Francis J (2019) How frigid polar vortex blasts are connected to global warming: The National Weather Service is warning of brutal, life-threatening conditions. Salon, January 2019.
https://www.salon.com/2019/01/31/how-frigid-polar-vortex-blasts-are-connected-to-global-warming_partner/

• Gasson E. et al. (2016) Dynamic Antarctic ice sheet during the early to mid-Miocene. PNAS March 29, 2016 113 (13) 3459-3464.
https://www.pnas.org/content/113/13/3459

• Ganopolski A, Rahmstorf S. (2001) Rapid changes of glacial climate simulated in a coupled climate model. Nature 409 (6817)153-8.
https://www.ncbi.nlm.nih.gov/pubmed/11196631

• Hansen J, Sato M, Kharecha P, von Schuckmann K (2011) Earth’s energy imbalance and implications. Atmos Chem Phys 11:13421–13449.
https://www.atmos-chem-phys.net/11/13421/2011/acp-11-13421-2011.html

• Hansen J. et al. (2016) Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2°C global warming could be dangerous. Atmos. Chem. Phys. 16, 3761-3812.
https://johncarlosbaez.wordpress.com/2014/04/16/what-does-the-new-ipcc-report-say-about-climate-change-part-6/

• Hansen J. (2018) Climate Change in a Nutshell: The Gathering Storm.
http://www.columbia.edu/~jeh1/mailings/2018/20181206_Nutshell.pdf

• IMBIE Team (2017) Mass balance of the Antarctic Ice Sheet from 1992 to 2017.
https://www.nature.com/articles/s41586-018-0179-y.epdf?referrer_access_token=S5Y_R-7foKDe_0LTC1ePHNRgN0jAjWel9jnR3ZoTv0PBEKqWHTwARrIrR4OxoHFd5WZGh-A0FX8FPbkdWIZLYWSZXdrY6PsBEIhQw8kfzqY8CzRUyWao-gOmRlMtURwKL_LY17cUVdlgmtWLaRk_EWhFILoJdJyawITzJhU3y8fPcoosWQQMgEN2fv3kQx_S8JT4BLn4bheLaGZaYfD6J64pzwLO1V5h5TxsI6J4qUimPnWHm2Ax0DoQjYvfEgChVqY1nI8d3M_kRuObyJedPw%3D%3D&tracking_referrer=www.abc.net.au

• IPCC (2018) Global warming of 1.5°C.
https://www.ipcc.ch/sr15/

• IPCC Working Group I, IPCC (2018) The Scientific Basis.
https://archive.ipcc.ch/ipccreports/tar/wg1/416.htm ;
https://www.ipcc.ch/working-group/wg1/?idp=408

• IPCC (2018) Ice-Free Arctic in Pliocene, Last Time CO₂ Levels above 400 PPM.
https://www.scientificamerican.com/article/ice-free-arctic-in-pliocene-last-time-co2-levels-above-400ppm/

• Kaspar, F, Spangehl T, and Cubasch U (2007). Northern hemisphere winter storm tracks of the Eemian interglacial and the last glacial inception. Clim. Past 3, 181–192.
http://moraymo.us/wp-content/uploads/2018/03/Rovereetal_PNAS_2017.pdf

• Lenton T.M. et al. (2008) Tipping Elements - the Achilles Heels of the Earth System. Potsdam Institute of Climate Impact Research.
https://www.pik-potsdam.de/services/infodesk/tipping-elements/kippelemente

• Levy R. et al. (2016) Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene. PNAS 29, 113(13):3453-3458.
https://www.pnas.org/content/113/13/3453

• NASA (2018) Global Temperature: Latest annual average anomaly 2018.
https://climate.nasa.gov/vital-signs/global-temperature/

• NOAA (2018) Arctic report card.
https://www.arctic.noaa.gov/report-card
https://www.theguardian.com/environment/live/2018/oct/08/ipcc-climate-change-report-urgent-action-fossil-fuels-live

• Rahmstorf S. et al. (2015) Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change volume 5:475–480.
https://www.nature.com/articles/nclimate2554

• Rignot E et al. (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett 38 (5).
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2011GL046583

• Roverea A et al. (2017) Giant boulders and Last Interglacial storm intensity in the North Atlantic. Proc. Am Acad Sci 114 (46) 12144-12149.
http://moraymo.us/wp-content/uploads/2018/03/Rovereetal_PNAS_2017.pdf

• Schellnhuber H. J. (Ed.) (2009). Tipping Elements in Earth Systems. Special Feature. PNAS 106, 20561-20621.
https://www.pnas.org/content/106/49/20561

• Smith D.E. et al. (2011) The early Holocene sea level rise. Quaternary Science Reviews 30 (15–16) 1846-1860.
https://www.sciencedirect.com/science/article/abs/pii/S0277379111001211

• Stone E.J. et al. (2010) Investigating the sensitivity of numerical model simulations of the modern state of the Greenland ice-sheet and its future response to climate change. The Cryosphere 4, 397-417.
https://www.the-cryosphere.net/4/397/2010/tc-4-397-2010-discussion.html

• Tripati A, Darby D. (2018) Evidence for ephemeral middle Eocene to early Oligocene Greenland glacial ice and pan-Arctic sea ice. Nature communications 1038.
https://www.nature.com/articles/s41467-018-03180-5

• Velicogna I, Sutterley T. C. van den Broeke M. R. (2014) Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time‐variable gravity data. Geophysical Res Lett 41(22) 8130-8137.
https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2014GL061052

• Wallace-Wells D, (2019) The Uninhabitable Earth: A Story of the Future. Penguin Books, 320 pp.
https://www.penguin.com.au/books/the-uninhabitable-earth-9780241400517

Monday, October 8, 2018

What Does Runaway Warming Look Like?

The forcing caused by the rapid rise in the levels of greenhouse gases is far out of line with current temperatures. A 10°C higher temperature is more in line with these levels, as illustrated by the image below.


Carbon dioxide levels have been above 400 ppm for years. Methane levels above 1900 ppb were recorded in September 2018. Such high levels are more in line with a 10°C higher temperature, as illustrated by the above graph based on 420,000 years of ice core data from Vostok, Antarctica, research station.

How fast could such a 10°C temperature rise eventuate? The image below gives an idea.


Such runaway warming would first of all and most prominently become manifest in the Arctic. In many ways, such a rise is already underway, as the remainder of this post will show.

High Arctic Temperatures

Why are Arctic temperatures currently so high for the time of year?


As warmer water enters the Arctic Ocean from the Atlantic and Pacific Oceans, there is no thick sea ice left to consume this heat. Some of this heat will escape from the Arctic Ocean to the atmosphere, as illustrated by above dmi.dk  image showing very high temperatures for the time of the year over the Arctic (higher than 80°C latitude).


Above dmi.dk image shows that Arctic temperatures are increasingly getting higher during Winter in the Northern Hemisphere.


Similarly, above NASA image shows that Arctic temperatures are increasingly getting higher during Winter in the Northern Hemisphere.


As the Arctic warms up faster than the rest of the world, the Jet Stream is becoming more wavy, allowing more hot air to move into the Arctic, while at the same time allowing more cold air to move south.

Above image shows that the air over the Beaufort Sea was as warm as 12.8°C or 55°F (circle, at 850 mb) on October 2, 2018. The image also illustrates that a warmer world comes with increasingly stronger cyclonic winds.


The images above and below shows that on October 2 and 7, 2018, the sea surface in the Bering Strait was as much as 6°C or 10.7°F, respectively 6.4°C or 11.6°F warmer than 1981-2011 (at the green circle).


As temperatures on the continent are coming down in line with the change in seasons, the air temperature difference is increasing between - on the one hand - the air over continents on the Northern Hemisphere and - on the one hand - air over oceans on the Northern Hemisphere. This growing difference is speeding up winds accordingly, which in turn can also speed up the influx of water into the Arctic Ocean.

[ The Buffer has gone, feedback #14 on the Feedbacks page ]
Start of freezing period

Here's the danger. In October, Arctic sea ice is widening its extent, in line with the change of seasons. This means that less heat can escape from the Arctic Ocean to the atmosphere. Sealed off from the atmosphere by sea ice, greater mixing of heat in the water will occur down to the seafloor of the Arctic Ocean, while there is little or no ice buffer left to consume an influx of heat from the Atlantic and Pacific Oceans, increasing the danger that warm water will reach the seafloor of the Arctic Ocean and destabilize methane hydrates. 

Rising salt content of Arctic Ocean

It's not just the influx of heat that is the problem. There's also the salt. Ice will stay frozen and will not melt in freshwater until the temperature reaches 0°C (or 32°F). Ice in saltwater on the other hand will already have melted away at -2°C (or 28.4°F).

The animation of the right shows salty water rapidly flowing through the Bering Strait.

With the change of seasons, there is less rain over the Arctic Ocean. The sea ice also seals the water of the Arctic Ocean off from precipitation, so no more fresh water will be added to the Arctic Ocean due to rain falling or snow melting on the water.

In October, temperatures on land around the Arctic Ocean will have fallen below freezing point, so less fresh water will flow from glaciers and rivers into the Arctic Ocean. At that time of year, melting of sea ice has also stopped, so fresh water from melting sea ice is no longer added to the Arctic Ocean either.

Pingos and conduits. Hovland et al. (2006)
So, the Arctic Ocean is receiving less freshwater, while the influx of water from the Atlantic and Pacific Oceans is very salty. This higher salt content of the water makes it easier for ice to melt at the seafloor of the Arctic Ocean. Saltier warm water is causing ice in cracks and passages in sediments at the seafloor of the Arctic Ocean to melt, allowing methane contained in the sediment to escape.

[ click on images to enlarge ]
The image on the right, from a study by Hovland et al., shows that hydrates can exist at the end of conduits in the sediment, formed when methane did escape from such hydrates in the past. Heat can travel down such conduits relatively fast, warming up the hydrates and destabilizing them in the process, which can result in huge abrupt releases of methane.

Heat can penetrate cracks and conduits in the seafloor, destabilizing methane held in hydrates and in the form of free gas in the sediments.

Methane

peak methane levels as high as 2859 ppb
On October 2 and 7, 2018, peak methane levels were as high as 2838 ppb, respectively 2859 ppb, as the images on the right shows. Methane levels over the Beaufort Sea have been high for some time, and have remained high at very high altitudes.

The threat is that a number of tipping points are going to be crossed, including the buffer of latent heat, loss of albedo as Arctic sea ice disappears, methane releases from the seafloor and rapid melting of permafrost on land and associated decomposition of soils, resulting in additional greenhouse gases (CO₂, CH₄, N₂O and water vapor) entering the Arctic atmosphere, in a vicious self-reinforcing cycle of runaway warming.

A 10°C rise in temperature by 2026?


Above image shows how a 10°C or 18°F temperature rise from preindustrial could eventuate by 2026 (from earlier post).

The situation is dire and calls for comprehensive and effective action, as described at the Climate Plan.


Links

• Temperature Rise
https://arctic-news.blogspot.com/2017/08/temperature-rise.html

• Mean Methane Levels reach 1800 ppb
https://arctic-news.blogspot.com/2013/06/mean-methane-levels-reach-1800-ppb.html

• Why are methane levels over the Arctic Ocean high from October to March?
https://arctic-news.blogspot.com/2015/01/why-are-methane-levels-over-the-arctic-ocean-high-from-october-to-march.html

• Blue Ocean Event
https://arctic-news.blogspot.com/2018/09/blue-ocean-event.html

• Feedbacks
https://arctic-news.blogspot.com/p/feedbacks.html

• The Threat
https://arctic-news.blogspot.com/p/threat.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Aerosols
https://arctic-news.blogspot.com/p/aerosols.html

• How extreme will it get?
https://arctic-news.blogspot.com/2012/07/how-extreme-will-it-get.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html



Monday, October 22, 2012

State of Climate Change October 2012

A video featuring Paul Beckwith, climate scientist at University of Ottawa, who gives an update on the state of climate change, October 2012.


Paul adds that it was off the cuff and unscripted. "I wandered by Parliament Hill to see the people who were doing a climate change fast and ended up talking about the Arctic with them."

Here is a link to their website and protest:
http://www.facebook.com/CLIMATEFAST