Showing posts with label Veli Albert Kallio. Show all posts
Showing posts with label Veli Albert Kallio. Show all posts

Monday, November 23, 2015

Arctic Ocean Shows New Record Low Sea Ice

by Albert Kallio


Both the sea ice thickness and sea ice area have fallen to new record lows for this time of the year (22.11.2015), even surpassing all of the worst previous years.

From Naval Research Laboratory image - view animation
Immense thrust of fast moving sea ice is pushing through at the full width of the Fram Strait between Norway and Greenland. This amounts to huge transport of latent coldness out of the Arctic Ocean to North Atlantic, while the constantly forming new sea ice (as temperatures are below 0°C) is generating heat to keep the surface air temperatures higher across the Arctic Ocean. Thus, heat is constantly being added to the Arctic Ocean while heat is taken away from the North Atlantic Ocean.


The normal sea ice area for this time of year is 9,625,000 km2, whereas the sea ice covers currently just 8,415,890 km2,, which makes that 1,209,120 km2 sea ice is missing from the normal (22.11) sea ice area.



The combination image below shows the jet stream (November 23, 2015, left panel) and surface wind (November 24, 2015, right panel).


Jet stream is wavy and strong, showing speeds as high as 219 mph or 352 km/h (at location marked by the green circle). Right panel shows cyclonic winds between Norway and Greenland speeding up movement of sea ice into the North Atlantic.

Forecasts indicate that conditions could continue. The 5-day forecast on the right shows strong winds in the North Atlantic. Note also the cyclonic winds outside the Bering Strait.

Temperatures over the Arctic are forecast to remain much higher than they used to be, with anomalies at the far end of the scale over a large part of the Arctic Ocean showing up on the 5-day temperature anomaly forecast below.




[ further updates will follow ]

Monday, June 1, 2015

Heat Wave Forecast For Russia Early June 2015


Following heat waves in Alaska and the north of Canada, the Arctic looks set to be hit by heat waves along the north coast of Russia in early June, 2015. The image below shows temperature anomalies at the top end of the scale for a large area of Russia forecast for June 6, 2015.


Meanwhile, the heat wave in India continues. It killed more than 2,100 people, reports Reuters, adding that the heat wave also killed more than 17 million chickens in May. The number of people killed by the heat wave is now approaching the 2,541 people killed by the 1998 heat wave in India, which is listed as the record number of deaths due to extreme temperatures in India by the Emergency Events Database.

Further records listed by the database are the well over 70,000 people killed by the 2003 heat wave in Europe and 55,736 people killed by the 2010 heat wave in Russia alone.

On above temperature forecast (left image, top right), temperatures over a large area of India will be approaching the top end of the scale, i.e. 50°C or 120°F. While such temperatures are not unusual in India around this time of year, the length of the heat wave is extraordinary. The heat wave that is about to hit Russia comes with even higher temperature anomalies. Even though temperatures in Russia are unlikely to reach the peaks that hit India, the anomalies are at the top end of the scale, i.e. 20°C or 36°F.

The image below shows a forecast for June 6, 2015, with high temperatures highlighted at four locations (green circles).


Below is a forecast for the jet stream as at June 7, 2015.

The animation below runs the time of the top image (June 6, 2015, 0900 UTC) to the above image (June 7, 2015, 1200 UTC), showing forecasts of the jet stream moving over the Arctic Ocean, with its meandering shape holding warm air that extends from Russia deep into the Arctic Ocean.


Below is another view of the situation.
Jet stream on June 6, 2015, 0900 UTC, i.e. the date and time that corresponds with the top image.
Clicking on this link will bring you to an animated version that also shows the wind direction, highlighting the speed (I clocked winds of up to 148 km/h, or 92 mph) of the jet stream as it moves warm air from Russia into the Arctic Ocean, sped up by cyclonic wind around Svalbard.

This is the 'open doors' feedback at work, i.e. feedback #4 on the feedbacks page, where accelerated warming in the Arctic causes the jet stream to meander more, which allows warm air to enter the Arctic more easily, in a self-reinforcing spiral that further accelerates warming in the Arctic.

The implications of temperatures that are so much higher than they used to be are huge for the Arctic. These high temperatures are heating up the sea ice from above, while rivers further feed warm water into the Arctic Ocean, heating up the sea ice from below.

Furthermore, such high temperatures set the scene for wildfires that can emit huge amounts of pollutants, among which dust and black carbon that, when settling on the sea ice, can cause large albedo falls.

The image below shows Russian rivers that end up in the Arctic Ocean, while the image also shows sea surface temperature anomalies as high as 8.2°C or 14.76°F (at the green circle, near Svalbard).



The big danger is that the combined impact of these feedbacks will accelerate warming in the Arctic to a point where huge amounts of methane will erupt abruptly from the seafloor of the Arctic Ocean.
The image below shows that methane levels as high as 2,566 ppb were recorded on May 31, 2015, while high methane levels are visible over the East Siberian Arctic Shelf.


Below is part of a comment on the situation by Albert Kallio:
As the soils warm up the bacteria in them and the insulating capacities of snow themselves tend to lead snow cover melting faster the warmer the soil it rests on becomes. (Thus the falling snow melts very rapidly on British soil surface if compared to Finland or Siberia where the underlying ground is much colder, even if occasionally the summers have similar or even higher temperatures).

The large snow cover over the mid latitude land masses is a strong negative feedback for the heat intake from the sun if the season 2015 is compared with the season 2012, but the massive sea ice and polar air mass out-transportation equally strongly weakens formation of new sea ice around the North Pole (and along the edges of the Arctic Ocean) as the air above the Arctic Ocean remains warm. The pile up of thin coastal ice also increases vertical upturning of sea water and this could have detrimental effects for the frozen seabed that is storing methane clathrates. The sunlight intake of the sea areas where sea ice has already disappeared corresponds largely with the 2012 season.

The inevitable snow melting around the Arctic Ocean will also transport record volumes of warmed melt water from the south to the Arctic Ocean. The available heat in the Arctic may also be later enhanced by the high sea water temperatures that prevail along the eastern and western coasts of North America, as well as El Nino event increasing temporarily air and sea surface temperatures. This leads to more depressions around Japan and Korea from where the warm air, storms and rains migrate towards Alaska and pull cold air away from Arctic over Russia, while pushing warm air through the Baring Strait area and Alaska to the Arctic Ocean region.

Forecasting seasonal out comes is likely to be increasingly difficult to make due to increasing number of variables in the seasonal melting processes and the resulting lack of historic precedents when the oceans and Arctic has been as warm as today. Thus the interplay of the opposing forces makes increasingly chaotic outcomes, in which the overall trend will always be for less ice and snow at the end of the season. Because of these reasons - including many others not explicitly mentioned here - the overall outcome for the blue ocean, or the ice-free Arctic Ocean, will be inevitable.

Whether the loss of sea ice happens this summer, or next, or one after that, the problem isn't going to go away and more needs to be done to geoengineer to save Arctic ice and wildlife dependent on summer sea ice.
John Davies responds:
Albert Kallio is absolutely right in saying that warmer temperatures are leading to a blue ocean event though the problem remains in which year this will happen. Additionally Methane is being released from the bottom of the ocean leading to increased Methane concentrations and all that means for a destabilising global climate. Frustratingly, the higher temperatures and increasing Methane concentrations are not yet quite sufficient for us to persuade the scientific community and the public that Armageddon is on the way. Hence it is not yet possible to be in a position to persuade the world community of the urgent need for Geo-engineering to save the Arctic and Global climate. However we may reach this situation in the near future and that will be the only time when it might be possible to save the global climate and prevent Armageddon.

The situation is dire and calls for comprehensive and effective action, as discussed at the Climate Plan page.



This image shows Russian rivers that end up in the Arctic Ocean, while it also shows sea surface temperature anomalies...
Posted by Sam Carana on Monday, June 1, 2015

Monday, March 9, 2015

September 2015 without Arctic Sea Ice?

The image below shows that Arctic sea ice extent, on March 8, 2015, was merely 14.263 square km.


What would happen if the Arctic sea ice kept falling to, say, under 11 million square km by end April and then followed a trajectory similar to 2012 for the next four months? As the animation below shows, such a scenario could wipe out all Arctic sea ice for more than a month from September 1st, 2015.

The following image is a contribution by Albert Kallio.

Sea ice thickness image, Naval Reserach Laboratory
Albert Kallio comments: "The latest sea ice thickness measurement (9th March 2015) for the US Navy submarines shows that the thick and rigid multiyear sea ice congestion has cleared from the Fram Strait between Greenland and the Svalbard Archipelago. That means sea ice is weak; new ice with saline residues and pack ice is made of numerous thin sea ice slabs that have been compressed to thick piles, rather than fewer thick slabs of multiyear sea ice. That means: more sea ice surface area is exposed to sea water and the heat within it. As a result, sea ice is likely melt even faster once it escapes from the Fram Strait. The wave penetration is also stronger within soft and highly fragmented seasonal ice packs. So, the sea ice is now primed for faster transport out of the Arctic Ocean."

So, what would happen if the sea ice was wiped out like that?

Sunlight that previously went into melting the sea ice, as well as sunlight that was previously reflected back into space by sea ice, would be absorbed by the Arctic Ocean instead. In other words, we can expect massive warming. In an earlier post, Prof. Peter Wadhams warned that warming due to Arctic snow and ice loss may well exceed 2 W per square m, i.e. it could more than double the net warming causing by all emissions by all people of the world.

Professor Peter Wadhams on albedo changes in the Arctic
The resulting temperature rise is likely to start wildfires all over the Northern Hemisphere, which would not only send huge amounts of greenhouse gases and soot into the air, but could also threaten entire cities and cause much of the grid to stop functioning. In 2007, a main power line burnt in Australia causing power outages for many homes and traffic lights in Melbourne. Many power plants require extensive water cooling, which can come under threat during intense heatwaves, as happened in France in 2009. Such events may be dwarfed by future heatwaves. Fuel is often transported by rail to power plants, and the railway tracks could bend during heatwaves. The health threat posed by heatwaves, wildfires and soot may result in critical employee loss at power plants.

As a result, electricity supply could stutter, and much industrial activity may stop, while there may be lots of traffic problems, etc. This is only one of the problems, though, as discussed in the 2007 post Ten Dangers of Global Warming. Food supply will come under threat due to crop loss and reduced supply of food to shops, made worse by traffic problems. As discussed back in 2011, much of the soot from firestorms in Siberia could settle on the ice in the Himalaya Tibetan plateau, melting the glaciers there and causing short-term flooding followed by rapid decrease of the flow of ten of Asia’s largest river systems that originate there, with more than a billion people’s livelihoods depending on the continued flow of this water.

Less industrial activity will not cause an immediate fall of tenmperatures, though. Instead, it would make that the aerosols that are currently sent up in the air by such activities and that are currently masking the full wrath of global warming, will fall out of the air in a matter of weeks. Until now, about half of the global temperature rise is suppressed by such aerosols. Stopping aerosols release overnight could make temperatures rise abruptly by 1.2°C (2.16°F) in a matter of weeks.


Methane eruptions from the seafloor of the Arctic Ocean typically start becoming huge around the end of October.

Conclusion from a paper presented at the 2008 EGU conference, on background
of a frame from a video interview by Nick Breeze with Natalia Shakhova.

Further warming of the Arctic Ocean could cause methane to erupt from the seafloor of the Arctic Ocean in quantities that could quickly double and tripple the amount of methane in the atmosphere.

The combined impact of such feedbacks could wipe out crops, deplete water supplies and make a huge number of species go extinct very quickly, including human beings.

In conclusion, the situation is dire and calls for comprehensive and effective action, as discussed at the Climate Plan blog.



Wednesday, January 28, 2015

Rain Storms Devastate Arctic Ice And Glaciers

by Veli Albert Kallio


The Norwegian Svalbard Islands are located just few hundred miles from the North Pole. It is a unique environment for glaciers: Here glaciers can survive almost at sea level. This means that ice is constantly brushed by thick low-altitude air, which also dumps increasinlgy rain instead of snow.

As a result of high ocean temperatures and of precipitation nowadays falling as rain for months, the melting of these glaciers now occurs 25 times faster than just some years ago.

This also spells bad news for Northern Greenland's low lying glaciers, which will face increasing summertime flash floods as the Arctic Ocean becomes ice free and warms up, and as precipitation falls in the form of rain, rather than snow.

Sea surface temperature of 17.5°C, west of Svalbard
click on image to enlarge
Last summer, for example, sea water west of the Svalbard reached +18C, which is perfect for swimming - but extremely bad for the cold glaciers on shore which mop up the warm moisture and rainfall from the warmed up ocean.

Flash floods falling on glacier soften the compacted snow very rapidly to honeycombed ice that is exceedingly watery and without any internal strength.

Such ice can collapse simply under its own weight and the pulverised watery ice in the basin forms a near frictionless layer of debris.

Darkening of the melting ice also hastens its warming and melting.

Aggressively honeycombed glacier ice floating on meltwater lake in nearby Iceland.   Image credit: Runólfur Hauksson


click on image to enlarge

Changes to the Jet Streams

As the Arctic continues to warm, the temperature difference between the equator and the Arctic declines. This slows down the speed at which the polar vortex and jet streams circumnavigate the globe and results in more wavier jet streams that can enter and even cross the Arctic Ocean and can also descend deep down over the continents, rather than staying between 50 and 60 degrees latitude, where the polar jet streams used to be (as discussed in a recent post).

Such deep descent over continents can cause very low temperatures on land, while at the same time oceans remain warm and are getting warmer, so the temperature difference between land and ocean increases, speeding up the winds between continents. On January 9, 2015, jet streams reached speeds between continents as high as 410 km/h (255 mps), as shown on above image. Also note the jet stream crossing the Arctic Ocean.

Faster winds means more water evaporation, and warmer air holds more water vapor, so this can result in huge rainstorms that can rapidly devastate the integrity of the ice.

[image and text in yellow panels by Sam Carana]

  

























I suspect that climatically-speaking we are currently entering a methane-driven Bøllinger warming state with the Northern Cryosphere now entering a phase of rapid warming and melting of anything frozen (snow, sea ice, permafrost and sea bed methane clathrates).

This will be rapidly followed by a Heindrich Iceberg Calving event when the warmed and wet ice sheet in Greenland gives away to its increased weight (due to excessive melt water accumulation within and beneath the ice sheet).

This dislodges the ice sheet’s top, due to accumulation of “rotten ice” (honeycombed, soft ice with zero internal strength) at the ice sheet’s base and perimeters.

A huge melt water pulse to the ocean ensues with Jōkullhaups and ice debris loading the ocean with vast amounts of cold fresh water.

Within weeks an immense climatological reversal then occurs as the ocean gets loaded up with ice debris and cold water leading to the Last Dryas cooling and to world-wide droughts.

This loading of the ocean with ice and water leads to severe climatic flop, as the ocean and atmosphere cool rapidly and as falling salinity and sea water temperature briefly reverse all of the current Bøllinger warming, until the climatic forcing of the greenhouse gases again takes over the process, in turn leading to a new melt water pulse as another ice sheet or shelf disintegrates by the next warming.

Today’s rapid melt water lake formation in Greenland and the ultra-fast melting of glaciers are suggestive of near imminent deglaciation process in the Arctic.

Germany’s and Japan’s recent decisions to remove all their nuclear reactors from the sea sides may prove their worth sooner than many think in the far more conservative US and UK where “glacial speed” still means “eons of time”. Good luck UK/US!

I think cold 'Dryases' are not real Ice Ages, but hiatuses in a progressive melting process which results from changes in sea water salinity and temperature due to increases of meltwater and ice debris runoff from continental snow and ice that melt. As ocean gets less saline and colder the sea ice and snow cover temporarily grows.

But in the long run the greenhouse gas forcing and ocean wins and the warmth and melting resumes until the next big collapse of ice shelf and/or ice sheet. Hence there are meltwater pulses (such as 1a, 1b, 1c) and Heindrich Ice Berg Calving surges (2, 1, 0 - the last one being also called "Younger Dryas" as the Arctic Dryas octopetala grew in South once again after Ice Ages).

The next cooling from collapse of Greenland ice dome would be Heindrich Minus One as the zero has already been allocated to Younger Dryas ice berg surge. Here is an article worth reading on this risk. In Antarctica we see currently (already) a sea ice growth hiatus driven by increased runoff of melt water and ice debris from the continent and its surrounding ice shelves that are rapidly disintegrating.



Abrupt climate change happened in just one year

A 2008 study by Achim Brauer et al. of lake sediments concluded that abrupt increase in storminess during the autumn to spring seasons, occurring from one year to the next at 12,679 yr BP. This caused abrupt change in the North Atlantic westerlies towards a stronger and more zonal jet, leading to deglaciation.

A 2009 study by Jostein Bakke et al. confirmed that increased flux of fresh meltwater to the ocean repeatedly resulted in the formation of more extensive sea ice that pushed the jet south once more, thus re-establishing the stadial state. Rapid oscillations took place until the system finally switched to the interglacial state at the onset of the Holocene.

References

- An abrupt wind shift in western Europe at the onset of the Younger Dryas cold period, Brauer et al.
http://www.nature.com/ngeo/journal/v1/n8/abs/ngeo263.html

- Rapid oceanic and atmospheric changes during the Younger Dryas cold period, Bakke et al.
http://www.nature.com/ngeo/journal/v2/n3/abs/ngeo439.html



Friday, January 2, 2015

Strong winds threaten to push sea ice out of Arctic Ocean

By Albert Kallio


The lateral viscosity of the thin Arctic sea ice cover continues to lower. In November just one quarter of the high Arctic Ocean basin above 85° north was covered by a thin this winter's ice. This has now doubled, soon covering two quarters. The ice has been pushed away from Russia towards Canada and to the Fram Strait at phenomenal rates.
 
Animation by navy.mil showing 30 days of sea ice thickness, up to January 1, 2015
This is increasingly suggesting that the remaining half in front of the Fram Strait will be sucked into the Atlantic Ocean soon. The dark blue ice is newly formed crushed ice behind the North Pole (pack ice). We may well be in course to the first recorded ice free season in the Arctic Ocean. In addition, the rear is pushed from behind Canada to the Beaufort and Chukchi Seas.

Animation by navy.mil showing 30 days of sea ice speed and drift, up to January 1, 2015

We need to act, now. I think we need to monitor this development almost on daily basis. I am curious to see how the ice may behave after the last remainders of the second quarter are sucked into the Atlantic Ocean and the newly forming sea ice will face the force of the Atlantic waves. That could mean extremely highly fractured sea ice across the Russian side by the return of spring 2015 sunlight.

I think we are witnessing a historic transition right now with no ice in the summers.



Saturday, June 22, 2013

Open Water In Areas Around North Pole

In some areas around the North Pole, thickness of the sea ice has declined to virtually zero, i.e. open water.


What could have caused this open water? Let's go through some of the background.

North Hemisphere snow cover has been low for some time. Snow cover in May 2013 was the lowest on record for Eurasia. There now is very little snow left, as shown on the image right, adapted from the National Ice Center.

Low snow cover is causing more sunlight to be absorbed, rather than reflected back into space. As can be expected, there now are high surface temperatures in many areas, as illustrated by the NOAA image below. Anomalies can be very high in specific cases. Zyryanka, Siberia, recently recorded a high of 37.4 C, against normal high temperatures of 20 C to 21 C for this time of year. Heat wave conditions were also recorded in Alaska recently (satellite image of Alaska below).

NASA image June 17, 2013, credit: NASA/Jeff Schmaltz, LANCE MODIS Rapid Response Team, NASA GSFC - from caption by Adam Voiland: "Talkeetna, a town about 100 miles north of Anchorage, saw temperatures reach 96°F (36°C) on June 17. Other towns in southern Alaska set all-time record highs, including Cordova, Valez, and Seward. The high temperatures also helped fuel wildfires and hastened the breakup of sea ice in the Chukchi Sea."
Accordingly, a large amount of relatively warm water from rivers has flowed into the Arctic Ocean, in addition to warm water from the Atlantic and Pacific Oceans.


Sea surface temperatures have been anomalously high in many places around the edges of the sea ice, as also shown on the NOAA image below.


Nonetheless, as the above images also make clear, sea surface temperatures closer to the North Pole have until now remained at or below zero degrees Celsius, with sea ice cover appearing to remain in place. The webcam below from the North Pole Environmental Observatory shows that there still is a lot of ice, at least in some parts around the North Pole.

Webcam #2 of the North Pole Environmental Observatory monitoring UPMC's Atmospheric Buoy, June 21, 2013
So, what could have caused the sea ice to experience such a dramatic thickness decline in some areas close to the North Pole?

Firstly, as discussed in earlier posts, there has been strong cyclonic activity over the Arctic Ocean (see also Arctic Sea Ice blog post). This has made the sea ice more prone and vulnerable to the rapid decline that is now taking place in many areas.

Furthermore, Arctic sea ice thickness is very low, as illustrated by the image below.

Arctic sea ice volume/extent ratio, adapted by Sam Carana from an image by Neven (click to enlarge)
Finally, there has been a lot of sunshine at the North Pole. At this time of year, insolation in the Arctic is at its highest. Solstice (June 20 or June 21, 2013, depending on time zone) is the day when the Arctic receives the most hours of sunlight, as Earth reaches its maximum axial tilt toward the sun of 23° 26'. In fact, insolation during the months June and July is higher in the Arctic than anywhere else on Earth, as shown on the image below.

Monthly insolation for selected latitudes -  adapted from Pidwirny, M. (2006), in "Earth-Sun Relationships and Insolation",  Fundamentals of Physical Geography, 2nd Edition
In conclusion, the current rapid sea ice thickness decline close to the North Pole is mostly due to a combination of earlier cyclonic activity and lots of sunlight, while the sea ice was already very thin to start with. The cyclone broke up the sea ice at the center of the Arctic Ocean, which is turn made it more prone to melting rapidly. The cyclone did more, though, as contributor to the Arctic-news blog Veli Albert Kallio explains:
"The ocean surface freezes if the temperature falls below -2.5C. The reason for the negative melting point is the presence of 4-5% of sea salt. Only in the polar regions does the sea surface cool sufficiently for sea ice to form during winters.

The sea ice cover is currently thinning near the North Pole between 80-90 degrees north. This part of the ocean is very deep. It receives heat of the Gulf Stream from the south: as the warm water vapourises, its salt content to water increases. This densifies the Gulf Stream which then falls onto the sea floor where it dissipates its heat to the overlying water column. The deep basin of the Arctic Ocean is now getting sufficiently warmed for the thin sea ice cover to thin on top of it. The transportation of heat to the icy surface is combined with the winds that push cold surface water down while rising heat to surface."
Indeed, vertical mixing of the water column was enhanced due to cyclonic activity, and this occurred especially in the parts of the Arctic Ocean that also are the deepest, as illustrated by the animation below.
Legend right: Ice thickness in m from Naval Research Laboratory
Legend bottom: Sea depth (blue) and land height (brown/green)
in m from NIBCAO Arctic map at NOAA
The compilation of images below shows how the decline of sea ice has taken place in a matter of weeks.

[ click to enlarge ]
This spells bad news for the future. It confirms earlier analyses (see links below) that the sea ice will disappear altogether within years. It shows that the sea ice is capable of breaking up abruptly, not only at the outer edges, but also at the center of the Arctic Ocean. As the Arctic sea ice keeps declining in thickness, it does indeed look set to break up and disappear abruptly across most of the Arctic Ocean within a few years. Models that are based on sea ice merely shrinking slowly from the outer edges inward should reconsider their projections accordingly.

Related

- Getting the Picture
http://arctic-news.blogspot.com/2012/08/getting-the-picture.html

- Supplementary evidence by Prof. Peter Wadhams
http://arctic-news.blogspot.com/2012/04/supplementary-evidence-by-prof-peter.html

Tuesday, June 18, 2013

Mean Methane Levels reach 1800 ppb

On May 9, the daily mean concentration of carbon dioxide in the atmosphere of Mauna Loa, Hawaii, surpassed 400 parts per million (ppm) for the first time since measurements began in 1958. This is 120 ppm higher than pre-industrial peak levels. This unfortunate milestone was widely reported in the media.

There's another milestone that looks even more threatening than the above one. On the morning of June 16, 2013, methane levels reached an average mean of 1800 parts per billion (ppb). This is more than 1100 ppb higher than levels reached in pre-industrial times (see graph further below).
NOAA image
Vostok ice core analysis shows that temperatures and levels of carbon dioxide and methane have all moved within narrow bands while remaining in sync with each other over the past 400,000 years. Carbon dioxide moved within a band with lower and upper boundaries of respectively 200 and 280 ppm. Methane moved within lower and upper boundaries of respectively 400 and 800 ppb.
Temperatures moved within lower and upper boundaries of respectively -8 and 2 degrees Celsius.

From a historic perspective, greenhouse gas levels have risen abruptly to unprecedented levels. While already at a historic peak, humans have caused emissions of additional greenhouse gases. There's no doubt that such greenhouse gas levels will lead to huge rises in temperatures. The question is how long it will take for temperatures to catch up and rise.


Below is another way of looking at the hockey stick. And of course, further emissions could be added as well, such as nitrous oxide and soot.



Large releases of methane must have taken place numerous times in history, as evidenced by numerous pockmarks, as large as 11 km (6.8 mi) wide.

Importantly, large methane releases in the past did not result in runaway global warming for a number of reasons:
  • methane release typically took place gradually over many years, each time allowing a large release of methane to be broken down naturally over the years before another one occurred. 
  • Where high levels of methane in the atmosphere persisted and caused a lot of heat to be trapped, this heat could still be coped with due to greater presence of ice acting as a buffer and consuming the heat before it could escalate into runaway temperature rises.
Wikipedia image
Veli Albert Kallio comments:

The problem with ice cores is that if there is too sudden methane surge, then the climate warms very rapidly. This then results the glacier surfaces melting away and the ice core begins to loose regressively surface data if there is too much methane in the air.

Because of this, there has been previous occurrences of high methane, and these were instrumental to bring the ice ages ice sheets to end (Euan Nisbet's Royal Society paper). The key to this is to look at some key anomalies and devise the right experiments to test the hypothesis for methane eruptions as the period to ice ages.

Thus, the current methane melting and 1800 ppm rise is nothing new except that there are no huge Pleistocene glaciers to cool the Arctic Ocean if methane goes to overdrive this time. In fact methane may have been many times higher than that but all surface ice kept melting away and staying regressive until cold water and ice from destabilised ice sheets stopped the supply of methane (it decays fast if supply is cut and temperatures fall back rapidly when seas rose).

The Laurentide Ice Sheet alone was equivalent of 25 Greenland Ice Sheets and the Weischelian and other sheets on top of that. So, the glaciers do not act the same way as fireman to extinguish methane. Runaway global warming is now possibility if the Arctic loses its methane holding capability due to warming.

Further discussion is invited on the following points:
  • The large carbon-12 emission anomalies in East Asian historical objects that are dateable by historical knowledge. Discussion about the explanations concocted and why methane emission from permafrost soils and sea beds must be the answer; 
  • the much overlooked fact that if there were ever very highly elevated concentrations of air in the Arctic, this would induce strong melting of glaciers which then lack those surface depositions where the air were most CH4 and CO2 laden. Even moderate levels of temperature rise damaged Larsen A, Larsen B, Petermann and Ellesmere glaciers. If huge runaway outgassing came out when Beringia flipped into soil warming, then methane came out really large amounts with CO2.
  • Discussion of the experiments how to compensate for the possible lack of "time" in methane elevated periods in the ice cores by alternative experiments to obtain daily, weekly, monthly and yearly emission rates of CH4 and CO2 from the Last Glacial Maximum to the Holocene Thermal Maximum (as daily, weekly, monthly, and yearly sampling of air).

Editor's update: Methane levels go up and down with the seasons, and differ by altitude. As above post shows, mean levels reached 1800 ppb in May 2013 at 586 mb, according to MetOp-2 data. Note that IPCC AR5 gives levels of 1798 ppb in 2010 and 1803 ppb in 2011, as further discussed in later posts such as this one. Also, see historic data as supplied by NOAA below.




Thursday, June 6, 2013

Thin Spots developing in Arctic Sea Ice

From the start of 2013, Arctic sea ice extent has roughly followed the same path it did in 2012 when a historic record low was reached, as discussed in a previous post. At the moment, thinner spots are developing in the sea ice, as illustrated by the image below.


These thin spots are developing due to a combination of factors:
  • a cyclone over the Arctic
  • low North Hemisphere snow cover causing more sunlight to be absorbed, rather than reflected back into space
  • warm sea surface temperatures at edges of sea ice, as illustrated by the image below
  • ice thickness is very low, as illustrated by the image further below
NOAA image, click to enlarge
Arctic sea ice volume/extent ratio by Neven (click to enlarge image)
Below, a 30-day Naval Research Laboratory animation illustrating the development of the thinner spots. 

Wednesday, December 5, 2012

Arctic anomalies linked to extreme weather

Surface temperature anomalies of 20 degrees Celsius are not uncommon in the Arctic these days. The image below shows surface temperature anomalies on November 9 and 10, 2012.


Paul Beckwith, regular contributor to this blog, comments as follows on the conditions in the Arctic:
“The Arctic meteorology is unprecedented at the moment. Huge ridges of high pressure are crossing the Arctic ocean cutting off the Siberian cold region from the North American region. Very little cold air is present in the entire system, and it is exhibiting very bizzare fragmentation. Nothing like a “normal” polar vortex is apparent.

The ridge could just be due to this greatly reduced volume of cold air, but I suspect there is much more to the situation then that. It seems that there must be some source of heat to create this ridge. Could be warm air rising up from open water regions in the Arctic, however most of the warm water is now isolated from the atmosphere by the sea ice.

It seems more likely to me that the high levels of methane with GWP > 150 or higher are causing higher long-wave absorption and heating in these regions, but I have not seen methane concentration distributions over the Arctic from AIRS satellites lately.”
So, let's have a look at the methane levels for those days. The image below shows the methane levels for the above two days.


Paul continues:
“This is what abrupt climate change looks like. In the paleorecords global average temperatures increased over 6 degrees C within a decade or two, I suppose we will know more precise numbers in a few short years.”

Paul repeats the prediction he made back in June in this the post When the sea ice is gone
Paul Beckwith, B.Eng, M.Sc. (Physics),
Ph. D. student (Climatology) and
Part-time Professor, University of Ottawa
My projections for our planet conditions when the sea-ice has all vanished year round (PIOMAS graph projects about 2024 for this; I forecast 2020 for this) are:
  • Average global temperature: 22°C (+/- 1°C)
    (rise of 6-8°C above present day value of about 15°C)
  • Average equatorial temperature: 32°C
    (rise of 2 °C above present day value of 30°C)
  • Average Arctic pole temperature: 10°C
    (rise of 30°C above present day value of -20°C)
  • Average Antarctica pole temperature: -46°C
    (rise of 4°C above present day value of -50°C)
  • Water vapor in atmosphere: higher by 50%
    (rise of 4% over last 30 years, i.e. about 1.33% rise per decade)
  • Average temperature gradient from equator to North pole: 22°C
    (decrease of 28°C versus present day value of 50°C)
  • Very weak jet streams (driven by N-S humidity gradient and weak temperature gradient as opposed to existing large temperature gradient)

- Result: very fragmented, disjointed weather systems
- Basic weather: tropical rainforest like in some regions; arid deserts in others with few regions in between.

Note: This scenario would require significant emissions of methane from the Arctic. Without this methane, the scenario would still occur but would take longer. Disclaimer: Best guess and subject to rolling revisions!

Meanwhile, extreme weather continues to strike areas outside the Arctic. In the U.K, airports were closed due to snow, following a period of heavy rainfall in November.

In Russia, extreme weather caused a huge traffic jam; see the BBC reports here and here, prompting Veli Albert Kallio, also one of this blog's contributors, to make the following comments:
Veli Albert Kallio in front of Peter Wadhams and John Nissen at
APPCCG event, March 13, 2012, House of Commons, London
“The Ewing-Dunn Precipitation (the lake-effect snow) from warmed-up Arctic Ocean has taken the Russian Government's winter preparations by suprise of its severity, with the Russian Government minister banging his fist as standing queues of vehicles reoccurs and is now 190 kilometres (120 miles) long between the capital Moscow and St. Petersburg.

I have been warning from the leaked files since July at this and other groups that December 2012 was going to be like this. We need to tell the Russian Interior Minister who bangs his fist on TV that he should not blame his road officials, but the global warming and loss of sea ice from the Barents and Kara Seas and generally warmed up North Atlantic - Arctic Ocean regions.”

Saturday, August 25, 2012

Future of Arctic Ice: The Three Perspectives

By Veli Albert Kallio
Veli Albert Kallio in front of Peter Wadhams and John Nissen at
APPCCG event, March 13, 2012, House of Commons, London


I use three type sources to assess climate:
  1. the peer-reviewed literature and news reports; 
  2. the whistle-blower organisations (Wikileaks, Cialeaks that release data files from the US Army, Navy, Air Force, CIA, the US State Department, or intercepted corporate telephone or Internet communications; and 
  3. indigenous people’s organisations and their ethnoclimatology people.

June 26, 2012: the Cialeaks released data files from the US stating that the North Pole will be ice free in 2013. These appear to be submarine upward sonar readings of ice from the US Navy. These contrast strongly what NSIDC is saying about the sea ice surviving much longer. I do not know the reason why US Navy and NSIDC advice differently on this point (an exponential trend projection based on PIOMAS data gives zero-ice 2015).

As per the question, where all heat goes after the sea ice has melted, I stick to the advice given in the United Nations General Assembly motion 101292: the Polar Ice responds extremely fast: first the sea ice melts and disintegrates, then followed by intense methane surges and equally rapid losses of the Arctic terrestrial ice cover in Greenland which never melts, but collapses instead.

After the sea ice loss, the permafrost and Greenland Ice Sheet take up a large portion of that energy that was previously used to melt the sea ice during the short summers. As a result, the ocean warms up and rains much more water than now with the flash-floods becoming very frequent in Greenland. As a result many times more water appears on top of Greenland’s Ice Sheet.

Greenland Ice Sheet rapidly metamorphoses from a (cold, dry, stable) moraine-forming ice sheet into a (warm, wet, dynamic) aggregate-forming ice sheet as the water amount within ice sheet and at its base increase. The bottom part of the ice sheet turns increasingly into water-logged, “mushy” ice that loses its internal strength, while pot holes on bedrocks become filled by water.

By 2020's 1/3 of Greenland Ice Sheet's base (between ice and bedrock) is dotted with water ponds at which point the rapid erosion processes (cavitation, plucking and kolking) pulverise the ice so aggressively that an "ice sheet thrust" develops against coastal perimeter at Melville Bay area. Even the dry parts of ice sheet then no longer can hold the ice dome in place and Heindrich Ice Berg Calving Event (H-1) occurs.

After the Heindrich Minus One (H-1) event the North Atlantic Ocean between America and Europe fills by broken ice that triggers a near-instantaneous severe climate cooling: the Last Dryas. Europe will see many years lasting freeze with Dryas Octopetala rapidly taking hold across continent's then barren soils. The ice volume is 10 times less in Greenland than in a similar event when the Hudson Bay Ice Dome reminders collapsed.

This ice evolution history of the First Nations of Americas as expressed on the UN General Assembly motion 101292 and the Plantagon Declarations, were used on the global-warming themed film “A Day After Tomorrow” and also “2012” by director Roland Emmerlich. Unfortunately, the films assigned incorrect physics and caused great annoyance among the Native American Indian communities due to many other inaccuracies in details therein:

“2012” films ‘mystery radiation of sun’ was never caused by neutrinos, but methane: the Bøllinger Years. The ‘core melting’ was due to the displacement of asthenosphere’s fluids as the heavy Foxe-Laurentide Ice Dome destabilised forcing the liquid minerals in asthenosphere to move out of way, the pressures causing huge eruptions and lava floods (asthenosphere is like a “wet sponge”, a composite of solid and liquid minerals).

“A Day After Tomorrow’s freeze failed the Boyle’s Law: ultra-cold stratosphere cannot fall, and cause instantaneous sea level jump that was followed by the Younger Dryas freeze-up, but ice can.

The First Nations of Americas have raised the alarm very clearly continuously for the last 20 years since the first Rio de Janeiro summit in 1992 that the West is living in delusions (including its scientists). Just like the perimeter between the south tip of the Baffin Island and the north tip of Newfoundland once failed, ending the Ice Ages, the rapid melt water accumulation same way destroys now Greenland’s perimeter barrier at Melville Bay. Wet solidus damage causing lava floods and inlet fjord leaks can suddenly speed it up even more unpredictably.

Here is Professor Oren Lyon Jr.’s (Native American Tradition-Keeper and Historian of the Six Nations who worked at the University of Buffalo), the Internet summary of the Plantagon Declarations: http://www.youtube.com/watch?v=4OjjPETcz6A

There is no point just to observe and repeat only points that appear in the professional literature. I want other communities’ perspectives and wisdom to be also realised and acknowledged:

+ either: the ancient experiences of the ancient people,

+ or: for the huge risks that people take to uncover often illegal practises by the corporations who are often acting in tacit co-operation with government officials, scientists or industrialists who are hostile to admit publically the role of greenhouse gases that violate their pet paradigm that the economic growth can be based on infinite growth from fossil-fuelled supply of goods and services.

Veli Albert Kallio, FRGS
International Guru Nanak Peace Prize Nominee for 2008;
sea level rise risk for global security & economic stability.