Showing posts with label Gulf Stream. Show all posts
Showing posts with label Gulf Stream. Show all posts

Tuesday, April 1, 2014

Earthquakes in the Arctic Ocean

Earthquakes in the Arctic Ocean
indications of imminent catastrophic methane eruptions?

1. Methane over Greenland

The image below shows high methane concentrations over Greenland and over the Arctic Ocean.

[ Yellow areas indicate methane readings of 1950 ppb and higher - click on image to enlarge ]
The large yellow areas on this image indicate that the methane entered the atmosphere there. This is especially likely when such large yellow areas keep appearing in the same area over a few days. In the case of the large yellow areas around Novaya Zemlya, the methane is likely to have travelled there underneath the sea ice, from the Gakkel Ridge, to enter the atmosphere where the sea ice was thin or fractured enough for the methane to pass through, as discussed in earlier posts.

As described in the post High methane readings over Greenland, huge temperature swings can hit areas over Greenland over the course of a few days. Temperature anomalies may go down as low as as -20°C one day, then climb as high as 20°C a few days later, to hit temperature anomalies as low as -20°C again some days later.

This could explain the methane over Greenland. Methane is present in the Greenland ice sheet in the form of hydrates and free gas. These huge temperature swings are causing the ice to expand and contract, thus causing difference in pressure as well as temperature. The combined shock of wild pressure and temperature swings is causing movement and fractures in the ice, and this enables methane to rise to the surface and enter the atmosphere.

To further illustrate this, the image below shows recent temperature anomaly forecasts over Greenland.

[ click on image to enlarge ]
2. What is causing these extreme weather events?

Frigid cold weather in the U.S., torrential rain and flooding in the U.K., and wild temperature swings over Greenland. What is causing these extreme weather events? 

As discussed in many previous posts, the Arctic has become warmer than it used to be and temperatures in the Arctic are rising several times faster than global temperatures. This decreases the temperature difference between the areas to the north and to the south of the Jet Stream, which in turn decreases the speed at which the Jet Stream circumnavigates the globe, making the Jet Stream more wavier and increasing opportunities for cold air to descend from the Arctic and for warm air to enter the Arctic.

3. Did temperature swings also trigger earthquakes?

[ click on image to enlarge ]
These wild temperature swings may be causing even further damage, on top of the methane eruptions from the heights of Greenland. Look at the above map, showing earthquakes that hit the Arctic in March 2014.
Topographic map of Greenland
without the Greenland Ice Sheet.

BTW, above map doesn't show all earthquakes that occurred in the Arctic Ocean in March 2014. An earthquake with a magnitude of 4.5 on the Richter scale hit the Gakkel Ridge on March 6, 2014.

Importantly, above map shows a number of earthquakes that occurred far away from faultlines, including a M4.6 earthquake that hit Baffin Bay and a M4.5 earthquake that hit the Labrador Sea. These earthquakes are unlikely to have resulted from movement in tectonic plates. Instead, temperature swings over Greenland may have triggered these events, by causing a succession of compression and expansion swings of the Greenland ice mass, which in turn caused pressure changes that were felt in the crust surrounding the Greenland Ice Sheet.

Glaciers could be the key to make this happen. Glaciers typically move smoothly and gradually. It could be, however, that such wide temperature swings are causing glaciers to come to a halt, temporarily, causing pressure to build up over a day or so, to then suddenly start moving again with a shock. Intense cold can literally freeze a glacier in its track, to be shocked into moving again as temperatures rise abruptly by 40°C or so. This can send shockwaves through the ice sheet into the crust and trigger earthquakes in areas prone to destabilization. The same mechanism could explain the high methane concentrations over the heights of Greenland and Antarctica.

Ominously, patterns of earthquakes can be indicators of bigger earthquakes yet to come.

4. Situation looks set to get a lot worse

This situation looks set to get a lot worse. Extreme weather events and wild temperature swings look set to become more likely to occur and hit Greenland with ever greater ferocity. Earthquakes could reverberate around the Arctic Ocean and destabilize methane held in the form of free gas and hydrates in sediments underneath the Arctic Ocean.

Meanwhile, as pollution clouds from North America move (due to the Coriolis Effect) over the Atlantic Ocean, the Gulf Stream continues to warm up and carry warmer water into the Arctic Ocean, further increasing the likelihood of methane eruptions from the Arctic seafloor.


The above image shows the Gulf Stream off the coast of North America, while the image below shows how the Gulf Stream continues, carrying warmer water through the Atlantic Ocean into the Arctic Ocean.


Feedbacks, such as the demise of the Arctic's snow and ice cover, further contribute to speed up the unfolding catastrophe. Methane eruptions from the seafloor of the Arctic Ocean have become especially noticeable over the past half year. The big danger is that this will develop into runaway global warming, as discussed in the recent post Feedbacks in the Arctic.

Furthermore, as-yet-unknown feedbacks may start to kick in. As an example, submarine earthquakes and volcanoes could add nutrients into the water that feed methane-producing (methanogenic) microbes. A recent study found that expansion of such microbes could have played a large role in the end-Permian extinction, and that it was catalyzed by increased availability of nickel associated with volcanism. Authors support their hypothesis with an analysis of carbon isotopic changes leading up to the extinction, phylogenetic analysis of methanogenic archaea, and measurements of nickel concentrations in South China sediments.

5. Need for comprehensive and effective action

The situation is dire and calls for comprehensive and effective action as described at the Climate Plan.




Related

- Methane Release caused by Earthquakes
http://arctic-news.blogspot.com/2013/09/methane-release-caused-by-earthquakes.html

- Seismic activity
http://arctic-news.blogspot.com/p/seismic-activity.html

- Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html





Wednesday, February 19, 2014

High methane levels over the Arctic Ocean on February 17, 2014



Above image shows IASI methane readings over the last day or so, when levels as high as 2223 ppb were recorded.

Where does the methane come from?

On above image, methane shows up prominently along the faultline that crosses the Arctic Ocean from the northern tip of Greenland to the Laptev Sea. This indicates that the methane originated from the depths of the Arctic Ocean, where sediments contain large amounts of methane in the form of free gas and hydrates, which have become destabilized.

High methane concentrations have persistently shown up over the Arctic Ocean since October 1, 2013. On January 19, 2014, levels as high as 2363 ppb were recorded over the Arctic Ocean, as illustrated by the image below, from an earlier post.

[ from earlier post, click on image to enlarge ]
Below is a comparison of methane readings for the week from February 9 to 16, 2014, compared to the same period in 2013.

[ from earlier post, click on image to enlarge ]
The above comparison shows that there is a lot of methane over the Arctic Ocean that wasn't there last year. 

Furthermore, high methane readings show up where currents move the sea ice out of the Arctic Ocean, in areas such as Baffin Bay. This indicates that methane that is released from the seafloor of the Arctic Ocean appears to be moving underneath the ice along with exit currents and entering the atmosphere where the sea ice is fractured or thin enough to allow the methane to pass through. 

Also note that more orange areas show up on the southern hemisphere in 2014, indicating that more methane from the northern hemisphere is now spreading south beyond the equator. This in addition to indications that more methane is rising and building up at higher altitudes, as discussed in an earlier post.

Causes

What made these high releases from the seafloor of the Arctic Ocean persist for so long? At this time of year, one might have thought that the water in the Arctic Ocean would be much colder than it was, say, on October 1, 2013.

Actually, as the combination image below shows, sea surface temperatures have not fallen much at the center of the Arctic Ocean between early October, 2013 (left) and February 17, 2014 (right). In the area where these high methane concentrations occured, sea surface temperatures have remained the same, at about zero degrees Celsius.

[ click on image to enlarge ]
The above comparison image shows that, while surface temperatures in the Atlantic Ocean may have fallen strongly with the change of seasons, surface temperatures in the Arctic Ocean have changed only little.

In this case of course, what matters more than surface temperatures are water temperatures at greater depth. Yet, even here temperatures in the Arctic Ocean will have decreased only slightly (if at all) compared to early October 2013, since the Gulf Stream has continued to push warmer water into the Arctic, i.e. water warmer than the water in the Arctic Ocean, so the heating impact of the Gulf Stream continues. Also, sea surface temperature anomalies along the path of the Gulf Stream continue to be anomalously high, as the image below shows.


The situation looks even more grim on the Climate Reanalyzer image below, showing sea surface temperature anomalies that are far more profound in the Arctic Ocean.


Note also that, as the sea ice extent increased, there have been less opportunities for the heat to evaporate on the surface and for heat to be transferred from the Arctic Ocean to the air.

Finally, what matters a lot is salinity. The combination image below compares salinity levels between October 1, 2013 (left), and February 17, 2014 (right).

[ click on image to enlarge ]
Salinity levels were low on October 1, 2013, as a lot of ice and snow had melted in the northern summer and rivers had carried a lot of fresh water into the Arctic Ocean. After October 1, 2013, little or no melting took place, yet the Gulf Stream continued to carry waters with higher salt levels from the Atlantic Ocean into the Arctic Ocean.

Annual mean sea surface salinity
Seawater typically has a salinity level of over 3%; it freezes and melts at about −2°C (28°F). Where more saline water from the Atlantic Ocean flows into the Arctic Ocean, the water in the Arctic Ocean becomes more saline. The freezing and melting point of fresh water (i.e. zero salinity) is 0°C (or 32°F). More salinity makes frozen water more prone to melting, i.e. at temperatures lower than 0°C, or as low as −2°C.

As the salinity levels of the water on the seafloor of the Arctic Ocean increased, the ice that had until then held the methane captive in hydrates on the seafloor of the Arctic Ocean started to melt. Indeed, the areas in the Arctic Ocean where the high methane releases occurred on January 14, 2014 (top image) show several practical salinity units (psu) increase since October 1, 2013.

Higher salinity levels are showing up closer to the faultline that runs through the Arctic Ocean from the top of Greenland to the Laptev Sea.

Thursday, January 16, 2014

High methane levels over the Arctic Ocean on January 14, 2014

[ click on image to enlarge - note that 'level' is the peak reading for the respective altitude ]
Above image shows IASI methane levels on January 14, 2014, when levels as high as 2329 ppb were recorded. This raises a number of questions. Did these high methane levels originate from releases from the Arctic Ocean, and if so, how could such high methane releases occur from the seafloor of the Arctic Ocean at this time of year, when temperatures in the northern hemisphere are falling?

Location

Let's first establish where the methane releases occurred that caused these high levels. After all, high methane concentrations are visible at a number of areas, most prominently at three areas, i.e. at the center of the Arctic Ocean, in Baffin Bay and over an area in Asia stretching out from the Taklamakan Desert to the Gobi Desert.

Closer examination, illustrated by the inset, shows that the highest methane levels were recorded in the afternoon, and at altitudes where methane concentrations over these Asian deserts and over Baffin Bay were less prominent, leading to the conclusion that these high methane levels did indeed originate from the seafloor of the Arctic Ocean.

The image below, showing 1950+ ppb readings over the past few days, illustrates the magnitude of the methane concentrations over the Arctic Ocean.


High concentrations persist over the Arctic Ocean

High methane concentrations have persistently shown up over the Arctic Ocean from October 1, 2013, through to January 2014. On January 19, 2014, levels as high as 2363 ppb were recorded over the Arctic Ocean, as illustrated by the image below.

[ click on image to enlarge ]
Causes

What caused these high releases from the seafloor of the Arctic Ocean to persist for so long? At this time of year, one may have thought that the water in the Arctic Ocean would be much colder than it was, say, on October 1, 2013.

Actually, as the combination image below shows, sea surface temperatures have not decreased much at the center of the Arctic Ocean between early October, 2013 (left) and January 14, 2014 (right). In the area where these high methane concentrations occured, sea surface temperatures have remained the same, at about zero degrees Celsius.

[ click on image to enlarge ]
Furthermore, as the above image shows, surface temperatures in the Atlantic Ocean may have fallen dramatically with the change of season, but temperatures in the Arctic Ocean have changed only little.

In this case of course, what matters more than surface temperatures are water temperatures at greater depth. Yet, even here temperatures in the Arctic Ocean will have decreased only slightly since early October 2013, as the Gulf Stream has continued to push warmer water into the Arctic, i.e. water warmer than the water in the Arctic Ocean. In other words, the heating impact of the Gulf Stream has continued.

Furthermore, as the sea ice extent increased, there have been less opportunities for the heat to evaporate on the surface and for heat to be transferred from the Arctic Ocean to the air.

Finally, what matters a lot is salinity. The combination image below compares salinity levels between October 1, 2013 (left), and January 14, 2014 (right).

[ click on image to enlarge ]
Salinity levels were low on October 1, 2013, as a lot of ice and snow had melted in the northern summer and rivers had carried a lot of fresh water into the Arctic Ocean. After October 1, 2013, little or no melting took place, yet the Gulf Stream continued to carry waters with higher salt levels from the Atlantic Ocean into the Arctic Ocean.

Annual mean sea surface salinity
Seawater typically has a salinity level of over 3%; it freezes and melts at about −2°C (28°F). Where more saline water from the Atlantic Ocean flows into the Arctic Ocean, the water in the Arctic Ocean becomes more saline. The freezing and melting point of fresh water (i.e. zero salinity) is 0°C (or 32°F). More salinity makes frozen water more prone to melting, i.e. at temperatures lower than 0°C, or as low as −2°C.

As the salinity levels of the water on the seafloor of the Arctic Ocean increased, the ice that had until then held the methane captive in hydrates on the seafloor of the Arctic Ocean started to melt. Indeed, the areas in the Arctic Ocean where the high methane releases occurred on January 14, 2014 (top image) show several practical salinity units (psu) increase since October 1, 2013.

Higher salinity levels are now reaching the faultline that runs through the Arctic Ocean from the top of Greenland to the Laptev Sea, where major releases are taking place now, as illustrated by the image below, with faultlines added on the insets.

[ click on image to enlarge ]
Above image shows methane levels recorded on the evening of January 16, 2014 (main image). The top left inset shows all methane readings of 1950 ppb and higher on January 15 and 16, 2014, while the bottom left inset shows methane readings of 1950 ppb and higher on January 16, 2014, p.m. only and for seven layers only (from 469 to 586 mb), when levels as high as 2353 ppb were reached (at 469 mb).

Quantities

These high levels of methane showing up over the Arctic Ocean constitute only part of the methane that did escape from the seafloor of the Arctic Ocean. Where these high concentrations did show up, the ocean can be thousands of meters deep, giving microbes plenty of opportunity to decompose methane rising through the water first. Furthermore, the methane has to pass through sea ice that is now getting more than one meter thick in the area where these high levels of methane showed up on satellite records. In conclusion, the quantities of methane that were actually released from the seafloor must have been huge.

Importantly, these are not one-off releases, such as could be the case when hydrates get destabilized by an earthquake. As the Arctic-news blog has documented, high releases from the seafloor of the Arctic Ocean have been showing up persistently since early October 2013, i.e. three months ago. This blog has warned about the threat for years. This blog has also described in detail the mechanisms that are causing these releases and the unfolding climate catastrophe that looks set to become more devastating every year.

Given that a study submitted in April 2013 concluded that 17 Tg annually was escaping from the East Siberian Arctic Shelf alone, given the vast quantity of the releases from hydrates that show up on IASI readings and given the prolonged periods over which releases from hydrates can persist, I put the methane being released from hydrates under the seafloor of the Arctic Ocean in the highest category, rivaling global emissions from fossil fuel, from agriculture and from wetlands. As said, the amounts of methane being released from hydrates will be greater than the methane that actually reaches the atmosphere. To put a figure on the latter, my estimate is that emissions from hydrates and permafrost currently amount to 100 Tg annually, a figure that is growing rapidly. This 100 Tg includes 1 Tg for permafrost, similar to IPCC estimates.



This is vastly more than the IPCC's most recent estimates, which put emissions from hydrates and permafrost at 7 Tg annually, a mere 1% of the total annual methane emissions globally, as illustrated by the image below.


Impacts and Response

Huge releases from the seafloor of the Arctic Ocean have occurred persistently since early October 2013, even when releases like this may show up for one day in one area without showing up in that same area the next day on satellite images.

This apparent 'disappearance' can be due to the Coriolis effect that appears to move the methane, whereas it is in fact the Earth that is spinning underneath the methane. This doesn't mean that the methane had disappeared. Actually, much of this methane will persist over the Arctic for many years to come and will continue to exercize its very high initial warming potential over the Arctic for years.

Furthermore, even if less methane may show up on satellite images the next day, that doesn't necessarily mean that releases from the seafloor has stopped. Instead, it looks like methane is being released continuously from destabilizing hydrates. The methane may accumulate underneath the sea ice for some time, to burst through at a moment when fractures or ruptures occur in the sea ice, due to changes in wind and wave height.


The threat here is that methane will further warm up the air over the Arctic, causing further weakening of the Jet Stream and further extreme weather events, particularly extreme warming of water all the way along the path of the Gulf Stream from the Atlantic Ocean into the Arctic Ocean, in turn triggering further releases from hydrates at the seafloor of the Arctic Ocean and escalating into runaway global warming. This threat calls for comprehensive and effective action, such as described at the ClimatePlan blog.





Sunday, January 5, 2014

Global Warming and the Gulf Stream

Global Warming and the Gulf Stream - Our Atmospheric Pollution Roadway to Subsea Arctic Methane-Induced Climatic Hell

by Malcolm P.R. Light, 5th January, 2014

The amount of water presently transported north eastward by the Gulf Stream varies from 30 million cubic metres per second off Florida to a maximum of 150 million cubic metres per second south of Newfoundland at 55° is transported within this volume of water is approximately equal to the amount carried north east by the atmosphere which gives North Western Europe its milder climate (Wales, 2013).

The surface temperature off the Coast of the United States in the western North Atlantic shows the warm Gulf Stream (in red on Figure 1) while colder oceanic zones are in dark blue (Wales, 2013).

Figure 2 from Csanady (2001) shows the heat gain and loss for the Atlantic Ocean which was posthumously published from Bunker in (1988) In: the North Atlantic from Bunker and Worthington (1976).

Csanady (2001) says that "the contours connect points of equal heat gain in watts per square meter (Wm-2)(negative if heat is lost). The zero-gain contour cuts through this ocean along a diagonal roughly from Spain to the island of Hispaniola in the Caribbean. North of this contour the ocean loses heat, at spectacularly high rates over the warm waters of the Gulf Stream. Here the annual average rate of loss exceeds 200 watts per square meter (exceeds 250 watts per square meter off New England/Canada - my insertion). On the other side of the ocean, off the Norway coast, a northwards tongue of the Warm-Water-Sphere (Gulf Stream - my insertion) is still responsible for heat losses between 50 and 100 watts per square meter, and even higher off Lapland".

When humans get too hot their bodies perspire (sweat) water and this water evaporates at a high rate in windy conditions giving them "wind chill". The excessive heating off the Gulf Stream by pollution clouds pouring off the coast of North America is directly related to excessive heat loss in the same region (Figure 2) because the heat induced extreme atmospheric pressure change generates very strong winds which "wind chill" the overheated ocean there. Gulf Stream water temperatures range up to 13°C to 26.5°C (Hurricanes) and water in this temperature range requires about 2440 to 2470 thousand Joules of energy per kilogram for it to change from a liquid into a gaseous state (Latent heat of evaporation; Hyperphysics, 2013; Lide and Fredrickse, 1995). The loss of this latent heat of evaporation is the main reason for the extreme heat loss shown by the hot Gulf Stream waters offshore North America (Figure 2).
Figure 3. shows the yearly human carbon dioxide emissions in tons per person versus inflation adjusted income (Image from gapminder.org, 2013).

The total carbon dioxide emitted by each country is proportional to the size of the circles (Figure 3).

The United Kingdom emitted the most carbon dioxide per person at the start of the industrial revolution but the United States caught up with the U.K. at the start of the 20th century (Figure 3).

From then on the U.S.A. grew to be the largest emitter of carbon dioxide (Figure 3). An average U.S. citizen causes 3 times as much carbon dioxide to be emitted (19 tons of carbon dioxide/person) than a person in China (4.7 tons of carbon dioxide/person)(Figure 3).

China however due to its large population emits a lot of carbon dioxide in total (Figure 3). 5 states, the United Arab Emirates, Saudi Arabia, Australia, U.S.A. and Canada have the most extreme human carbon footprints on Earth (Figure 3) (Light, 2013).

Figures 4a shows the giant equatorial current gyres in the Southern and Northern Hemispheres.

The southern gyre (South Atlantic) is very symmetrical, while the northern gyre (North Atlantic) shows extreme asymmetry with the elongated core rotational zone lying only a short distance east of the coast of North America and the narrow Gulf Stream current here is elevated and shows the highest volume of transport (150 Sverdrups = 150 million cubic metres per second).

This extreme asymmetry is due to global warming from the large volume of pollution clouds pouring off the industrialized zones along the east coast of North America.

This generates a massive atmospheric pressure gradient and accelerates the strong prevailing South Westerly wind flow.

These winds drive the Gulf Stream to high velocities and force surface waters to move offshore from Ekman transport, piling them up (Figure 4b) (Csanady, 2001).

Figure 4b also shows the limited extent of the Sargasso Sea in the late 20th century.

In the late 18th century the Sargasso Sea extended over the entire middle of the North Atlantic (Figure 4c; Krummel 1891).




The extreme asymetry presently The extreme asymetry presently shown by the North Atlantic current gyre (Figure 4d) in the middle of the 20th century was caused by the migration of the rotational core zone more than 1500 km north west as the strength of the prevailing South Westerly winds picked up along the Gulf Stream offshore N. America due to the global warming caused by pollution clouds pouring offshore from the onshore U.S. industries.



The extremely high current transport rates of the Gulf Stream directly offshore the industrialized United States varied from 55 in 1942 to up to 150 Sverdrups (millions of cubic metres/second) at the present day indicating the effects of extreme global warming enhancement here (Figure 4d, Csanady, 2001; Sverdrup, Johnson and Fleming, 1942; Wales, 2013). In addition, this map shows the extreme asymmetry of the North Atlantic current gyre, the heated ocean waters in the region of the Gulf Stream (line ornament) and the north east extension of the Gulf Stream via the Hebrides and Norway to the Arctic Ocean (Figure 4d, Sverdrup, Johnson and Fleming, 1942). Csanady (2001) says that:- "South of the zero-gain contour, over most of the subtropical gyre, the ocean gains heat as colder waters flow southward (Canary Current - my insertion) and absorb solar heat. The energy gain through this "cold water advection" process being, however, moderate, typically 25 watts per square meter. In this region, evaporation is also high, raising the salinity of surface waters". Figure 4d. shows the hot north - east trending Gulf Stream feeding into the North Atlantic Drift and a number of south east trending higher salinity branches which flow clockwise back into the extreme surface salinity zone in the North Atlantic (Weather - online 2012).

The spectacular rates of heat loss from the Gulf Stream waters off the coast of the United States can be clearly followed north east to Norway where they split into the eastern Yermack branch entering the Barents Sea and the West Spitzbergen (Svalbard) Current which dives beneath the floating Arctic Ice Cap (Figure 2). This northward pointing tongue of hot and saline Gulf Stream water is also clearly visible on the salinity map (Figure 5) as strong inflexions in the contours first west of Ireland and then south of Svalbard just before the Gulf Stream dives beneath the floating Arctic Ice cap as the West Spitzbergen Current (Figure 5).


The Gulf Stream (West Spitzbergen Current) follows the southern shelf edge of the Arctic Eurasian Basin to the Laptev Sea destabilizing the subsea Arctic methane hydrates en route and releasing ever increasing amounts of methane into the Arctic atmosphere (Figure 6). The West Spitzbergen Current is still losing some 50 watts per meter by the time it reaches the floating ice cap west of Svalbard but the shallower eastern Yermack Current looses much larger amounts of heat (100 - 600 watts per metre depending on the seasons). Häkkinen and Cavalieri, 1989 indicate that in mid-winter off Lapland, heat losses reach 600 watts per square meter while in August they range from 20 to 40 watts per square meter, where the ice-sheet edge stops any exchange of heat from the sea to the air.

Figures 7, 8 and 9 show the yearly north-eastward Gulf Stream transport of the energy (watts) from the North Atlantic Sub-Tropical Gyre to the Arctic Ocean. The map uses Gulf Stream flow volumes in Sverdrups (= one million cubic metres/second) calibrated to the heat flow trend from eight measured heat flow values along the Gulf Stream (Csanady, 2001). The calibration constant is 3.85 x ten to the power of 7. The heat flow data comes from Csanady, 2001; Gulf Stream flow volumes from Sverdrup, Johnson and Fleming, 1942, Wales J., 2013 and the University of California, (CDL, 2013).
The Gulf Stream shows a zone of anomalously large global warming heating, extremely high rates of South Westerly wind induced ocean current flow, extreme wind chill (caused by evaporation of the sea surface) and elevation of the surface of the Gulf Stream along the coast of the industrialized United States and Canada (Figures 7 to 9 and Figure 4b).
Quite clearly the global warming caused by pollution clouds pouring off the coast of the industialized United States is generating a large air pressure differential, accelerating and heating the prevailing South Westerly Wind flow with its consequent wide ranging effects on the Gulf Stream seen as far north as the central Arctic. As mentioned previously this global warming has increased the rate of water transport from 55 Sverdrups in 1942 to up to 150 Sverdrups at the present (Sverdrup et al. 1942, Wales, 2013).

The heat necessary to liberate methane from the methane hydrates in the Arctic Ocean and cause runaway global warming, total deglaciation and extinction in 2052 represents only one thousandth of the total amount of heat being added to the Arctic ocean by the Gulf Stream (Figure 9). The Yermack Current (E. extension of the Gulf Stream) in the Barents Sea intersects the West Spitzbergen Current (W. extension of the Gulf Stream) at the junction of the Eurasian Basin/Laptev Sea (Figure 7 - 9). This represents an extreme subsea - atmospheric methane emission point above a zone of hydrothermal methane hydrates formed on the Gakkel ridge where it enters the Laptev Sea (Light 2013).

Human-induced global warming caused by the burning of fossil fuels is found to be continuous when the ice, land and atmosphere heating data (Church et al. 2011) is combined with the 5 - year average ocean heat content to a depth of 2000 metres (Levitus et al. 2012)(Figure 10a. Nuccitelli et al. 2012).

The lack of incorporation of this data in the global warming equation by the IPCC, is the reason for the extreme 50 year error found in estimating the floating Arctic ice cap melt time using global atmospheric models as discussed in previous papers (Light 2012, Light 2013). The rate of increase of global warming heat is equivalent to 8 x ten to the power of 21 joules per year (Nuccitelli et al. 2012). The ocean has absorbed 93.4 percent of the heat from global warming (Figure 10b, ACS 2013). The total amount of heat generated by human induced global warming between 1990 and 2010 is some 14 x ten power 22 joules which is equivalent to an absorbed energy flux of 2.2 x ten power 14 watts, i.e about 0.5 watts per square metre of the earth's surface (ACS 2013).
The relative amount of human-induced global warming energy in watts being added every year to the oceans, ice, land and atmosphere and being transferred by the Gulf Stream to the subsea Arctic methane hydrates is shown in Figure 11 (Nuccitelli et al. 2012).

Methane release rates from the East Siberian Arctic Shelf (Shakova et al, 2013) combined with the area of the Arctic Ocean have been used to determine mean methane release rates for the entire Arctic Ocean (Light, 2013). If only a few percent of the subsea methane hydrate reserves in the Arctic Ocean (some 1000 billion tons of Carbon) are disassociated and the methane released to the atmosphere, it will cause total delaciation and a major extinction event (Light and Solana 2002. The energy necessary to produce these Arctic methane release rates require only about one thousandth of the heat energy input from the Gulf Stream to dissociate the methane hydrates (Figure 11).
Furthermore the energy necessary to produce these Arctic methane release rates represent less than one millionth of the global warming heat energy being added to the oceans, ice, land and atmosphere by human fossil fuel burning (Figure 11). The total human induced global warming is equivalent to 4 Hiroshima atomic bombs detonating every second (Nuccitelli et al. 2012).

Humanity has signed its death warrant and our final extinction will be carried out by Mother Earth within the next 30 to 40 years unless we immediately take extremely drastic action to entirely curb our carbon dioxide pollution, eliminate large quantities of methane from the subsea Arctic Ocean, seawater and atmosphere (down to ca 750 ppm) and revert completely to renewable energy.

The rate of water transport of the Gulf Stream off the industrialized United States, south of New Foundland at 55° (Sverdrup et al. 1942) to 150 Sverdrups by 2013 (Wales, 2013). This is a 95 Sverdrup increase in transport over 71 years, at a rate of 1.338 Sverdrups/year equivalent to 1.85 x ten to power 14 watts/year using the conservative factor derived in figure 13.85 x ten to power 7 to covert Sverdrups to energy transport in watts/year. Previous analysis of earthquake activity, Arctic ice cap melt back data and the mean atmospheric methane content of the atmosphere indicate that the Arctic methane hydrate (clathrate) gun began to fire continuously in 2007 and the world is now far advanced into runaway global warming which will increase the mean temperature of the atmosphere by 8 degrees C by the mid 21st century (2050 - 2052)(Light 2013). This will lead to total deglaciation and a major extinction event. (Light 2013). The critical transport in 2007 off the Gulf Stream offshore the indutrialized United States, directly south of New Foundland at 55° west longitude is 42 Sverdrups which precipitated the start of the continuous firing of the methane hydrate (clathrate) gun and runaway global warming.

The Gulf Stream transport rate started the methane hydrate (clathrate) gun firing in the Arctic in 2007 when its energy/year exceeded 10 million times the amount of energy/year necessary to dissociate subsea Arctic methane hydrates. Therefore the United States and Canada must sharply reduce their airborne pollution from fossil fuel extraction and use, to cut back the Gulf Stream transport rate to less than 142 Sverdrups south of New Foundland at 55° west longitude. Here the Gulf Stream transport rate should be reduced to below 130 Sverdrups or even 100 Sverdrups to make sure that the methane hydrate (clathrate) gun completely terminates firing in the subsea Arctic. Unless this is done immediately humanity will be facing complete extinction in a methane induced firestorm by the middle of this century.

Our Only Hope for Survival

Light (2013) clearly showed the required massive reduction in global warming fossil fuel burning emissions that the United States and Canada must undertake immediately, if there is any faint hope of stopping the runaway global warming that is now underway (since 2007). The power, prestige and massive economy of the United States has been built on cheap and abundant fossil fuels and Canada is now trying to do the same. The present end of the financial crisis and recovery of the U.S. economy will take us down the same fossil fuel driven road to catastrophe that the U.S. has followed before. Unless the United States, Canada reduce their extreme carbon footprints (per unit population) (Figures 29 and 30), they will end up being found guilty of ecocide and genocide as the number of countries destroyed by the catastrophic weather systems continues to increase.

The United States and Canada with their expanding economies and their growing frenetic extraction of fossil fuels, using the most environmentally destructive methods possible (fracking and shale oil) as well as the population's total addiction to inefficient gas transport is leading our planet into suicide. We are like maniacal lemmings leaping to their deaths over a global warming cliff. What a final and futile legacy it will be for the leader of the free world to be remembered only in the log of some passing alien ship recording the loss of the Earth’s atmosphere and hydrosphere after 2080 due to human greed and absolute energy ineptitude.

The U.S. Government and Canada must ban all environmentally destructive methods of fossil fuel extraction such as fracking, extracting shale oil and coal and widespread construction of the now found to be faulty hydrocarbon pipeline systems. All Federal Government subsidies to fossil fuel corporations, for fossil fuel discovery and extraction must be immediately eliminated and the money spent solely on renewable energy development which will provide many jobs to the unemployed. All long and short range (high consumption) fossil fuel transport must be electrified and where the range is too large, electrical trains must be used instead of trucks for transport. All the major work for this conversion and railway construction can provide a new and growing set of jobs for the unemployed. Nuclear power stations must continue to be used and should be converted to the safe thorium energy system until the transition is complete.

The U.S. has to put itself on a war footing, recall its entire military forces and set them to work on the massive change over to renewable energy that the country needs to undertake, if it wishes to survive the fast approaching catastrophe. The enemy now is Mother Nature who has infinite power at her disposal and intends to take no prisoners in this very short, absolutely brutal, 30 to 40 year war she has begun. I cannot emphasise more, how serious humanity’s predicament is and what we should try to do to prevent our certain final destruction and extinction in the next 30 to 40 years if we continue down the present path we are following .

Monitoring the Effects of a Reduction in Atmospheric Pollution from the United States and Canada

In conjuction with the massive cut back in pollution emissions by the United States and Canada, the United States must set up a project through the Woods Hole and Rutgers universities to continuously monitor the Gulf Stream flow rate offshore the industrialized United States south of New Foundland at 55° the critical transport rate of 142 Sverdrups. As already shown, the critical transport in 2007 off the Gulf Stream of 142 Sverdrups precipitated the start of the continuous firing of the methane hydrate (clathrate) gun and runaway global warming. As the United States and Canada sharply reduce their airborne pollution from fossil fuel extraction and use, it will cut back the Gulf Stream transport rate to less than 142 Sverdrups south of New Foundland at 55° west longitude. Here the Gulf Stream transport rate should be reduced to below 130 Sverdrups or even 100 Sverdrups to make sure that the methane hydrate (clathrate) gun completely terminates firing in the subsea Arctic and humanity has some breathing space to give it time to completely revert to renewable energy. The Gulf Stream transport rate monitoring work of the Woods Hole and Rutgers universities will be of vital significance in humanities last ditch attempt at surviving the fast approaching extinction event.


References

ACS 2013. Thermal Energy in the Ocean. ACS Climate Science toolkit/Oceans, Ice and Rocks.
http://www.acs.org/content/acs/en/climatescience/oceanicerocks/thermalenergy.html

Balmaseda M.A., Trenberth K.E., Källén E., 2013. Distinctive climate signals in reanalysis of global ocean heat content. Geophysical Research Letters, Vol. 40, Issue 9, 1754 - 1759.

Bryden, H.L., 1979. Poleward heat flux and conversion of available potential energy in Drake Passage. J. Marine Res., 37, 1 - 22.

Bunker A.F. 1976. Computations of Surface Energy Flux and Annual Air-Sea Interaction Cycles of the North Atlantic Ocean. Mon. Wea. Rev. 104, 1122 - 1139.

Bunker A.F. 1988. Surface Energy Fluxes in the South Atlantic Ocean. Mon. Wea. Rev. 116, 809 - 829.

Bunker A.F., and Worthington V., 1976. Energy Exchange Charts of the North Atlantic Ocean. Bull. Amer. Meteor. Soc. 57, 670 - 678.

Carana, S. 2011a. Runaway Warming 2011. Geo-engineering blog
http://geo-engineering.blogspot.com/2011/09/runaway-warming.html

Carana, S. 2011b. Runaway global warming 2011. Knol
http://knol.google.com/k/sam-carana/runaway-global-warming/7y50rvz9924j/64

Carana, S. 2011g. Runaway Global Warming. In: Climate Change the Next Generation.
http://climatechangepsychology.blogspot.com/2011/04/sam-carana-runaway-global-warming.html

Carana, S. 2012. Striking increase of methane in the Arctic. In: Arctic News
http://arctic-news.blogspot.com/2012/05/striking-increase-of-methane-in-arctic.html

Carana S., 2012. Record levels of greenhouse gases in the Arctic. Arctic News. Wednesday, May 2, 2012.
http://www.3.bp.blogspot.com/hBD8fyXU_A/T6E7CIJEZWI/AAAAAAAACrM/4IU5JVN3rTO/S1600/846537569836.jpg

Carana S., 2012. The accumulating impact of methane releases in the Arctic and how much time there is left to act.
http://arctic-news.blogspot.com/p/how-much-time-is-there-left-to-act.html

Carana S., 2012. How much time is there left to act? Abrupt release of 1 Gt of methane.
http://arctic-news.blogspot.com/p/how-much-time-is-there-left-to-act.html

Carana S., 2013. Quantifying Arctic Methane.
http://arctic-news.blogspot.com/2013/11/quantifying-arctic-methane.html

Carana S., 2013. Methane - hydrates.
http://methane-hydrates.blogspot.com/2013/04/methane-hydrates.html

Carana S., 2013. Methane up to 2241 ppb at 742 mb on January 23, 2013. In: Carana S., 2013, Dramatic increase in methane in the Arctic in January 2013.
http://arctic-news.blogspot.com/2013/02/dramatic-increase-in-methane-in-the-arctic-in-january-2013.html

Carana S., 2013. Global warming, accelerated warming in the Arctic and runaway global warming. - How much will temperatures rise?.
http://arctic-news.blogspot.com/2013/04/how-much-will-temperatures-rise.html

Carana S., 2011b. Light, M.P.R. and Carana, S. 2011c. Knol - A unit of Knowledge - Methane linked to seismic activity in the Arctic.
http://knol.google.com/k/sam-carana/methane-linked-to-seismic-activity-in/7y50rvz9924j/85?collectionId=7y50rvz9924j.39#

CDL, 2013. The Oceans, their Physics, Chemistry and General Biology. UC Press E-Books Collection, 1982 - 2004. University of California Press. California Digital Library (CDL).
http://publishing.cdlib.org/ucpressebooks/view?docId=kt167nb66r&chunk.id=d3_5_ch15&toc.id=ch15&toc.depth=1&brand=eschol

Church J.A., White N.J., Konikow L.F., Domingues C.M., Cogley G., Rignot E., Gregory J.M., van den Broeke M.R., Monagham A.J., Velicogna I., 2011. Revisiting the Earth's sea - level and energy budgets from 1961 to 2008. Geophysical Research Letters. Vol. 40, Issue 15, 4066. Article first published online 8 Aug. 2013.

Cook J. 2013. 4 Hiroshima bombs worth of heat per second. In: Skeptical Science.
http://www.skepticalscience.com/4-Hiroshima-bombs-worth-of-heat-per-second.html

Csanady G.T., 2001. Air - Sea Interactions. Laws and Mechanisms. Cambridge University Press. 239 pp.

Gapminder, 2012. Yearly Human Carbon Dioxide Emissions
http://www.gapminder.org/world

Häkkinen S., and Cavalieri D.J., 1989. A study of oceanic surface heat fluxes in the Greenland, Norwegian and Barents Seas. J. Geophys. Res. 94, 6145 - 6157.

Hyperphysics, 2013. Heat of Fusion, Heat of Vaporization.
http://hyperphysics.phy-astr.gsu.ed/hbase/thermo/phase2.html

Krümmel D.O., 1891. Die Nordatlantische Sargasso Sea. Map. Scale 1:31300.000. Gotha: Justus Perthes.
http://www.gc.noaa.gov/images/gcil/1891_SargassoSee_Krummel_Petermanns_lores.jpg

Levitus et al. 2012. Global Ocean Heat Content. NOAA/NESDIS/NODS Ocean Climate Laboratory. Updated from Levitus et al. 2012. Global Oceanic Heat and Salt Content. In: NOAA National Oceanographic Data Center (NODS), United States Department of Commerce.
http://www.nodc.noaa.gov/OCS/3M_HEAT_CONTENT/Index.html

Lide R., and Frederickse H.P.R., 1995. CRC Handbook of Chemistry and Physics. 75th Edition. 1-1 to 1-33.

Light M.P.R., 2012. Global extinction within one human lifetime as a result of a spreading atmospheric Arctic methane heatwave and surface firestorm. Arctic-News.
http://arctic-news.blogspot.com/p/global-extinction-within-one-human.html

Light M.P.R., 2013. The Non - Disclosed Extreme Arctic Methane Threat. The 2013 Australian above average temperatures set a record of 0.22oC higher than the 12 month period prior to 2013 and confirm a mid - 21st century atmospheric methane - induced global deglaciation and major extinction event.
https://sites.google.com/site/runawayglobalwarming/the-non-disclosed-extreme-arctic-methane-threat

Light M.P.R. 2011a. Use of beamed interfering radio frequency transmissions to decompose Arctic atmospheric methane clouds. Edited by Sam Carana.
http://arctic-news.blogspot.com/p/decomposing-atmospheric-methane.html

Light M.P.R. 2011c. Stratospheric methane global warming veil. Edited by Sam Carana. In: Arctic News.
http://arctic-news.blogspot.com

Light M.P.R., 2012a. Global exctinction within one human lifetime as a result of a spreading atmospheric methane heatwave and surface firestorm. Edited by Sam Carana. In Arctic News.
http://arctic-news.blogspot.com

Light M.P.R., 2012b. How much time is there left to act, before methane hydrate releases will lead to human extinction? Edited by Sam Carana. In: Geo-Engineering.
http://Geo-Engineering.blogspot.com

Light M.P.R. 2012c. Angels Proposal - A Proposal for the Prevention of Arctic Methane Induced Catastrophic Global Climate Change by Extraction of Methane from beneath the Permafrost/Arctic Methane Hydrates and its Storage and Sale as a Subsidized "Green Gas" Energy Source. LGS. 49 pp. In: Arctic News.
http://arctic-news.blogspot.com.es/2012/05/proposal-to-extract-store-and-sell.html

Light M.P.R. and Carana, S., 2011. Methane linked to seismic activity in the Arctic. Edited by Sam Carana. In: Arctic News.
http://arctic-news.blogspot.com

Light M.P.R. and Solana C., 2002a. Arctic methane hydrates - Mapping a potential greenhouse gas hazard. Abstract and Poster, EGS, Nice.

Light, M.P.R. and Solana, C. , 2002b- Arctic Methane Hydrates: A Potential Greenhouse Gas Hazard
http://adsabs.harvard.edu/abs/2002EGSGA..27.4077L

Murphy D.M., Solomon S., Portmann R.W., Rosenlof K.H., Forster P.M., Wong T., 2009. An obervationally based energy balance for the Earth since 1950. Journal of Geophysical Research: Atmospheres (1984 - 2012), Vol. 114, Issue D17, 16 September 2009.

Nuccitelli D., Way R., Painting R., Church J., Cook J., 2012. Comment on "ocean heat content and Earth's radiation imbalance.II Realtion to climate shifts". Physics Letters A. Vol. 376, Issue 45, 1 October 2012, 3466 - 3468.

Rutgers, 2013a. Atlantic Ocean Gyre Map.
http://www.i-cool.org/wp-content/uploads/2010/02/ce058700fg0010.gif

Rutgers, 2013b. South Atlantic Gyre. I-Cool. International Coalition of Ocean Observing Laboratories. http://www.i-cool.org/?p=4916

Shakova N., 2013. A thawing ocean floor pours methane into the atmosphere and it's only getting worse. PRI. Science. Tech and Environment.
http://www.pri.org/stories/2013-12-12/thawing-ocean-floor-pours-methane-atmosphere-and-its-only-getting-worse

Sverdrup, Johnson and Fleming, 1942. In; introduction to Physical Oceanography.
http://oceanworld.tamu.edu/resources/ocng_textbook/chapter 11/chapter11_04.htm
http://publishing.cdlib.org/ucpressebooks/view?docId=kt167nb66r&doc.view=popup&fig.ent=http://publishing.cdlib.org/ucpressebooks/data/13030/6r/kt167nb66r/figures/kt167nb66r_fig187.gif

Wales J., 2013.
- Wikipedia; Gulf Stream.
http://www.en.wikipedia.org/wiki/File:Golfstrom.jpg
- Wikipedia; Methane.
http://www.en.wikipedia.org/wiki/Methane
- Wikipedia; South Atlantic Gyre
http://www.en.wikipedia.org/wiki/File:South_Atlantic_Gyre.png
- Wikipedia; West Spitsbergen Current
http://www.en.wikipedia.org/wiki/West-Spitsbergen-Current
- Wikipedia; Sverdrup
http://www.en.wikipedia.org/wiki/Sverdrup

Weatheronline, 2013.
http://www.weatheronline-co.uk/reports/wxfacts/North-Atlantic-Drift-Gulf-Stream.htm


Thursday, December 26, 2013

Sea Ice in decline between Svalbard and Greenland

[ click on image to enlarge ]
Above image shows that Earth's highest atmospheric methane concentrations are recorded over the Arctic Ocean. The insets show lower methane concentrations over various continents, North and South America (top left), Europe (mid right), Australia bottom left) and Antarctica (bottom right).

The top right inset shows sea ice thickness, illustrating that methane is escaping from the sea floor of the Arctic Ocean and is transported by currents to the thinner edges of the sea ice, where it is entering the atmosphere.

As discussed in a recent post, methane can be bubbling up in the Arctic Ocean with a force strong enough to prevent sea ice from forming in the area. This feedback is depicted in the Diagram of Doom further below as feedback #13.


Around this time of year, Arctic sea ice is typically growing rapidly, both in extent and thickness.

However, the above image shows that in the area marked by the white circle, between Svalbard and Greenland, the sea ice is actually in decline.

[ click on image to enlarge ]
This decline is caused by methane that is entering the atmosphere in the area as warmer water continues to be transported by the Gulf Stream into the Arctic Ocean, as discussed in previous posts such as this one, and as also illustrated by the image on the right.

Warmer than average waters have been entering the Arctic Ocean along the Gulf Stream since July 2013, when changes to the Jet Stream contributed to waters off the North American coast reaching record warmest temperatures, as depicted in the Diagram of Doom below as feedback #11.

In summary, the above images show that methane makes it hard for ice to form, while the warm water of the West Spitzbergen Current is pushing the ice away, breaking up even the thickest ice to the north of Greenland.

Surface temperatures in the area have been extremely high recently. This part of the Arctic Ocean was hit by an 18+°C anomaly during the week from December 16 to December 22, 2013, as illustrated by the image below.


On some days that week, anomalies of 20+°C were recorded over an even larger part of the Arctic Ocean, as described in a previous post. These anomalies show how a number of feedbacks can interact and contribute to huge warming peaks in the Arctic Ocean, such as methane releases (feedbacks #2 and #13 in the diagram below) and changes to the Jet Stream (feedbacks #10 and #11 in the diagram below).

This spells bad news for the sea ice. Some people may have hoped that the thicker sea ice north of Greenland would take decades to disappear. However, as depicted in the Diagram of Doom below, feedbacks can hugely accelerate sea ice decline. As sea ice declines further, more open water make it more likely that stronger storms and cyclones will appear that can rip the sea ice apart and move the pieces into the Atlantic Ocean in a matter of days.

The image below, by Jim Pettit, illustrates the ongoing decline of the sea ice.


Thirteen feedbacks that can accelerate warming in the Arctic are depicted in the diagram below.


Specific feedbacks are described in the following posts:
- Diagram of Doom
- Further feedbacks of sea ice decline in the Arctic
- Causes of high methane levels over Arctic Ocean
- Methane Release caused by Earthquakes
- How Do We Act in the Face of Climate Chaos?
- The astounding global warming impact on our oceans . . .
- Methane emerges from warmer areas
Feedbacks are pictured in a more general way in the image below.


Above image shows how the accumulation of the many feedbacks and their interaction leads to ever stronger albedo changes, while the resulting accelerated warming in the Arctic causes increasing quantities of methane to be released from the seafloor of the Arctic Ocean, in turn leading to runaway global warming, as also pictured in the image below.

[ click on image to enlarge ]
As above image shows, a polynomial trendline already points at global temperature anomalies of 5°C by 2060. Even worse, a polynomial trendline for the Arctic shows temperature anomalies of 4°C by 2020, 7°C by 2030 and 11°C by 2040, threatening to cause major feedbacks to kick in, including albedo changes and methane releases that will trigger runaway global warming that looks set to eventually catch up with accelerated warming in the Arctic and result in global temperature anomalies of 20°C+ by 2050.

To reduce these risks, comprehensive and effective action is needed, such as described at the Climate Plan blog.