Saturday, March 12, 2016

Interview with Paul Beckwith



1) Hi Paul. Thanks for agreeing to do this interview. First of all, could you tell us a bit about your background, how long you’ve been involved in climate science, and what areas of climatology you specialize in?


Hello Sam. Thank you. It is my pleasure to have this interview with you.

I am an Engineer with a Bachelor of Engineering Degree in Engineering Physics (often called Engineering Science) from McMaster University in Hamilton, Ontario, Canada. I finished at the top of my class and received many scholarships and awards during my studies. My CV can be found on my website http://paulbeckwith.net under the About Me section.

I am a Physicist with a Master of Science Degree in Laser Physics. My research area was blowing molecules apart with high-powered CO2 lasers and measuring all the chunks flying off with low-power tunable diode lasers. This involved the science of molecular spectroscopy in the infrared region.

I worked in industry for many years, as a Product Line Manager for optical switching devices in high speed fiber optic communication systems, on high powered Excimer laser research and tunable laser research, and also on software quality assurance for various tech companies.

I have been interested in climate science my entire life. I decided to formally study it after becoming concerned with the lack of urgency by the public, scientists (literally everybody) about 6 years ago or so.

I am a part time professor in the Laboratory for Paleoclimatology in the Geography Department at the University of Ottawa. I have taught many courses including climatology, meteorology, oceanography and the geography of environmental issues. My research work in my PhD program is abrupt climate system change in the past and present, to determine what will happen in the near future. I am very active on educating the public about the grave dangers that we face from abrupt climate change, using primarily videos and blogs and public talks (see my website link above). My research is self-funded, apart from my teaching, and I greatly welcome financial contributions at the Please Donate button on the main task bar on my website.

2) It’s clear that the Arctic is melting rapidly and this trend is likely to continue. When do you predict the Arctic will start to have ice-free conditions? At what point during the year will it disappear, and how long for? How will these conditions develop in future decades, and could we reach a point where the Arctic is free of ice all year round?

I think that the Arctic will start to have ice-free conditions at the end of the melt season (Septembers) as early as 2020 or before (possibly even the summer of 2016). It is hard to predict a single year, since the loss of Arctic sea ice greatly depends on local Arctic wind and ocean conditions in the summer melt season. These local conditions determine how much ice is lost to export via the Fram Strait and Nares Strait, which makes a huge difference to ice loss amounts during the Northern summer period. When there is less than 1 million square kilometers of sea ice left, we have essentially a “blue-ocean” event in the Arctic.

For the sake of argument, lets pick September, 2020, for the first “blue-ocean” event in the Arctic (essentially no sea ice left). This would occur for about a month, call it the month of September. Within 2 or 3 years it is highly likely that the duration of this “blue-ocean” state would be 3 months or say, thus occur for August, September and October in 2023. Within an additional few years, say by 2025 it is highly likely that the “blue-ocean” event would be extended for another few additional months, and we would have ice free conditions from July through to and including November; namely for 5 months of the year. Then, within a decade or two from the initial 2020 event we can expect to have an ice free “blue-ocean” Arctic year round; that would be some year between 2030 and 2040.

Of course if the first “blue-ocean” event occurred in 2016 this timeline would be advanced accordingly.

3) In recent years, there’s been a lot of talk about methane eruptions in the Arctic and Siberia. How serious is this, in terms of its potential for adding to global warming? Can you give us some idea of the timescales involved? What’s the level of certainty about these future effects?

Once the Arctic is essentially ice free for ever increasing durations in the summer months, and then over the entire year there are two enormous feedback risks that we face. Methane and Greenland.

Methane is the mother of all risks. The Russians have measured large increases in emissions from the continental shelf seabed in the Eastern Siberian Arctic Shelf (ESAS). Over the timespan of a few years they observed that methane bubbled up in vast numbers of plumes that increased in size from tens of meters in diameter to hundreds and even thousands of meter diameter plumes in the shallow regions of ESAS. Global atmospheric levels of methane are rapidly rising, and although they average about 1900 ppb or so there have been readings over 3100 ppb in the atmosphere over the Arctic. Since the Global Warming Potential (GWP) of methane versus carbon dioxide is 34x, 86x and close to 200x on timescales of 100 years, 20 years and a few years, respectively a large burst of methane can virtually warm the planet many degrees almost overnight.

Recently, we have passed about 405 ppm of CO2, with a record rise of 3.09 ppm in 2015 alone. When accounting for methane and other greenhouse gases (GHGs) and putting them into CO2-equivalent numbers, we are at about 490 ppm CO2 – equivalent. We are literally playing with fire, and the outcome will not be pretty.

Greenland ice melt is the next enormous feedback risk. When we lose snow and ice in the Arctic, and the cascading feedbacks like albedo-destruction kick in, and the methane comes out then the enormous warming over Greenland and in the water around and under the Greenland ice will viciously destroy the ice there and greatly accelerate sea level rise. I refer people to my video from several years ago on the great risk of realizing 7 meters of global sea level rise by 2070 from Greenland and Antarctica melt.

The level of certainty over these future effects is close to 100% if we continue to be stupid and do nothing. If we are smart we need to have a Manhattan – Marshall plan like emergency status to:
a) Zero emissions as-soon-as-possible, i.e. by 2030;
b) Cool the Arctic to keep the methane in place and restore jet stream stability; and
c) Remove CO2 from the atmosphere/ocean system and remove methane from the atmosphere.
There is no other choice. I use the metaphor of a three legged bar stool with legs a), b) and c) as above.

Barstool approach (slightly different from text in that SRM and methane
removal are included with adaptation and conservation in bottom leg)


4) What new satellites, monitoring stations, and other science projects are being planned for the future (if any)? How will these improve our knowledge of the Arctic and the various climatic processes in the region?

NASA, the ESA and the Russians and Chinese are always launching new satellite with better high tech sensors to gather more information on the changes in the Earth System. We need to have a massive increase in scientific study in the Arctic to better quantify what is happening there. However, we know enough to see that if we do not deploy the three-legged barstool approach immediately then our chances are halting our ongoing abrupt climate change will vanish, and emissions from the Earth System will dwarf all cumulative anthropogenic emissions throughout human history. We need the US military budget of $700 to $800 billion dollars per year to be applied to saving human civilization from abrupt climate change.

5) What can be done to save the Arctic and reverse the melting trend? How long would it take to restore the ice cover to, say, mid-20th century levels? Is this even possible with current technology?

We must cool the Arctic as soon as possible using Solar Radiation Management (SRM) technologies. We can deploy SRM very quickly if we treat this Arctic temperature amplification as an existential threat to humanity and put billions of dollars into deployment. It will take many years, perhaps a decade to restore the ice cover but we must start now. If we wait until we have “blue-ocean” events before we deploy then our ability to restore the ice will be much harder and perhaps even futile.

Deployment is possible with current technology. I am specifically referring to Marine Cloud Brightening (MCB) methods. I am working today with people on these technologies.

6) How does the melting in the Arctic compare to its southern polar opposite, the Antarctic?

The Arctic is rapidly losing snow cover (mostly in the spring months) and sea ice cover, and is thus the average albedo (reflectivity) of the region is rapidly decreasing. This if feeding back into additional Arctic Temperature Amplification and further darkening and warming, until we have no snow and ice in the region. These vicious feedback cycles have not kicked in to the same extent in the Antarctic. The ice cap there is losing ice causing a rise in sea level mostly from the warming of the seawater undercutting the ice on land that is grounded below sea level. However, since the Arctic is warming so fast due to increased solar radiation absorption (from darkening) there is less heat transported there via the atmosphere and oceans. Thus, jet streams and ocean currents are slowing. Thus, more heat is moving from the equator to the southern hemisphere, making it to Australian latitudes and increasing the temperature gradient to Antarctica and thus increasing the speed of the jet streams there.

7) Finally, what’s your message to climate change deniers who reject the science and believe the whole thing is a giant hoax?

Climate change deniers cannot be tolerated by society any longer. They are threatening the future of everybody on our planet. Send them all to Guantanamo for intensive and mandatory climate science basic training, and when they get clued in they can be reintroduced into society.


Interview with Paul Beckwith http://arctic-news.blogspot.com/2016/03/interview-with-paul-beckwith.html
Posted by Sam Carana on Saturday, March 12, 2016

Friday, March 11, 2016

Ten Degrees Warmer In A Decade?

In 2015, mean global carbon dioxide grew by 3.09 parts per million (ppm), more than in any year since the record started in 1959. An added polynomial trendline points at a growth of 5 ppm by 2026 (a decade from now) and of 6 ppm by 2029.

NOAA data, added trend points at 5 ppm growth a decade from now
There are a number of elements that determine how much the total temperature rise will be, say, a decade from now:

Rise 1900-2016: In January 2016, it was 1.92°C (3.46°F) warmer on land than in January 1890-1910, as discussed in an earlier post that also featured the image below.

Rise before 1900: Before 1900, temperature had already risen by ~0.3°C (0.54°F), as Dr. Michael Mann points out.

Rise 2016-2026: The image at the top shows a trend pointing at 5 ppm growth a decade from now. If levels of carbon dioxide and further greenhouse gases keep rising, then that will account for additional warming over the next ten years. Even with dramatic cuts in carbon dioxide emissions, temperatures will keep rising, as maximum warming occurs about one decade after a carbon dioxide emission, so the full wrath of the carbon dioxide emissions over the past ten years is still to come.

Removal of aerosols: With dramatic cuts in emissions, there will also be a dramatic fall in aerosols that currently mask the full warming of greenhouse gases. From 1850 to 2010, anthropogenic aerosols brought about a decrease of ∼2.53 K, says a recent paper. In addition, people will have emitted a lot more aerosols since 2010.

Albedo change: Warming due to Arctic snow and ice loss may well exceed 2 W per square meter, i.e. it could more than double the net warming now caused by all emissions by people of the world, calculated Professor Peter Wadhams in 2012.

Methane eruptions from the seafloor: ". . . we consider release of up to 50 Gt of predicted amount of hydrate storage as highly possible for abrupt release at any time," Dr. Natalia Shakhova et al. wrote in a paper presented at EGU General Assembly 2008. Authors found that such a release would cause 1.3°C warming by 2100. Note that such warming from an extra 50 Gt of methane seems conservative when considering that there now is only some 5 Gt of methane in the atmosphere, and over a period of ten years this 5 Gt is already responsible for more warming than all the carbon dioxide emitted by people since the start of the industrial revolution.

Water vapor feedback: Water vapour feedback acting alone approximately doubles the warming from what it would be for fixed water vapour. Furthermore, water vapour feedback acts to amplify other feedbacks in models, such as cloud feedback and ice albedo feedback. If cloud feedback is strongly positive, the water vapour feedback can lead to 3.5 times as much warming as would be the case if water vapour concentration were held fixed, according to the IPCC.

The image below puts these elements together in two scenarios, one with a relatively low temperature rise of 3.5°C (6.3°F) and another one with a relatively high temperature rise of 10°C (18°F).

Temperature rise on land a decade from now (without geoengineering)
Note that the above scenarios assume that no geoengineering will take place within a decade.
[ click on images to enlarge ]

As described above, the January 2016 temperature anomaly on land compared to January 1890-1910 was 1.92°C (3.46°F). Globally, the anomaly was 1.53°C (2.75°F), as shown by the image top right.

Putting the elements together for two global scenarios will result in a total rise of 3.11°C (5.6°F) for a relatively low global temperature rise and 9.61°C (17.3°F) for a relatively high global temperature rise, as shown by the image bottom right.

So, will climate catastrophe occur in a decade or later? There are many indications that the odds are large and growing rapidly. Some say climate catastrophe is inevitable or is already upon us. Others may like to believe the odds were rather small. Even so, the magnitude of the devastation makes it imperative to start taking comprehensive and effective action now.


The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.



In 2015, mean global CO2 grew by 3.09 parts per million, more than in any year since the record started in 1959. An...
Posted by Sam Carana on Wednesday, March 9, 2016

Friday, February 26, 2016

Three kinds of warming in the Arctic

The Arctic is prone to suffer from three kinds of warming. Firstly, the Arctic is hit particularly hard by emissions, as discussed in earlier posts such as this one and this one.

Secondly, warming in the Arctic is accelerating due to feedbacks, as discussed on the feedbacks page. Many such feedbacks are related to decline of the snow and ice cover in the Arctic, which is in turn made worse by emissions such as soot.

Thirdly, the most dangerous feedback is release of methane from the Arctic Ocean seafloor, due to hydrates getting destabilized as heat reaches sediments.


Last year, Arctic sea ice reached its maximum extent on February 25, 2015. This year, there was a lot less sea ice in the Arctic on February 25 than there was last year, as illustrated by above image. The difference is about 300,000 square km, more than the size of the United Kingdom.

The image below shows that global sea ice on February 22, 2016, was only 14.22086 million square km in area. It hasn't been that low since satellite records started to measure the sea ice.


A number of feedbacks are associated with the decline of sea ice, such as more sunlight being absorbed by the water, instead of being reflected back into space as it was previously. Furthermore, there are three kinds of warming active in the Arctic, as described above and as depicted by the image below.


Sea ice can reflect as much as 90% of the sunlight back into space. Once the ice has melted away, however, the water of the ocean reflects only 6% of the incoming solar radiation and absorbs the rest. This is depicted in above image as feedback #1.


As Professor Peter Wadhams once calculated, warming due to Arctic snow and ice loss could more than double the net warming now caused by all emissions by all people of the world.

Professor Peter Wadhams on albedo changes in the Arctic, image from Edge of Extinction
As the sea ice melts, sea surface temperatures will remain at around zero degree Celsius (32°F) for as long as there is ice in the water, since rising ocean heat will first go into melting the ice. Only after the ice has melted will ocean heat start raising the temperature of the water. Sea ice thus acts as a buffer that absorbs heat, preventing water temperatures from rising. As long as sea ice is melting, each gram of ice will take 334 Joule of heat to change into water, while the temperature remains at 0° Celsius or 32° Fahrenheit.

Once all ice has turned into water, all further heat goes into heating up the water. To raise the temperature of one gram of water by one degree Celsius then takes only 4.18 Joule of heat. In other words, melting of the ice absorbs 8 times as much heat as it takes to warm up the same mass of water from zero to 10°C. This is depicted in the image on the right as feedback #14.



Above video, created by Stuart Trupp, shows how added heat at first (A) goes mainly into warming up water that contains ice cubes. From about 38 seconds into the movie, all heat starts going into the transformation of the ice cubes into water, while the temperature of the water doesn't rise (B). More than a minute later, as the ice cubes have melted (C), the temperature of the water starts rising rapidly again.

Methane is a further feedback, depicted as feedback #2 on the image further above. As the water of the Arctic Ocean keeps getting warmer, the danger increases that heat will reach the seafloor where it can trigger release of huge amounts of methane, in an additional feedback loop that will make warming in the Arctic accelerate and escalate into runaway warming.

Sediments underneath the Arctic Ocean hold vast amounts of methane. Just one part of the Arctic Ocean alone, the East Siberian Arctic Shelf (ESAS, see map below), holds up to 1700 Gt of methane. A sudden release of less than 3% of this amount could add 50 Gt of methane to the atmosphere, and experts have warned for many years that they consider such an amount to be ready for release at any time.


Above image gives a simplified picture of the threat, showing that of a total methane burden in the atmosphere of 5 Gt (it is meanwhile higher), 3 Gt that has been added since the 1750s, and this addition is responsible for almost half of all antropogenic global warming. The amount of carbon stored in hydrates globally was in 1992 estimated to be 10,000 Gt (USGS), while a more recent estimate gives a figure of 63,400 Gt (Klauda & Sandler, 2005). Once more, the scary conclusion is that the East Siberian Arctic Shelf (ESAS) alone holds up to 1700 Gt of methane in the form of methane hydrates and free gas contained in sediments, of which 50 Gt is ready for abrupt release at any time.

The warning signs keep getting stronger. Following a peak methane reading of 3096 ppb on February 20, 2016, a reading of 3010 ppb was recorded in the morning of February 25, 2016, at 586 mb (see image below).

Again, this very high level was likely caused by methane originating from the seafloor of the Arctic Ocean, at a location on the Gakkel Ridge just outside the East Siberian Arctic Shelf (ESAS), as discussed in the earlier post. This conclusion is supported by the methane levels at various altitudes over the ESAS, as recorded by both the MetOp-1 and MetOp-2 satellites in the afternoon, as illustrated by the combination image below showing methane levels at 469 mb.


The situation is dire a calls for comprehensive and effective action as described in the Climate Plan.


Links

- Feedbacks in the Arctic
http://arctic-news.blogspot.com/p/feedbacks.html

- Albedo changes in the Arctic
http://arctic-news.blogspot.com/2012/07/albedo-change-in-arctic.html

- The time has come to spread the message
http://arctic-news.blogspot.com/2013/12/the-time-has-come-to-spread-the-message.html

- Greenhouse gas levels and temperatures keep rising
http://arctic-news.blogspot.com/2016/01/greenhouse-gas-levels-and-temperatures-keep-rising.html

- Arctic sea ice area at record low for time of year
http://arctic-news.blogspot.com/2016/01/arctic-sea-ice-area-at-record-low-for-time-of-year.html

- Has maximum sea ice extent already been reached this year?
http://arctic-news.blogspot.com/2016/02/has-maximum-sea-ice-extent-already-been-reached-this-year.html

- Global sea ice extent record minimum - Arctic Sea Ice Blog
http://neven1.typepad.com/blog/2016/02/global-sea-ice-extent-minimum-record.html

- Warming of the Arctic Fueling Extreme Weather
http://arctic-news.blogspot.com/2014/06/warming-of-the-arctic-fueling-extreme-weather.html

- Climate Plan
http://arctic-news.blogspot.com/p/plan.html



Last year, Arctic sea ice reached its maximum extent on February 25, 2015. This year, there's a lot less sea ice in the...
Posted by Sam Carana on Friday, February 26, 2016

Tuesday, February 23, 2016

Arctic Winter Heatwave

The Arctic is experiencing a heatwave in winter, with temperature anomalies on February 23, 2016, averaging 7.84°C or 14.11°F higher than what was common 1979-2000.


The forecast for 6:00 UTC on February 23, 2016, shows an anomaly of 8.17°C or 14.71°F.


Temperatures in January 2016 over the Arctic Ocean were 7.3°C (13.1°F) higher than in 1951-1980, according to NASA data, as illustrated by the graph on the right, from an earlier post.

These high temperatures go hand in hand with sea ice extent that is much lower for this time of year than since records started.

As discussed in an earlier post, low sea ice extent is fueling fears that this year's maximum extent was already reached on February 9, 2016.

A much higher ocean temperature is behind both the low sea ice extent and the high temperature anomalies.

Ocean temperatures are particularly high where the Gulf Stream pushes water from Atlantic Ocean into the Arctic Ocean, as illustrated by the image below that compares sea surface temperature anomalies in the Arctic between the years 2015 and 2016 for February 22nd.


This spells bad news for the sea ice in 2016, since El Niño is still going strong and ocean temperature keeps rising, as illustrated by the NOAA global ocean temperature anomalies graph for January below.

 The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.



ARCTIC WINTER HEATWAVE The Arctic is experiencing a heatwave in winter, with temperature anomalies on February 23,...
Posted by Sam Carana on Tuesday, February 23, 2016