Saturday, September 21, 2013

High Methane Readings over Arctic Ocean

The image below shows a lot of methane over the Arctic Ocean on September 19, 2013 (pm).


Very worrying are the high methane readings close to Gakkel Ridge, the divergent fault line at the center of the Arctic Ocean, as earlier discussed in the post Methane Release caused by Earthquakes.

Furthermore very worrying are the high methane readings in between Greenland and Novaya Zemlya that coincide with high sea surface temperatures in that area. As discussed in the earlier post Is the North Pole no ice-free?, there are hot spots in the Arctic Ocean where sea surface temperatures are well over 10°C (50°F), which could be caused by undersea volcanic activity; this is the more dangerous as the area has seen methane bubbling up from destabilized hydrates.

For reference, images are added below of sea surface temperatures (top) and sea surface temperature anomalies (underneath) for September 19, 2013, showing sea surface temperatures recorded close to Svalbard that are far higher than even in the waters closer to the Atlantic Ocean.


Also for reference, highest mean and peak methane readings up to September 19, 2013, are added below.



Friday, September 20, 2013

A RUNAWAY GREENHOUSE EVENT

by John Davies

A linear trendline shows steady growth in the annual increase in CO2 levels, despite promises to reduce emissions.
Furthermore, recent increases show a worrying trend illustrated in the graph by a 4th order polynomial trendline.

GROWTH RATE OF CARBON DIOXIDE IN THE ATMOSPHERE

The world is probably at the start of a runaway Greenhouse Event which will end most human life on Earth before 2040. This will occur because of a massive and rapid increase in the carbon dioxide concentration in the air which has just accelerated significantly. The increasing Greenhouse Gas concentration, the gases which cause Global Warming, will very soon cause a rapid warming of the global climate and a chaotic climate.

Immediately before the Industrial Revolution, in 1750, the concentration of carbon dioxide in the air which had been stable for millennia, the main Greenhouse gas, was 280 parts per million, but in 2013 it is likely to average 395 parts per million. It has been increasing at an increasing rate since 1750.

In 1960 the carbon dioxide concentration was 315 parts per million and in the 1960’s the concentration was increasing at 0.8 parts per million per year, in the 1980’s at 1.6 parts per million and from 2003 until 2011 inclusive it rose at 2 .0 parts per year.

In 2012 it rose 2.39 parts. Between July 2012 and July 2013 atmospheric carbon dioxide increased in concentration by 3.35 parts, by far the largest 12 month increase ever.



THIS HUGE INCREASE SHOULD BE PUBLISHED EVERYWHERE WORLDWIDE NOW

ASSESSMENT

When there have been large anomalous increases in the past, though nothing like this, there has been a rapid return to near normal but this is probably slightly different. The most likely growth in the calendar year 2013 is likely to be about 2.85 parts per million, a calendar year record , but much below the growth from July 2012 until July 2013. The growth for 2012 and 2013 is likely to average out at about 2.62 parts per million, a record for a two year period.

Again, looking to the past, when there has been a rise in concentration like we will have had in 2012 and 2013 the rate of increase in concentration diminishes for a couple of years before rising again. I would expect the rise in concentration in 2014 and 2015 to average 2.55 parts per million before rising at an increasing rate thereafter assuming the world carries on with business as usual. Nevertheless this average rate is faster than we have yet witnessed except for the 2012 and 2013 period. This rate of increase is much faster than that which preceded the greatest ever wipe out of life on earth 249 million years ago.

There is a significant uncertainty about the above growth rate in the near term, with a chance of a higher and lower growth rate though the above forecast is the most likely outcome.

There must be a small chance that this is really the start of a very fast runaway event. Should the growth rate of atmospheric carbon dioxide in 2013 be greater than about 3.1 parts per million then the world will probably have entered a very fast runaway event.

It is even more absolutely critical that carbon dioxide concentrations from August 2013 onwards are rising at a slower rate than between July 2012 and July 2013 otherwise the world will have entered a very fast runaway Greenhouse Event. Carbon Dioxide concentrations will almost certainly be rising at a slower rate from August 2013 onwards.

The runaway greenhouse event, or a very fast runaway Greenhouse Event is probably just starting, and can only be stopped by an immediate response. The danger is that it will very rapidly run out of our control. I think the net negative feedback to greenhouse gas emissions is just starting to diminish. It is not clear whether this is because the sinks are absorbing less carbon dioxide or a form of positive feedback is starting probably a bit of both.

The rising carbon dioxide levels will probably lead to rising global temperatures from about 2015 onwards which will cause more climatic disruption, especially severe droughts, and thus more carbon emissions almost certainly before 2020.

This is going to occur at a time when the Arctic Ocean will probably become free of sea ice leading to a different set of runaway events which will coalesce with the build-up of carbon dioxide in the atmosphere.

This will lead to societal collapse after rising global temperatures have caused severe droughts and a global famine at some time prior to 2040, but probably much sooner in about 2020 or in the 2020’s.

IMMEDIATE ACTION IS CRUCIAL

The absolute priority is that the world’s public and politicians are told about the rapidly increasing rate of carbon dioxide concentrations in the air which will cause a runaway Greenhouse Event, both in the media and in social media. The gravity of the situation needs to be accepted and all nations agree to co-operate to solve the problem.

There needs to be a world conference at which all nations agree the grave situation that the world is facing and that urgent and drastic action is essential. They need to accept and agree that all nations will cut greenhouse gas emissions to an accepted and equal low level of emissions per person. This will mean that only nations with very small emissions per person like the Central African Republic will not need to make any emission cuts. The rate of increase in Carbon Dioxide needs to be cut to 2 parts per million per annum by 2015 onwards. The arctic needs to be cooled so that the sea ice does not all melt before the end of the Arctic Summer.

Reducing the rate of carbon dioxide build-up in the atmosphere will be astoundingly difficult. Emissions must be cut drastically, but this will lead to a reduction of Sulphate aerosols in the atmosphere, which might cause temperatures to rise and more carbon to be emitted from biomass as droughts become more severe. The solution is to try the relatively easy route and then use geo-engineering as necessary. This involves huge societal changes, a more egalitarian society and a smaller global economy, but if it is not done almost everybody will die.

Secondly, a group of scientists needs to be formed under the authority of the United Nations to formulate geo-engineering technologies, to go together with cuts in emissions, to reduce the carbon dioxide content of the atmosphere, such as planting forests, and to cool the arctic to save the arctic sea ice.

The immediate priority is to accept the gravity of the situation and that all nations and peoples will co-operate to solve the problem.

These measures will give humanity a chance of saving civilization.



Thursday, September 19, 2013

Is the North Pole now ice-free?

Is the North Pole now ice-free? It could well be that, by the time you read this, there will be no ice left at all at the North Pole. The image below, created by Sam Carana from a nowcast from the Naval Research Laboratory, run on September 17, 2013 and valid for September 18, 2013, shows open water extending all the way to a spot very close to the North Pole.


As the color indicates, sea ice thickness in this area is virtually zero (i.e. ice-free). This development of an ice-free area at the North Pole has been discussed in earlier posts such as:
  • Arctic sea ice thickness falls by 2m in 21 days in some areas (June 13, 2013)
  • Open Water In Areas Around North Pole (June 22, 2013), describing areas around the North Pole where sea ice thickness had fallen to virtually zero, i.e. open water. 
  • Open Water at North Pole (July 22, 2013), descibing a wide corridor that had developed with very thin ice between the North Pole and Siberia. The post added that surface water on top of this thin ice could extend along this corridor, all the way from the North Pole to edge of the ice, in which case the surface water effectively becomes part of open water.
  • North Hole (September 2, 2013), describing areas close to the North Pole where ice volume had fallen to virtually zero, while pointing at how devastating the impact of sea surface temperature anomalies can be. 
This sea ice thinning in areas close to the North Pole has been one of the most important developments in 2013. Yet, many people keep watching sea ice extent.

Why was Arctic sea ice not smaller in extent in 2013 than in 2012?

The comparison below shows both volume and the extent of the sea ice for the same day in 2013 (left), respectively 2012 (right). Natural variability can make Arctic sea ice slightly smaller or larger than projected. There are many factors that influence things from year to year, such as weather conditions, sea currents and temperatures of the water in the Atlantic and Pacific Oceans; some factors are discussed in more detail below.


The above comparison shows a lot more ice north of Alaska in 2013 (above left) than in 2012 (above right). The comparison below shows that salinity levels in the Beaufort Sea were lower in 2013 (below left) than in 2012 (below right).


Seawater typically has a salinity level of over 3%; it freezes at about −2°C (28°F). Where mixing occurs with fresh water runoff from melting glaciers and permafrost, the water in the Arctic Ocean can become substantially less saline. Other substances added to the water, such as sand, can also cause a freezing point drop. The freezing and melting point of fresh water (i.e. zero salinity) is 0°C (or 32°F).  Less salinity means the water will remain frozen until the temperature reaches levels closer to 0°C.

Thinning continues

Heatwave conditions in Alaska caused greater melting of the permafrost. The result was more fresh water run-off through the MacKenzie River into the Beaufort Sea. This has contributed to keep sea ice extent larger in 2013. Yet, the warm water has also contributed to further thinning of the ice, reinforcing warnings that the sea ice looks set to disappear altogether within years. 


As illustrated by the above image by Neven, from the Arctic Sea Ice blog, average Arctic sea ice thickness (crudely calculated by dividing PIOMAS (PI) volume numbers with Cryosphere Today (CT) sea ice area numbers) has been very low in 2013.

The image below shows that annual minimum volumes appear to follow an exponential trend downward to zero, firstly reached in September 2015, followed by zero ice in the surrounding months over subsequent years.

Some people have objected against using PIOMAS data for such projections, with arguments ranging from suggestions that PIOMAS data were not reliable, that natural variability could prove such projections to be wrong, to questioning whether an exponential trend was appropriate. Nonetheless, it seems that over the years arguments in favor of an exponential trend have only become stronger:
  • Further measurements such as by CryoSat have confirmed that the PIOMAS data are indeed reliable and that the sea ice decline may well be even more dramatic. 
  • Natural variability goes both ways, it can either speed up or slow down ice melt. Had there been less runoff from the MacKenzie River, the sea ice in 2013 may not have been able to refreeze after being hit by cyclones several times. Next year we may not be so lucky and sea ice could disappear altogether, due to natural variability.  
  • Thick ice along the northern coast of Greenland is indeeed more persistent because of on-shore winds that cause the ice to drift and pile-up there. This would favor a Gompertz (or Sigmoid) trend in extrapolations (see image on the right). However, the new development of an ice-free North Pole shows that the sea ice is capable of breaking up abruptly, not only from the outer edges toward Greenland, but also starting at the North Pole and even moving from there toward Greenland. Moreover, as the 30-day animation below shows, thick sea ice north of Greenland can thin very quickly, suggesting it could well disappear altogether within one season.  


Sea ice can thin rapidly, even when it is multiple meters thick 

Earlier in 2013, much warm water entered the Arctic Ocean from the mouths of rivers, as discussed in the post Arctic Ocean is turning red. As said, this resulted in lower salinity levels in the Beaufort Sea that prevented cyclones from demolishing the sea ice altogether. Nonetheless, the joint impact of cyclones and warm water does appear to have caused rapid decline of the thick ice north of Greenland and Canada, as earlier discussed in an earlier post

Furthermore, sea surface temperatures have been recorded close to Svalbard that are far higher than even in the waters closer to the Atlantic Ocean. This phenomenon is illustrated by the image below, showing sea surface temperatures (top) and sea surface temperature anomalies (underneath). 


In some of these spots, sea surface temperatures are well over 10°C (50°F). Where does this heat come from? 

These hot spots could be caused by undersea volcanic activity; this is the more dangerous as the area has seen methane bubbling up from hydrates that have become destabilized; such dangers have been discussed repeatedly, e.g. in the post Runaway Global Warming. Hot spots can also contribute to even more dramatic thinning of the sea ice, including the thickest parts. 

In conclusion, there is no reason to assume that the sea ice in the Arctic will somehow magically recover. Instead, there are many indications that exponential decline of Arctic sea ice will continue. Less salinity may have temporarily prolonged the extent of the sea ice in some areas, but as sea surface temperatures keep rising, the ever thinner ice looks set to collapse within years, with dire consequences. This calls for comprehensive and effective action, such as described at the ClimatePlan blog.  


Related posts

- Arctic sea ice thickness falls by 2m in 21 days in some areas
Arctic-news.blogspot.com/2013/06/arctic-sea-ice-thickness-falls-by-2m-in-21-days-in-some-areas.html

- Open Water In Areas Around North Pole
Arctic-news.blogspot.com/2013/06/open-water-in-areas-around-north-pole.html

- Open Water at North Pole
Arctic-news.blogspot.com/2013/07/open-water-at-north-pole.html

- North Hole
Arctic-news.blogspot.com/2013/09/north-hole.html

- CryoSat - New Dimensions on Ice
esa.int/Our_Activities/Observing_the_Earth/Living_Planet_Symposium_2013/New_dimensions_on_ice

- Arctic Ocean is turning red
Arctic-news.blogspot.com/2013/08/arctic-ocean-is-turning-red.html

- Cyclone raging on thin ice
Arctic-news.blogspot.com/2013/08/cyclone-raging-on-thin-ice.html

- Runaway Global Warming
Geo-engineering.blogspot.com/2011/04/runaway-global-warming.html

- Climate Plan
ClimatePlan.blogspot.com

Monday, September 16, 2013

Is climate change already dangerous?

by David Spratt

Download PDF 
(23 pages)
In a compelling survey, this report answers the question many are afraid to ask: is climate change already dangerous?

This science survey measures the current manifestations and impacts of climate change against the "safe boundaries" metric; surveys the literature on tipping points and non-linear climate events; and provides a detail study of significant recent events in the Arctic.

Three big questions are asked and answered:
  • Is climate change dangerous for just the current increase in global temperature?
  • Is climate change dangerous for the further increases in temperature already implied by the current level of greenhouse gases?
  • By looking at events in climate history where greenhouse gas levels were similar to today, can further light be shone on the "already dangerous" question?
The answers are both shocking, and necessary, if climate policy-making is to escape the delusional paradigm within which it is stuck.

In a concluding section, this report argues that with clear evidence that climate change is already dangerous, we are in an emergency and face "…an unavoidably radical future". And we know from past experience that societies, once in emergency mode, are capable of facing up to and solving seemingly impossible problems.


This post was originally published at: