Showing posts with label Paul Beckwith. Show all posts
Showing posts with label Paul Beckwith. Show all posts

Monday, September 10, 2018

Blue Ocean Event

Blue Ocean Event as part of four Arctic tipping points

What will be the consequences of a Blue Ocean Event, i.e. the disappearance of virtually all sea ice from the Arctic Ocean, as a result of the warming caused by people?


Paul Beckwith discusses some of the consequences in the video below. As long as the Arctic Ocean has sea ice, most sunlight gets reflected back into space and the 'Center-of-Coldness' remains near the North Pole, says Paul. With the decline of the sea ice, however, the 'Center-of-Coldness' will shift to the middle of Greenland. Accordingly, we can expect the jet streams to shift their center of rotation 17° southward, i.e. away from the North Pole towards Greenland, with profound consequences for our global weather patterns and climate system, for plants and animals, and for human civilization, e.g. our ability to grow food.


Also see Paul's video below, The Arctic Blue-Ocean-Event (BOE). When? Then What?


Changing Winds

As global warming continues, the additional energy in the atmosphere causes stronger winds and higher waves.

As the Arctic warms up faster than the rest of the world, the jet streams are getting more out of shape, exacerbating extreme weather events.

The image on the right shows the jet stream crisscrossing the Arctic Ocean on September 10, 2018, with cyclonic wind patterns all over the place.

On the image below, Typhoon Mangkhut is forecast to cause waves as high as 21.39 m or 70.2 ft on September 14, 2018.


The inset on above image shows Typhoon Mangkhut forecast to cause winds to reach speeds as high as 329 km/h or 205 mph at 700 hPa (green circle), while Hurricane Florence is forecast to hit the coast of North Carolina, and is followed by Hurricane Isaac and Hurricane Helene in the Atlantic Ocean.


At 850 hPa, Typhoon Mangkhut reaches Instant Wind Power Density as high as 196.9 kW/m² on September 13, 2018, as illustrated by above image.

The situation is likely to get worse over the next few months, as this is only the start of the hurricane season and El Niño is strengthening, as illustrated by the image on the right.

The image below shows how the occurrence and strength of El Niño has increased over the decades.



Four Arctic Tipping Points

There are numerous feedbacks that speed up warming in the Arctic. In some cases, there are critical points beyond which huge changes will take place rather abruptly. In such cases, it makes sense to talk about tipping points.

1. The albedo tipping point

As Arctic sea ice gets thinner and thinner, a Blue Ocean Event looks more imminent every year. A Blue Ocean Event means that huge amounts of sunlight won't get reflected back into space anymore, as they previously were. Instead, the heat will have to be absorbed by the Arctic. 



At the other hemisphere, the sea ice around Antarctica is at its lowest extent for the time of the year, as illustrated by above image. Global sea ice extent is also at its lowest for the time of the year, as illustrated by the image below.

A Blue Ocean Event will not only mean that additional heat will have to be absorbed in the Arctic, but also that wind patterns will change radically and even more dramatically than they are already changing now, which will also make that other tipping points will be reached earlier. This is why a Blue Ocean Event is an important tipping point and it will likely be reached abruptly and disruptively.

2. The latent heat tipping point

Disappearance of the sea ice north of Greenland is important in this regard. The image on the right shows that most sea ice at the end of August 2018 was less than 1 meter thick.

The image below shows how the sea ice has been thinning recently north of Greenland and Ellesmere Island, an area once covered with the thickest multi-year sea ice. Disappearance of sea ice from this area indicates that we're close to or beyond the latent heat tipping point, i.e. the point where further ocean heat can no longer be consumed by the process of melting the sea ice.

[ The once-thickest sea ice has gone - click on images to enlarge ]
The amount of energy absorbed by melting ice is as much as it takes to heat an equivalent mass of water from zero to 80°C. Without sea ice, additional ocean heat will have to go somewhere else.


Above image shows how much sea surface temperatures in the Arctic have warmed, compared to 1961-1990. The image also shows the extent of the sea ice (white). In the image below, a large area has changed from sea ice to water twelve days later, showing how thin and fragile the sea ice is and how easily it can disappear as the water continues to warm.


As the Arctic is warming faster than the rest of the world, changes have been taking place to the jet streams on the Northern Hemisphere that make it easier for warm air and water to move into the Arctic. This means that warm water is increasingly entering the Arctic Ocean that can no longer be consumed by melting the sea ice from below.

Arctic sea ice extent has remained relatively large this year, since air temperatures over the Arctic Ocean have been relatively low in June and July 2018. At the same time, ocean heat keeps increasing, so a lot of heat is now accumulating underneath the surface of the Arctic Ocean.

[ click on images to enlarge ]
3. Seafloor Methane Tipping Point

As said above, Arctic sea ice has been getting thinner dramatically over the years, and we are now near or beyond the latent heat tipping point.

[ The Buffer has gone, feedback #14 on the Feedbacks page ]
This year, air temperatures over the Arctic Ocean were relatively low in June and July 2018, and this has kept Arctic sea ice extent larger than it would otherwise have been. As a result, a lot of heat has been accumulating underneath the surface of the Arctic Ocean and this heat cannot escape to the atmosphere and it can no longer be consumed by melting. Where will the heat go?

As the temperature of the Arctic Ocean keeps rising, more heat threatens to reach sediments at its seafloor that have until now remained frozen. Contained in these sediments are huge amounts of methane in the form of hydrates and free gas.

Melting of the ice in these sediments then threatens to unleash huge eruptions of seafloor methane that has been kept locked up in the permafrost for perhaps millions of years. Seafloor methane constitutes a third tipping point.

The image on the right features a trend based on WMO data. The trend shows that mean global methane levels could cross 1900 ppb in 2019.

Ominously, methane recently reached unprecedented levels. Peak levels as high as 3369 ppb on August 31, 2018, as shown by the image below on the right.

The next image on the right below shows that mean global levels were as high as 1905 ppb on September 3, 2018.

The third image below on the right may give a clue regarding the origin of these unprecedented levels.

More methane will further accelerate warming, especially in the Arctic, making that each of the tipping points will be reached earlier.

Less sea ice will on the one hand make that more heat can escape from the Arctic Ocean to the atmosphere, but on the other hand the albedo loss and the additional water vapor will at the same time cause the Arctic Ocean to absorb more heat, with the likely net effect being greater warming of the Arctic Ocean.

Additionally, more heat is radiated from sea ice into space than from open water (feedback #23).

How much warming could result from the decline of snow and ice cover in the Arctic?

As discussed, there will be albedo changes, there will be changes to the jet streams, and there will be further feedbacks, adding up to 1.6°C of additional global warming that could eventuate due to snow and ice decline and associated changes in the Arctic.

A further 1.1°C of warming or more could result from releases of seafloor methane over the next few years.

4. Terrestrial Permafrost Tipping Point

Additional warming of the Arctic will also result in further warming due to numerous feedbacks such as more water vapor getting into the atmosphere. Furthermore, more intense heatwaves can occur easier in the Arctic due to changes to jet streams. All this will further accelerate melting of the ice in lakes and in soils on land that was previously known as permafrost. This constitutes a fourth tipping point that threatens to add huge amounts of additional greenhouse gases to the atmosphere. Until now, the permafrost was held together by ice. As the ice melts, organic material in the soil and at the bottom of lakes starts to decompose. The land also becomes increasingly vulnerable to landslides, sinkholes and wildfires. All his can result in releases of CO₂, CH₄, N₂O, soot, etc., which in turn causes further warming, specifically over the Arctic.

In total, a temperature rise of 10°C threatens to occur in as little as a few years time.

The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.



Links

• Jet Stream Center-of-Rotation to Shift 17 degrees Southward from North Pole to Greenland with Arctic Blue Ocean Event
https://www.youtube.com/watch?v=bFme3C9e-cs

• It could be unbearably hot in many places within a few years time
https://arctic-news.blogspot.com/2016/07/it-could-be-unbearably-hot-in-many-places-within-a-few-years-time.html

• Feedbacks
https://arctic-news.blogspot.com/p/feedbacks.html

• Latent Heat
https://arctic-news.blogspot.com/p/latent-heat.html

• Albedo and more
https://arctic-news.blogspot.com/p/albedo.html

• Warning of mass extinction of species, including humans, within one decade
https://arctic-news.blogspot.com/2017/02/warning-of-mass-extinction-of-species-including-humans-within-one-decade.html

• How much warming have humans caused?
https://arctic-news.blogspot.com/2016/05/how-much-warming-have-humans-caused.html

• The Threat
https://arctic-news.blogspot.com/p/threat.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html






Friday, January 27, 2017

Arctic Ocean Feedbacks


The world is warming rapidly, and the Arctic is warming much more rapidly than the rest of the world. In December 2016, the temperature anomaly from latitude 83°N to the North Pole was 8 times as high as the global anomaly. Above forecast for February 6, 2017, shows that temperatures over parts of the Arctic Ocean will be as much as 30°C or 54°F higher than they were in 1979-2000. How can it be so much warmer in a place where, at this time of year, little or no sunlight is shining? The Arctic Ocean is warming particularly rapidly due to a multitude of feedbacks, some of which are illustrated on the image below.


As the Arctic is warming more rapidly than the rest of the world, the temperature difference between the Arctic and the northern latitudes decreases, which makes the jet stream wavier. Jennifer Francis has written extensively about jet stream changes as a result of rapid warming in the Arctic. In the video below, Peter Sinclair interviews Jennifer Francis on these changes.


The changes to the jet stream make it easier for warm air from the south to enter the Arctic and for cold air to move out of the Arctic deep down into North America and Eurasia. At the same time, this also increases the temperature difference between the continents and the oceans, which is quite significant given the rapid warming of oceans across the globe. The result of the greater temperature difference between oceans and continents is that stronger winds are now flowing over the oceans along the jet stream tracks.

Stronger winds come with more evaporation and rain, which accumulates as freshwater at the surface of the North Atlantic and the North Pacific. The freshwater acts as a seal, as a lid on the ocean, making that less heat gets transferred from underneath the freshwater lid to the atmosphere. This makes that more heat can travel underneath the sea surface through the North Atlantic and reach the Arctic Ocean.


On January 28, 2017, sea surface temperature anomalies as high as 18.4°C (or 33.1°F) were showing up off the coast of Japan.


The situation is illustrated by above images, showing areas over the North Atlantic and the North Pacific (blue) where the sea surface was colder than it was in 1981-2011. Over these colder areas, winds are stronger due to the changes to the jet stream. On January 28, 2017, temperature anomalies were as high as 18.4°C (or 33.1°F) off the coast of Japan, while temperature anomalies were as high as 10.9°C (or 19.5°F) near Svalbard in the Arctic on January 27, 2017.

The image on the right shows sea surface temperature anomalies from 1971-2000.

The video below shows precipitation over the Arctic, run on January 27, 2017, and valid up to February 4, 2017.


Beaufort Gyre and Transpolar Drift
Changes to wind patterns can also affect sea currents in the Arctic Ocean such as the Beaufort Gyre and the Transpolar Drift. In the video below, at around 7:00, Paul Beckwith warns that further loss of sea ice will make these sea currents change direction, which in turn will draw more warm seawater from the North Atlantic into the Arctic Ocean.

As more ocean heat enters the Arctic Ocean and as sea ice retreats, more heat and water vapor will rise from the Arctic Ocean into the atmosphere over the Arctic. Increased water vapor will make it harder for heat to escape into space, i.e. more heat will remain trapped in the atmosphere and this will add to global warming.


The changes to the jet stream and the associated changes discussed above all lead to further warming of the Arctic Ocean, next to the warming caused by other feedbacks such as loss of albedo and loss of ice as a heat buffer. Together, sea ice loss and these associated feedbacks could cause global temperatures to rise by 1.6°C by 2026.

There are further feedbacks affecting the Arctic, as described at this page. One of the most dangerous feedbacks is methane escaping from the seafloor of the Arctic Ocean. As the temperature of the Arctic Ocean keeps rising, it seems inevitable that more and more methane will rise from its seafloor and enter the atmosphere, at first strongly warming up the atmosphere over the Arctic Ocean itself - thus causing further methane eruptions - and eventually warming up the atmosphere across the globe.

Above image paints a dire warning. The image shows that methane levels were as high as 2562 ppb on January 28, 2017. The image further shows high methane levels off the coast of Siberia and also where water from Nares Strait enters Baffin Bay.

Feedbacks and further elements of a potential temperature rise by 2026 of more than 10°C above prehistoric levels are further described at the extinction page.

The situation is dire and calls for comprehensive and effective action as described in the Climate Plan.


Links

• Climate Plan
http://arctic-news.blogspot.com/p/climateplan.html

• Feedbacks
http://arctic-news.blogspot.com/p/feedbacks.html

• Extinction
http://arctic-news.blogspot.com/p/extinction.html

• 2016 well above 1.5°C
http://arctic-news.blogspot.com/2017/01/2016-well-above-1.5c.html

• Accelerating Warming of the Arctic Ocean
http://arctic-news.blogspot.com/2016/12/accelerating-warming-of-the-arctic-ocean.html


Tuesday, January 3, 2017

Most Important Videos Uploaded In December 2016


Peter Wadhams is interviewed by Stuart Scott, Executive Director of United Planet Faith & Science Initiative, in this video called Farewell to Arctic Ice, uploaded December 27, 2016, and recorded at UN climate negotiations in Marrakesh, Morocco.


Peter Wadhams is an 'expeditionary' scientist and Emeritus Professor of Ocean Physics from Cambridge. Peter Wadhams' observations of the Arctic ice for over 4 decades makes him one of the worlds authorities on the subject.

In the video, Peter Wadhams discusses some of the issues described in his current book A Farewell to Ice (right), which is available as hardback or ebook (256 pages, published September 1, 2016).

For more, view some of the recent posts at Arctic-news blog, such as:
Accelerated Warming of the Arctic Ocean
Monthly CO₂ not under 400 ppm in 2016
Seafloor Methane and
Sea ice is shrinking

Below is the sea ice volume image (created by Wipneus) that is discussed in the video.


Mark Jacobson gave a presentation called How the Future of Energy Impacts the Future of Our Cities, as part of the Digital Cities Summit, October 2016. The video was uploaded on 7 Dec 2016 by Stanford University School of Engineering.


Imagine a future where the entire U.S. energy infrastructure runs on clean, renewable energy. It’s possible to do it by 2050, says Stanford civil and environmental professor Mark Jacobson, and even without any new technologies. Mark Jacobson laid out the hidden upside of using solar, wind and water resources – rather than burning fossil fuels – to power everything from appliances and machinery to cars and building systems. “If you electrify everything, something magical happens. Without really changing your habits, you can reduce power demand by about 42%,” Mark Jacobson says.

Such a huge reduction in power demand comes mostly from the efficiency gains of electricity over combustion and eliminating the energy needed to mine, transport and refine fossil fuels. In addition to the pure energy savings, Mark Jacobson estimates that we could avoid 4 million to 7 million deaths from air pollution, eliminate $15 trillion to $25 trillion in global warming costs, create 17 million more jobs than would be lost if we don’t transition, and reduce the energy poverty of up to 4 billion people worldwide.

For more, click on the links at Roadmaps to convert 139 countries of the world to Wind, Water, and Sunlight (WWS) for all purposes.



Paul Beckwith produced a two-part video, called 'Abrupt Climate Disrupting Arctic Changes'. The first part is at Part 1 of 2 and the second video, featured below, is at Part 2 of 2. The videos were uploaded on December 30, 2016.


In the videos, Paul Beckwith describes that gut-wrenching disruptions are underway in the Arctic, including record-high temperatures, near-record summer ice loss and spring snow cover loss, and record low sea-ice winter growth.

This second video is particularly interesting at the segment from 8:30 to 12:00 minutes, where Paul Beckwith discusses how wind patterns are changing over the Arctic and how this will make the Beaufort Gyre and other ocean currents reverse when we get complete sea-ice loss.

For more on this, see also the post Accelerating Warming of the Arctic Ocean.



Peter Wadhams also featured in this video interview by Jennifer Hynes for ExtinctionRadio, uploaded December 29, 2016.


There is also a shorter version of this interview, without music.

The interview is part of episode 62 at ExtinctionRadio.net, uploaded December 28, 2016. This episode also includes interviews by host Mike Ferrigan with Paul Beckwith and Tim Garett.



Guy McPherson gave a presentation at the Fayetteville Free Library in Syracuse, New York, on December 22, 2016. Part 1 is the presentation, featured below. Part 2 covers questions and answers, following the presentation. The videos were uploaded December 27, 2016.



Two images used in the presentation are added below.

On the right, the elements adding up to a potential global temperature rise by 2026 of over 10 degrees Celsius (18 degrees Fahrenheit), from the Extinction page. For more, also view the Temperature page at Arctic-news.blogspot.com

Below, the timeline of Earth's temperature in history after a graph by Chris Scotese, from The Politics and Science of Our Demise.
For more, also view the Climate Change Summary and Update at GuyMcPherson.com

An earlier presentation was given by Guy McPherson in Wellington, New Zealand. The presentation was given at Victoria University in Wellington and was streamed live at 6:00 p.m. New Zealand time on 6 December 2016. The video was uploaded on December 7, 2016.

Sunday, July 10, 2016

Extreme Weather Events


Sea ice close to the North Pole looks slushy and fractured into small pieces. The image below shows the situation on July 8, 2016.

Sea ice north of the geographic North Pole. For more on the (geo)magnetic North Pole, see this page
For reference, the bars at the bottom right show distances of 20 km and 20 miles. By comparison, sea ice in the same area did develop large cracks in 2012, but even in September 13, 2012, it was not broken up into small pieces, as shown by this image at a recent post.


As shown by above image, by Jim Pettit, Arctic sea ice volume has been in decline for decades. While this may look like a steady decline, chances are that the sea ice will abruptly collapse over the next two months, for the reasons described below.

The animation below, from the Naval Research Laboratory, shows Arctic sea ice thickness for 30 days up through July 8, 2016, including a forecast of 7 days.

Below is a new Naval Research Laboratory image, dated July 4, 2016
and contributed by Albert Kallio with the following description.


NORTH POLE SEA ICE DISAPPEARING VERY RAPIDLY 4.7.2016

Albert Kallio: The upgraded US Navy sea ice thickness system revealed extreme rates of sea ice pulverization and melting on 4.7.2016 which justifies a continued close attention to the developments on the Arctic Ocean. Due to virtually continuous storm centering the North Pole for weeks now, warm water upswells and sea water mixing drives base melting of icefloes besides wave actions that both wash and pulverize broken sea ice. The more pulverized sea ice becomes, the greater its 3-dimensional surface area that sits in water becomes, this easing transfer of heat from ocean to sea ice. In addition, honeycombing of ice also flushes ice with water in a stormy weather. The final factor being that most of sea ice is very recent (seasonal) ice that contain residues of salts, when saline brine is expelled this creates boreholes into ice making it "rotten ice" easily.
https://www7320.nrlssc.navy.mil/GLBhycomcice-12/navo/arcticictn_nowcast_anim30d.gif
Sea ice decline reflects the extra energy added to the Arctic, as global warming and feedbacks are hitting the Arctic particularly strongly. Three of these feedbacks are depicted in the image on the right.

As the sea ice melts, sea surface temperatures will remain at around zero degree Celsius (32°F) for as long as there is ice in the water, since the extra energy will first go into melting the ice. Only after the ice has melted will the extra energy start raising the temperature of the water.

Sea ice thus acts as a buffer that absorbs heat, preventing sea surface temperature from rising. As
sea ice is busy melting, each gram of ice takes 334 Joule of heat to change into water, while the temperature remains steady at 0°C ( 32°F).

Once all ice has turned into water, all further heat goes into raising the temperature of the water. To raise the temperature of each gram of water by one degree Celsius then takes only 4.18 Joule of heat.

In other words, melting of the ice absorbs 8 times as much heat as it takes to warm up the same mass of water from zero to 10°C. As sea ice disappears, extra energy instead goes into raising the temperature of the water, as depicted in the image on the right, and as further described at the feedbacks page as feedback #14.

Sea ice can reflect as much as 90% of the sunlight back into space. Once the ice has melted away, the water of the ocean reflects only 6% of the incoming solar radiation and absorbs the rest. Albedo change is depicted in above image as feedback #1. As Professor Peter Wadhams once calculated, warming due to Arctic snow and ice loss could more than double the net warming now caused by all emissions by all people of the world.

Professor Peter Wadhams on albedo changes in the Arctic, image from Edge of Extinction
Once the sea ice has disappeared, a lot more energy will get absorbed by the Arctic Ocean, i.e. energy that was previously reflected back into space and energy that previously went into changing ice into water.

Furthermore, as the sea ice disappears, chances increase that storms will develop that come with rain and winds that can batter and push the remaining sea ice out of the Arctic Ocean, while storms can also increase the amount of water vapor in the atmosphere and the occurrence of cirrus clouds that can trap heat.

Methane is a further feedback, depicted as feedback #2 in the image further above. As the water of the Arctic Ocean gets warmer, the danger increases that heat will reach hydrates at the seafloor and that this will trigger release of huge amounts of methane, in an additional self-reinforcing feedback loop that will make warming in the Arctic accelerate further and that threatens to escalate into a third kind of warming, i.e. runaway warming. Peter Wadhams co-authored a study that calculated that methane release from the seafloor of the Arctic Ocean could yield 0.6°C warming of the planet in 5 years (see video at earlier post).


As above image shows, methane on July 8, 2016, reached levels as high as 2655 ppb. Such high levels typically occur due to methane hydrates getting destabilized. As the sea ice disappears, the situation could get worse rapidly, as illustrated by the images below.

July 5, 2016, sea surface was as warm as 17.1°C / 62.7°F at green circle, i.e. 13.7°C / 24.7°F warmer than 1981-2011. 
These high sea surface temperature anomalies are the result of warmer water getting carried by the Gulf Stream below the sea surface of the Atlantic Ocean into the Arctic Ocean. The water carried into the Arctic Ocean is both warmer and saltier than the water at the surface, as the fresh cold meltwater forms a lid at the surface. At areas around Svalbard where the sea is rather shallow, the warmer water comes to the surface. These high anomalies thus indicate how much warmer the water now is that is entering the Arctic Ocean, as discussed in earlier posts such as this one.
image from previous post
The rapid recent rise in ocean heat is illustrated by above image, showing that oceans on the Northern Hemisphere in May 2015 through April 2016 were 0.93°C warmer than the 20th century average, whereas for the equivalent 2012 period the anomaly was merely 0.46°C. In other words, there now is more ocean heat, making the possibility of methane hydrates destabilization more threatening.

Meanwhile, the speed at which the Arctic is warming is changing the jet streams, as discussed by Paul Beckwith in the video below, following Paul's earlier video that's included in an earlier post.



There are many indications that changes to the climate are accelerating, causing extreme weather events to hit with increasing strength and intensity. Water vapor is a potent greenhouse gas and for each degree Celsius that temperatures rise, the atmosphere can hold 7% more water vapor, which will also lead to stronger storms such as cyclones. On the image below, typhoon Nepartak is approaching Taiwan, with wind speed as high as 103 mph or 165 km/h, and with cloud water as much as 9 kg per square m on July 7, 2016.

Nepartak approaching Taiwan on July 7, 2016, with wind speed as high as 103 mph or 165 km/h (left panel), and with cloud water as much as 9 kg per square m (right panel)
NASA image
According to NASA, very powerful storms near the center of Nepartak's circulation were found to be dropping rain at a rate of over 193 mm (7.6 inches) per hour. Tall thunderstorms called "hot towers" were found to reach heights of 17.0 km (about 10.5 miles).

The image on the right shows a thermal image of Typhoon Nepartak on July 7 at 17:45 UTC. The colder the cloud tops, the higher they are in the troposphere and the stronger the storms.

On July 7, 2016, at 1500 UTC, Nepartak's maximum sustained winds had reached 150 knots (172.6 mph/ 277.8 kph), generating waves as high as 48 feet (14.6 meters).

Strong storms can bring water vapor high up into the stratosphere, contributing to the formation of cirrus clouds that trap a lot of heat that would otherwise be radiated away, from Earth into space.

Altogether, the combined global temperature rise due to global warming and feedbacks could exceed 10°C or 18°F within a decade, as discussed in previous posts such as this one.

The situation is dire and calls for comprehensive and effective action as described in the Climate Plan.


Links

 The North Geographic Pole, the North Magnetic Pole and the North Geomagnetic Pole
http://wdc.kugi.kyoto-u.ac.jp/poles/polesexp.html

 Three Kinds of Warming in the Arctic
http://arctic-news.blogspot.com/2016/02/three-kinds-of-warming-in-arctic.html

 NASA: Napartak (July 9, 2016)
https://www.nasa.gov/feature/goddard/2016/napartak-nw-pacific-ocean

 Jim Pettit Climate Graphs
http://iwantsomeproof.com/3d/siv-ds-weekly-3d.asp


Monday, May 2, 2016

Wildfire Danger Increasing

Wildfires are starting to break out in British Columbia, Canada. The wildfire on the image below started on May 1, 2016 (hat tip to Hubert Bułgajewski‎).


The coordinates of the wildfire are in the bottom left corner of above map. They show a location where, on May 3, 2016, it was 26.0°C (or 78.8°F). At a nearby location, it was 27.6°C (or 81.8°F) on May 3, 2016. Both locations are indicated on the map on the right.

These locations are on the path followed by the Mackenzie River, which ends up in the Arctic Ocean. Wildfires aggravate heat waves as they blacken the soil with soot. As the Mackenzie River heats up, it will bring warmer water into the Arctic Ocean where this will speed up melting of the sea ice.

Moreover, winds can carry soot high up into the Arctic, where it can settle on the sea ice and darken the surface, which will make that more sunlight gets absorbed, rather than reflected back into space as before.

The danger of wildfires increases as temperatures rise. The image on the right show that temperatures in this area on May 3, 2016 (00:00 UTC) were at the top end of the scale, i.e. 20°C or 36°F warmer than 1979-2000 temperatures.

Extreme weather is becoming increasingly common, as changes are taking place to the jet stream. As the Arctic warms up more rapidly than the rest of the world, the temperature difference between the Equator and the North Pole decreases, which in turn weakens the speed at which the north polar jet stream circumnavigates the globe.

This is illustrated by the wavy patterns of the jet stream in the image on the right, showing the situation on May 3, 2016 (00:00 UTC), with a loop bringing warm air high up into North America and into the Arctic.

In conclusion, warm air reaching high latitudes is causing the sea ice to melt in a number of ways:
  • Warm air makes the ice melt directly. 
  • Warmer water in rivers warms up the Arctic Ocean. 
  • Wildfires blacken land and sea ice, causing more sunlight to be absorbed, rather than reflected back into space as before.  
[ click on images to enlarge ]
The situation doesn't appear to be improving soon, as illustrated by the image on the right. Following the record high temperatures that hit the world earlier this year, the outlook for the sea ice looks bleak.

Further decline of the snow and ice cover in the Arctic looks set to make a number of feedbacks kick in stronger, with methane releases from the seafloor of the Arctic Ocean looming as a huge danger.

NSIDC scientist Andrew Slater has created the chart below of freezing degree days in 2016 compared to other years at Latitude 80°N. See Andrew's website and this page for more on this.
Below is a comparison of temperatures and emissions for the two locations discussed above. Such fires are becoming increasingly common as temperatures rise, and they can cause release of huge amounts of carbon dioxide, carbon monoxide, methane, sulfur dioxide, soot, etc.

May 3, 2016, at a location north of Fort St John, British Columbia, Canada.
May 4, 2016, near Fort McMurray, Alberta, Canada.
The video below shows methane levels (in parts per billion or ppb) on May 3, 2016, pm, starting at 44,690 ft or 13,621 m and coming down to 5,095 ft or 1,553 m altitude. In magenta-colored areas, methane is above 1950 ppb.


In the video below, Paul Beckwith discusses the situation.


Wildfires are also devastating other parts of the Earth. Below is an image showing wildfires over the Amur River on May 7, 2016.


The image below shows carbon monoxide levels over the Amur River as high as 22,480 ppb on May 9, 2016. Hat tip to Grofu Antoniu for pointing at the CO levels. According to this Sputniknews report, a state of emergency was declared in the Amur Region as fires stretched across 12,200 acres.


The video below shows carbon monoxide emissions in eastern Asia from May 1 to May 26, 2016.

Meanwhile, the National Snow and Ice Data Center (NSIDC) has resumed daily sea ice extent updates with provisional data. The image below is dated May 5, 2016, check here for updates.

As illustrated by the image below, from JAXA, sea ice extent on May 6, 2016, was under 12 million square km, more than 15 days ahead on extent in the year 2012, which was 12 million square km on May 21, 2012.


The situation is dire and calls for comprehensive and effective action as described in the Climate Plan.

Malcolm Light comments:

Most natural processes on the Earth are run by convection including plate tectonics that moves the continental and oceanic plates across the surface of the planet. Mother Earth has been able to hold its atmospheric temperature within certain limits and maintain an ocean for more than 3 billion years because each time there was a build up of carbon dioxide in the atmosphere which produced a global fever, Mother Earth it eliminated the living creatures with a massive Arctic methane firestorm that fried them alive. This giant Arctic methane firestorm is a natural antibiotic the Earth uses to rid itself of those creatures that have overproduced carbon dioxide and caused a global fever.

Essentially mankind has again caused a massive build up of fossil fuel carbon dioxide in the atmosphere and Mother Earth has already started to respond with the predicted massive Arctic methane blow out (since 2010) which will lead to an Earth engulfing firestorm in 5 to 8 years.

The giant fires in the Fort McMurray region are a result of atmospheric methane induced heating of the Arctic and 93.5% global warming of the oceans that has generated a massive El Nino event this year. Hot winds moving away from these high pressure areas have generated high temperatures and massive fires in Alberta which is a giant fever spot on Earth where mankind has produced the maximum amount of dirty fossil fuel extraction and pollution in Canada.

Mother Earth will continue to respond more vigorously with her Arctic methane antibiotic to eliminate the humans from her system as we represent nothing more to her than a larger version of an influenza virus which has seriously retarded her oceanic and atmospheric temperature range functioning systems.

If we do not immediately stop fossil fuel extraction worldwide and control the Arctic methane emission sites we will all be stardust before a decade is past.

Links

• The Threat of Wildfires in the North
http://arctic-news.blogspot.com/2013/06/the-threat-of-wildfires-in-the-north.html

• Smoke Blankets North America