Sunday, September 15, 2013

Methane Release caused by Earthquakes


Methane hydrates can become destabilized due to changes in temperature or pressure, as a result of earthquakes and shockwaves accompanying them, severe storms, volcanic activity, coastal collapse and landslides. As an example, an earthquake followed by methane release was discussed in the post Sea of Okhotsk a few months back. Such events can be both primed and triggered by global warming, particularly in the Arctic, as follows:
  • As more ice melts away on Greenland and more water runs off into the sea, there is less weight on the Earth’s crust under Greenland. The crust and mantle can bounce back during a large melt, an effect that is called 'isostatic rebound'. This rebound can not only trigger earthquakes and landslides, it can also suck up the magma in the Earth’s crust to the surface and trigger volcanic eruptions.
  • The added weight of water from melting glaciers stresses the Earth’s crust underneath the sea, which can cause earthquakes. This is especially the case for coastal waters, where the impact of the water that flows into the sea is huge, not only in terms of weight, but also in terms of the currents they cause. 
  • As the permafrost melts, mountain ranges, soil and submarine sediments all become less robust. Where the permafrost previously held things together, we can now expect more coastal collapse, avalanches and landslides, which can send shockwaves through the sea that in turn trigger earthquakes and hydrate destabilization.
  • Methane hydrates that are on the edge of stabilization can be disturbed by global warming in two additional ways, temperature and pressure: Warming of the Earth's crust as heat penetrates sediments on the seafloor. Thermal expansion of the Earth's crust means that the crust will expand slightly in volume, resulting in expansion of the cavity that holds the hydrates. 
  • Finally, there's the additional impact of methane itself. Permafrost previously kept methane stable in sediments. Methane converting from hydrates into free gas will expand some 160 times in volume; this explosive process can trigger further destabilization. Once released into the atmosphere, the methane has a huge local warming potential, adding to the threat that further methane releases will occur locally.   


Back in 2006, Bill McGuire said: "A particular worry is that this in turn will contribute to large-scale releases of methane gas from the solid gas hydrate deposits that are trapped in marine sediments. Gas hydrates have been identified around the margins of all the ocean basins, and outbursts of gas may occur as sea temperatures climb or as rising sea levels trigger underwater quakes in the vicinity."

For more than a decade, Malcolm Light, contributor to the Arctic-news blog, has been warning about the danger of methane hydrate destabilization due to earthquakes (see the poster at the bottom of the page on seismic activity).

With this in mind, let's take a look at the most recent picture of Earth.

September 13, 2013, 3am - Sep 14, 2013 1am    [ click on image to enlarge ]

The large number of yellow spots in the top left corner are related to the flooding in the Basin of the Amur River (Heilong Jiang). Such extreme weather events are becoming ever more prominent, due to global warming and the feedbacks such as methane releases. Similarly, extreme weather events such as droughts and heatwaves lead to wildfires that also produce large amounts of methane.

The image only shows the Northern Hemisphere, but on the Southern Hemisphere, high levels of methane have been recorded for a long time on Antarctica. While huge amounts of snow fall on Antartica, the amount of snow and ice that melts each year is even larger, widening the difference between the weight the snow and ice exercize between periods. This difference in weight could similarly cause rebounds of the Earth's crust, sucking up the magma and causing methane hydrates to be destabilized, as described in the earlier post Antarctic methane peaks at 2249 ppb.

The image also shows fault lines. Several yellow spots are present on the fault line over the Arctic, including some that point at the coast of Norway; they appear to be caused by seismic activity along the fault line, as discussed in the recent post Methane reaches 2571 ppb.

Meanwhile, methane readings peaked at 2416 ppb on September 14, 2013. Very worrying are also the high methane readings close to the Gakkel Ridge, the fault line at the center of the Arctic Ocean, and the spots closer to the Laptev Sea.

Finally, there are high readings along the Aleutian Islands, Alaska. The islands, with their 57 volcanoes, are in the northern part of the Pacific Ring of Fire and they have experienced a lot of seismic activity lately, including an earthquake with a magnitude of 7 on the Richter scale on August 30, 2013, and several more recent earthquakes with a higher magnitude than 6 on the Richter scale.

[Editor: The images below, added September 24 and 26, 2013, show high methane releases at a spot just north of Greenland that was hit by an earthquake with a magnitude of 4.5 on the Richter scale on September 1, 2013, as also discussed in the post Methane reaches 2571 ppb. The two bottom images also show the magnitude 5 earthquake that hit Russia on September 24, 2013.]

September 20, 2013, 11am - Sep 22, 2013 3pm    [ click on image to enlarge ]

Sept. 25, 2013 am - the orange spot just north of Greenland indicates a recent earthquake [ click on image to enlarge ]

Map specifying details of two recent earthquakes. Size of spots indicating earthquakes on the map is relative. [ click image to enlarge ]

References and related posts

- Climate Change: Tearing the Earth Apart, by Bill McGuire (2006)

- Seismic activity, by Malcolm Light and Sam Carana (2011)
Arctic-news.blogspot.com/p/seismic-activity.html

- Thermal expansion of the Earth's crust necessitates geoengineering (2011)
Arctic-news.blogspot.com/p/thermal-expansion.html

- Runaway Warming (2011)
Arctic-news.blogspot.com/p/runaway-warming.html

- Methane reaches 2571 ppb (2013)

- Sea of Okhotsk (2013)

- Is Global Warming breaking up the Integrity of the Permafrost? (2013)

- Antarctic methane peaks at 2249 ppb (2013)

Thursday, September 12, 2013

Methane reaches 2571 ppb



Methane as recorded by IASI* reached levels of up to 2571 parts per billion (ppb) on September 11, 2013.

The image below shows the peak levels that have been reached recently, as well as the highest mean methane level for each day.

Where did the methane come from?

IASI data do not identify locations, other than that all locations where methane is present in concentrations higher than 1950 ppb show up in yellow.

Yet, there are some ways to further examine where these high levels came from. To create the top image, only four layers were selected. The yellow spots on the image show locations where methane is present at the selected layers (695-766 mb) at concentrations of 1950 ppb and higher. At these relatively low altitudes, yellow spots will show up at fewer locations than at some of the higher altitudes, yet one can assume that the largest sources will be included among those showing up; and indeed, peak methane levels at these altitudes ranged from 2193 ppb to 2328 ppb, which are extremely high levels.

On the top image, there are several locations that look suspicious, including a large spot north of the New Siberian Islands, while the Kara Sea and the Barents Sea, and many locations around Greenland all feature suspicious yellow spots.

Most worrying are the numerous spots clustered off the coast of Norway, which show up quite prominently at many altitudes. The situation is reminiscent of the Storegga Slides, the underwater landslides that occurred at the edge of Norway's continental shelf thousands of years ago. The latest incident occurred some 8,000 years ago.

Seismic Activity

Earthquakes can cause tremors over long distances, especially along fault lines.


There has been some seismic activity close to Greenland that could have triggered one or more landslides off the cost of Norway, since the fault line points that way. An earthquake with a magnitude of 4.5 on the Richter scale occurred occured on September 1, 2013, 08:49:19 UTC, at a location 214km NE of Nord, Greenland, as illustrated by above image and the image below.




* IASI (Infrared Atmospheric Sounding Interferometer) is a hyperspectral infrared sounder residing on the European Space Agencys (ESA) MetOp series of polar orbiting satellites.

Temperature Rise

Surface Temperature Rise

How much have temperatures risen over the past 100 years or so? In the image below, Peter Carter points at the aerosols from volcanic eruptions and fossil fuel combustion that temporarily delay the full impact of global warming.


Temperature Rise hits Arctic most strongly

In above image, temperature anomalies are compared to a 3-decade base period from 1951 to 1980. To highlight the full wrath of global warming, it is more informative to compare anomalies with an earlier base period. Furthermore, a short running mean better shows how high peaks can reach.



NASA typically compares temperature change relative to 1951-1980, because the U.S. National Weather Service uses a three-decade period to define "normal" or average temperature. The NASA GISS analysis effort began around 1980, so the most recent 30 years at the time was 1951-1980.1

But as said, it is more informative to use a 30-year base period that starts earlier. To show Gobal & Arctic Temperature Change, James Hansen and Makiko Sato used a 1951-1980 base period next to a 1880-1920 base period. For this post, a 1883-1912 base period was selected to create the above image, and this same base period was selected to create the image below.


Above image shows that the Arctic is hit most strongly by the temperature rise. Note that the anomalies in above image are visualized by latitude, but are averaged by longitude globally, masking even higher anomalies that can be experienced at specific longitudes. At times, some areas in the Arctic do already experience anomalies of over 20°C, as shown in the animation below, based on NOAA data for the period December 7, 2011 - January 21, 2012.

Wednesday, September 4, 2013

Existential risks to our planetary life-support systems

By Andrew Glikson

Figure 1. The future of Earth’s living environment is a non-issue in the current
Australian election - NASA image: Earth rising over the Moon
“We’re simply talking about the very life support system of this planet.”– Hans Joachim Schellnhuber, chief climate advisor to the German Government
It is not news that we are over stretching our planetary support systems: we have known for some time. In a 2009 keynote paper in Nature titled “A safe operating space for humanity”, a group of 26 prominent scientists showed three of nine interlinked planetary boundaries – boundaries we must stay within to keep Earth safe – have already been overstepped (see figure 2. below).

Those boundaries include:
  • climate change
  • biodiversity loss
  • the biogeochemical cycles.

Kevin Trenberth, chief scientist of the National Center for Atmospheric Research in Boulder, Colorado, states:
“Some of the human-induced changes are occurring 100-times faster than they occur in nature … And this is one of the things that worries me more than climate change itself. It’s actually the rate of change that’s most worrying … Ecosystems are not prepared for this jolt … And neither are many human endeavours, built around assumptions about how hot it’s going to be, how much it’s going to rain on our croplands, and how high the seas will rise.”

Figure 2. Planetary boundaries - the colored star-like area represents the estimated current state and the corners of the red octagon circumscribed by the Earth are the estimated boundaries. Systems whose safe operating space could not yet be determined were left out. Image from: Wikipedia / A safe operating space for humanity, Rockström et al, 2009.

This observation is dramatically demonstrated by the current rise of atmospheric greenhouse gases: this is at an unprecedented rate of 2 to 3 parts per million per year (see figure 3. below). This renders our era – the Anthropocene – a major oxidation event.

Such a growth rate of atmospheric greenhouse gases is extremely rare in geological history. The only analogue is the excavation of billions of tons of carbon from carbonate and shale formation hit by asteroids, such as the K-T impact 65 million years ago and massive global volcanic eruptions.

The consequences for the biosphere – the sixth mass extinction of species – threatens to become a tragedy for human ideals and for nature.

What or who is responsible for the unfolding calamity?

As defined, the Anthropocene is a new geological era triggered by a species which has uniquely mastered ignition. We are using it to excavate and release hundreds of billions of tons of carbon accumulated in Earth’s crust over geological eras into atmosphere.

Once a species masters sources of energy larger by orders of magnitude than its own physiological process (for Homo Sapiens this has been fire, electricity and nuclear fission), the species can hardly be expected to have the wisdom and degree of responsibility to stop its inventions from getting out of control.

Figure 3. Estimates of fossil fuel resources and equivalent atmospheric CO2 levels, including (1) emissions to date;
(2) estimated reserves, and (3) recoverable resources (1 ppm CO2 ~ 2.12 GtC). 
Hansen, 2012, figure 1; http://www.columbia.edu/~jeh1/mailings/2012/20120127_CowardsPart1.pdf
Unique among all species, humans adopted fire and combustion as their source of energy and power over nature. Over the last two million years, camped around fires, watching the flames, human imagination has grown to inquire, perceive future possibilities, develop fears, the craving for immortality, and the concept of gods. Fire has imparted a mythological quality to the human mind.

Once a stable climate was established in the Holocene (about 10,000 years ago), allowing cultivation and production of surplus food, this craving for omnipotence and omniscience was expressed by the building of monuments to immortality, the pyramids, as well as endless wars acquiring loot for this purpose.

Spiritual pantheism by pre-historic people such as the Australian Aboriginals has been transformed into admiration of sky gods and monotheism, then into crass materialism and the space cult.

But space exploration has taught us no other planet exists in the solar system on which the conditions exist for advanced life of the type hosted by Earth.

Since the greenhouse effect and its underlying laws of physics and chemistry were decoded in the 19th century, the question has arisen: to what extent will societies and their leaders accept the implications of the science for human industry and human future? Will the scientific method itself and the enlightenment form the basis of future decisions?

In 21st century Australia, the answer has been a resounding “no”.

Government and corporate decisions on climate change are being influenced by misrepresentations of the evidence. What began some 20 years ago as demonstration of solid empirical evidence has deteriorated to media-controlled debate replete with misunderstandings of the basic laws of physics, paleo-climate science, climate science, biological and ecological principles.

Figure 4. Relations between CO2 rise rates and mean global temperature rise rates during warming periods,
including the Paleocene-Eocene Thermal Maximum, Oligocene, Miocene, late Pliocene, Eemian (glacial termination),
Dansgaard-Oeschger cycles, Medieval Warming Period, 1750-2012 and 1975-2012 periods.
A multitude of media outlets and hundreds of websites proliferate notions ignorant of peer-reviewed science. The lesson of numerous attempted debates with those who deny the reality of global warming, or attempt to attribute it to natural non-human factors, is that those entertaining these notions cannot be dissuaded by any amount of scientific evidence.

Climate change misconceptions include claims that:
  • temperature rise came before CO2 rise during the glacial terminations and that therefore the current rise of temperature is not the result of CO2 rise. However, the effects of CO2and temperature variations are intertwined. During the last ~400,000 years glacial eras were terminated by periods of intense solar activity, affecting decreased CO2 solubility in warming water and thereby a rise in CO2 levels of the atmosphere. By contrast climate developments since the 18th century, when there was negligible or no rise in solar energy hitting the earth, were triggered by the anthropogenic greenhouse effect of the release of 560 billion tonnes of carbon, consistent with the basic laws of physics.
  • global warming is a recovery from the Little Ice Age. However, the Little Ice Age was caused when sunspot activity nearly ceased between 1650 and 1700, depressing global temperatures by 0.2-0.3C relative to preceding periods. By contrast, global warming from about 1975 has tracked toward more than 1.5C over the continents relative to pre-industrial temperatures.
  • cosmic rays flux affects warming. However, a dominant solar effect on the climate since 1970 is ruled out by measurements of solar radiation. The incidence of cosmic rays, which oscillate reciprocally with the 11 years sunspot cycle, has been shown to have minor effects on cloud nucleation and has not varied significantly since the mid-20th century.
  • carbon dioxide is emitted mainly from volcanoes. However, according to the United States Geological Survey (2012), sub-aerial and sub-marine volcanism emits approximately 150–260 million tons of CO2 a year. Anthropogenic emissions total about 35 billion tons CO2 a year.
Meanwhile, the unthinkable consequences of 4 degrees Celsius and higher temperature rise on the terrestrial atmosphere-ocean system have already begun. We are seeing a series of extreme weather events, reflecting the rise in energy/temperature of the atmosphere-ocean system – the “new normal”.

Andrew Glikson
Does responsibility lie with vested interests and fossil fuel lobbies promoting carbon saturation of the atmosphere? Does it lie with media barons and their mouthpieces hijacking the information systems of democracies, or with cowardly political “leaders” – presiding over extensive demise of future generations? Or does responsibility lie with all of us, with the species?

Deceived by pseudoscientific misconceptions, Homo “sapiens” continues to march toward a cliff, taking much of nature with it.

Earlier published at The Conversation.