If you like, you can order prints of above image at Shutterfly (8 x 10 size works best).
Tuesday, July 24, 2012
Saturday, July 21, 2012
How to part ways with a climate denier that has incredible stamina...
Paul Beckwith, with other scientists in Ottawa protesting against the "Death of Evidence" |
On a Canadian chess blog (chesstalk.com) there is a thread called “The NEW One and Only Climate Change Whatever” that has been ongoing for over two years. Basically, I educate the chess community on climate change and many chess players that are rabid deniers gang up and hurl invective and deny fervently. A waste of time for me? Perhaps? Likely not, since it has hardened my resolve and energized me in my climate change study/research/lobbying/etc. etc. In fact, now I generally have great fun at hurling invective back until it starts to get out of hand. Then it is no longer fun or useful so I part-ways with the person, as happened tonight…
Mr/Mrs. XXXXX,
It used to bother me when people such as yourself that know absolutely squat about climate change (a subject in which I am an expert and forever striving to increase that expertise) make claims that are completely without scientific merit, in fact that are downright wrong, quite often intentionally wrong. Why? In most subjects this would not matter. Not so with climate change. Because our climate is collapsing around us and there are still many many people that fail to see this. So humanity will not act, and it will get worse and worse until there will not be a single person on the planet that does not experience gut-wrenching change. People are dying now, and will be dying in ever greater numbers from the near-term changes that are underway. Massive crop failure in the U.S. this year will not starve people in North America but will stress the economy and pocketbooks of many residents. It will starve people already in poverty who pay 25% or 50% of their incomes on food now. North Americans will not panic over one year of crop failure. However if it happens the following year, and the one after that, and after that then the system will snap.
Climate denialism and such nonsense no longer bothers me because I have learned how to deal with such people and views. As is absolutely required for anyone in the field of climatology. How? I initially take the time to explain some science and educate but when it is clear that I am dealing with an immovable object like yourself or yyyyy I just have some fun with it and hurl a few insults, etc. However this gets old and distracting and unproductive very quickly and wastes a lot of time. As it has now, in your case.
It no longer bothers me because our planet is now committed to this gut-wrenching change. The sea ice will be gone very soon and the roller coaster ride will be unstoppable. If I was Obama or Putin or any other world leader I would declare "War on Warming", cool the Arctic with geoengineering to keep the sea ice intact and the methane in the ground and undergo a crash program to slash emissions. But I am not. So I do what I can to educate people/inform them/get the word out. I join organizations like AMEG (Arctic Methane Emergency Group). I meet with politicians at all levels of government and talk about the urgency of climate change and necessity of rapidly cooling the Arctic. I have a clear conscience because I have tried. I know that many people around the world will die, I know that unbelievable changes are starting to occur and will explode in frequency, amplitude, spatial extent and impact over this decade, and I know that the general public will be in shock when their familiar climate system becomes a complete stranger to them...Personally, as I have acquired more and more knowledge over the course of my Ph.D. studies in abrupt climate change, I have passed through the shock stage, and the subsequent unaccepting stage of grief a long time ago, I am in the acceptance stage now.
Apologies, it was a blast to hurl invective back and forth, but I am not playing that game anymore. I will not be reading ANY of your posts on this thread, for a while anyway. I need a XXXXX break.
P.S. I did not take the time to write this post just for your sake alone. I am posting it, with your name removed, in social media under the heading "How to part ways with a climate denier that has incredible stamina . . .". Thanks for the learning experience.
Climate denialism and such nonsense no longer bothers me because I have learned how to deal with such people and views. As is absolutely required for anyone in the field of climatology. How? I initially take the time to explain some science and educate but when it is clear that I am dealing with an immovable object like yourself or yyyyy I just have some fun with it and hurl a few insults, etc. However this gets old and distracting and unproductive very quickly and wastes a lot of time. As it has now, in your case.
It no longer bothers me because our planet is now committed to this gut-wrenching change. The sea ice will be gone very soon and the roller coaster ride will be unstoppable. If I was Obama or Putin or any other world leader I would declare "War on Warming", cool the Arctic with geoengineering to keep the sea ice intact and the methane in the ground and undergo a crash program to slash emissions. But I am not. So I do what I can to educate people/inform them/get the word out. I join organizations like AMEG (Arctic Methane Emergency Group). I meet with politicians at all levels of government and talk about the urgency of climate change and necessity of rapidly cooling the Arctic. I have a clear conscience because I have tried. I know that many people around the world will die, I know that unbelievable changes are starting to occur and will explode in frequency, amplitude, spatial extent and impact over this decade, and I know that the general public will be in shock when their familiar climate system becomes a complete stranger to them...Personally, as I have acquired more and more knowledge over the course of my Ph.D. studies in abrupt climate change, I have passed through the shock stage, and the subsequent unaccepting stage of grief a long time ago, I am in the acceptance stage now.
Apologies, it was a blast to hurl invective back and forth, but I am not playing that game anymore. I will not be reading ANY of your posts on this thread, for a while anyway. I need a XXXXX break.
P.S. I did not take the time to write this post just for your sake alone. I am posting it, with your name removed, in social media under the heading "How to part ways with a climate denier that has incredible stamina . . .". Thanks for the learning experience.
Saturday, July 14, 2012
How extreme will it get?
The January-June period was the warmest first half of any year on record for the contiguous United States, reports NOAA in its June 2012 overview. The national temperature of 52.9°F was 4.5°F (2.5°C) above average.
The United States Department of Agriculture has designated 1,016 primary counties in 26 states as natural disaster areas, making it the largest natural disaster in America ever.
The U.S. Drought Monitor has declared 80% of the Contiguous U.S. to be abnormally dry or worse, with 61% experiencing drought conditions ranging from moderate to exceptional—the largest percentage in the 12-year history of the service.
In the 18 primary corn-growing states, 30% of the crop is in poor or very poor condition. In addition, fully half of the nation’s pastures and ranges are in poor or very poor condition. The year-to-date acreage burned by wildfires has increased to 3.1 million.
NOAA reports record temperatures in many places; in Mc Cook, Neb., it was 115°F (46°C) on June 26, while in Norton Dam, Kan., it was 118°F (48°C) on June 28. Meanwhile, it was 126°F (52°C) in Death Valley National Park on July 10, 2012.
Earlier this year, in March 2012, another heatwave hit much the same area. A NOAA analysis of the heatwave notes the abrupt onset of the warmth at Minneapolis, Duluth, and International Falls on 10 March. On subsequent days, anomalies of well over 20°C (36°F) were recorded as shown on the image on the right.
Temperature anomalies of 27+°F (15+°C) were recorded in a large area from March 12th to March 23rd, 2012, as shown below.
Global warming is responsible for much of the frequency and intensity of extreme weather events and this is linked to developments in the Arctic, where accelerated warming is changing the jet stream, concludes an analysis by Rutgers University professor Jennifer Francis.
Apart from the obvious impact that droughts and heatwaves have on food and fresh water supply, they also come with wildfires that cause additional emissions, constituting a further positive feedback that further contributes to global warming, while the additional soot makes things even worse in the Arctic.
All this combines to create a situation in the Arctic where extreme local warming events can trigger methane releases, causing further local warming and further releases of methane, in a vicious cycle that threatens to escalate into runaway global warming that feeds on itself.
The above image pictures the three kinds of warming (red lines) and their main causes:
- Emissions by people cause global warming, with temperatures rising around the globe, including the Arctic.
- Soot, dust and volatile organic compounds settle down on snow and ice, causing albedo change. More heat is absorbed, rather than reflected as was previously the case. This causes accelerated warming in the Arctic.
- Accelerated warming in the Arctic threatens to weaken methane stores in the Arctic with the danger that releases will cause runaway global warming.
In addition, there are at least three feedback effects (gold lines) that make things even worse:
- Fires feedback: Accelerated warming in the Arctic is changing the Jet Stream, contributing to increased frequency and intensity of droughts and heatwaves.
- Albedo feedback: Accelerated warming in the Arctic also speeds up the decline of ice and snow cover, further accelerating albedo change.
- Methane feedback: Methane releases in the Arctic further add to the acceleration of warming in the Arctic, further contributing to weaken Arctic methane stores, in a vicious cycle that threatens to escalate into runaway global warming.
Rapid warming periods in the past constitute an ominous warning. In a paper published about a year ago, Ruhl et al. conclude that the end-Triassic mass extinction, about 200 million years ago, started with global warming due to carbon dioxide from volcanoes. This also caused warming of oceans and melting of hydrates at the bottom of the sea, containing methane created by millions of years of decomposing sea life. The hydrates released some 12,000 gigatons of methane, causing global warming to accelerate and resulting in sudden extinction of about half the species on Earth at the time.
The above image pictures how a similar thing could happen in our times, with global warming leading to accelerated warming in the Arctic, triggering hydrate destabilization and abrupt release of, say, 1 Gt of methane, which would further accelerate Arctic warming and lead to subsequent releases of methane from hydrates.
For more details on above two graphs, see the page How much time is there left to act?
Could extreme weather, like the U.S. is now experiencing, also occur in the Arctic?
Well, it actually did, not too long ago. Above image on the right, from the Cryosphere Today, shows air temperature anomalies in the Arctic of up to 6°C (10.8°F) for the month September 2007.
By how much will the sea warm up during such extreme local warming events?
The image on the right, produced with NOAA data, shows mean coastal sea surface temperatures of over 10°C (50°F) in some areas in the Arctic on August 22, 2007.
How extreme was this?
The image below, from NOAA, shows that sea surface temperature anomalies of over 5.5 were recorded for August 2007 in some areas in the Arctic.
Could such warming reach the bottom of the sea?
Again, this did happen in 2007, when strong polynya activity caused more summertime open water in the Laptev Sea, in turn causing more vertical mixing of the water column during storms in late 2007, according to one study, and bottom water temperatures on the mid-shelf increased by more than 3°C (5.4°F) compared to the long-term mean.
Another study finds that drastic sea ice shrinkage causes increase in storm activities and deepening of the wind-wave-mixing layer down to depth ~50 m (164 ft) that enhance methane release from the water column to the atmosphere. Indeed, the danger is that heat will warm up sediments under the sea, containing methane in hydrates and as free gas, causing large amounts of this methane to escape rather abruptly into the atmosphere.
Would this heat be able to penetrate sediments?
The image on the right, from a study by Hovland et al., shows that hydrates can exist at the end of conduits in the sediment, formed when methane did escape from such hydrates in the past. Heat can travel down such conduits relatively fast, warming up the hydrates and destabilizing them in the process, which can result in huge abrupt releases of methane.
Since waters can be very shallow in the Arctic, much of the methane can rise up through these waters without getting oxidized.
Shakova and Semiletov warn, in a 2010 presentation, that some 75% of the East Siberian Arctic Shelf (ESAS) is shallower than 50 m, as shown on the image below. Furthermore, the ESAS region alone has an accumulated methane potential of some 1700 Gt in the form of free gas and hydrates under the sediment, in addition to organic carbon in its permafrost.
As the methane causes further warming in the atmosphere, this will contribute to the danger of even further methane escaping, further accelerating local warming, in a vicious cycle that can lead to catastrophic conditions well beyond the Arctic.
Above image shows the carbon in the melting permafrost, estimated by Schuur et al. at 1700 Gt. Much of this carbon could also be released as methane under warmer and wetter conditions.
Under warmer and dry conditions, things wouldn't be much better. The 2010 heatwave in Russia provides a gloomy preview of what could happen as temperatures rise at high latitudes. Firestorms in the peat-lands, tundras and forests in Siberia could release huge amounts of emissions, including soot, much of which could settle on the ice in the Himalaya Tibetan plateau, melting the glaciers there and causing short-term flooding, followed by rapid decline of the flow of ten of Asia's largest river systems that originate there, with more than a billion people's livelihoods depending on the continued flow of this water.
For more details on above two graphs, see the page How much time is there left to act?
Could extreme weather, like the U.S. is now experiencing, also occur in the Arctic?
Well, it actually did, not too long ago. Above image on the right, from the Cryosphere Today, shows air temperature anomalies in the Arctic of up to 6°C (10.8°F) for the month September 2007.
By how much will the sea warm up during such extreme local warming events?
The image on the right, produced with NOAA data, shows mean coastal sea surface temperatures of over 10°C (50°F) in some areas in the Arctic on August 22, 2007.
How extreme was this?
The image below, from NOAA, shows that sea surface temperature anomalies of over 5.5 were recorded for August 2007 in some areas in the Arctic.
Could such warming reach the bottom of the sea?
Again, this did happen in 2007, when strong polynya activity caused more summertime open water in the Laptev Sea, in turn causing more vertical mixing of the water column during storms in late 2007, according to one study, and bottom water temperatures on the mid-shelf increased by more than 3°C (5.4°F) compared to the long-term mean.
Another study finds that drastic sea ice shrinkage causes increase in storm activities and deepening of the wind-wave-mixing layer down to depth ~50 m (164 ft) that enhance methane release from the water column to the atmosphere. Indeed, the danger is that heat will warm up sediments under the sea, containing methane in hydrates and as free gas, causing large amounts of this methane to escape rather abruptly into the atmosphere.
Would this heat be able to penetrate sediments?
The image on the right, from a study by Hovland et al., shows that hydrates can exist at the end of conduits in the sediment, formed when methane did escape from such hydrates in the past. Heat can travel down such conduits relatively fast, warming up the hydrates and destabilizing them in the process, which can result in huge abrupt releases of methane.
Since waters can be very shallow in the Arctic, much of the methane can rise up through these waters without getting oxidized.
Shakova and Semiletov warn, in a 2010 presentation, that some 75% of the East Siberian Arctic Shelf (ESAS) is shallower than 50 m, as shown on the image below. Furthermore, the ESAS region alone has an accumulated methane potential of some 1700 Gt in the form of free gas and hydrates under the sediment, in addition to organic carbon in its permafrost.
As the methane causes further warming in the atmosphere, this will contribute to the danger of even further methane escaping, further accelerating local warming, in a vicious cycle that can lead to catastrophic conditions well beyond the Arctic.
Above image shows the carbon in the melting permafrost, estimated by Schuur et al. at 1700 Gt. Much of this carbon could also be released as methane under warmer and wetter conditions.
Under warmer and dry conditions, things wouldn't be much better. The 2010 heatwave in Russia provides a gloomy preview of what could happen as temperatures rise at high latitudes. Firestorms in the peat-lands, tundras and forests in Siberia could release huge amounts of emissions, including soot, much of which could settle on the ice in the Himalaya Tibetan plateau, melting the glaciers there and causing short-term flooding, followed by rapid decline of the flow of ten of Asia's largest river systems that originate there, with more than a billion people's livelihoods depending on the continued flow of this water.
Friday, July 6, 2012
Albedo change in the Arctic
Albedo change: Snow cover on the ice reflects between 80% and 90% of sunlight, while the dark ocean without ice cover reflects only 7% of the light, explains Stephen Hudson of the Norwegian Polar Institute. As the sea ice cover decreases, less solar radiation is reflected away from the surface of the Earth in a feedback effect that causes more heat to be absorbed and consequently melting to occur faster still.
Arctic sea ice volumes keep falling. The image below is from the Polar Science Center's Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS, Zhang and Rothrock, 2003).
Arctic sea ice volumes keep falling. The image below is from the Polar Science Center's Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS, Zhang and Rothrock, 2003).
Subscribe to:
Posts (Atom)