Friday, December 4, 2015

Ocean Heat Depth

Ocean heat at the equator


On November 24, 2015, equatorial waters at ≈100 m (328 ft) depth at 110-135°W were over 6°C (10.8°F) warmer than average in 1981-2000, as illustrated by above image. The animation below shows equatorial ocean heat over the past few months, illustrating that temperature anomalies greater than 6°C (10.8°F) occurred throughout this period at depths greater than 100 m (328 ft).

The danger of ocean heat destablizing clathrates in the Arctic

The danger is that ever warmer water will reach the seafloor of the Arctic Ocean and destabilize methane that is held there in sediments the form of free gas and hydrates.

So, how comparable is the situation at the equator with the situation in the Arctic? How much heating of the Arctic Ocean has taken place over the past few years?

The image on the right, produced with NOAA data, shows mean coastal sea surface temperatures of over 10°C (50°F) in some areas in the Arctic on August 22, 2007.

In shallow waters, heat can more easily reach the bottom of the sea. In 2007, strong polynya activity caused more summertime open water in the Laptev Sea, in turn causing more vertical mixing of the water column during storms in late 2007, according to this study, and bottom water temperatures on the mid-shelf increased by more than 3°C (5.4°F) compared to the long-term mean.

This study finds that drastic sea ice shrinkage causes increase in storm activities and deepening of the wind-wave-mixing layer down to depth ~50 m (164 ft) that enhance methane release from the water column to the atmosphere. Indeed, the danger is that heat will warm up sediments under the sea, containing methane in hydrates and as free gas, causing large amounts of this methane to escape rather abruptly into the atmosphere.

The image below, replotted by Leonid Yurganov from a study by Chepurin et al, shows sea water temperature at different depths in the Barents Sea, as described in an earlier post.


The image below is from a study published in Nature on November 24, 2013, showing water temperatures measurements taken in the Laptev Sea from 1999-2012.

Water temperatures in Laptev Sea. Red triangles: summer. Blue triangles: winter. Green squares: historic data.
From Shakhova et al., (2013) doi:10.1038/ngeo2007
Before drawing conclusions, let's examine some peculiarities of the Arctic Ocean more closely, specifically some special conditions in the Arctic that could lead to greater warming than elsewhere and feedbacks that could accelerate warming even more.

Amount of methane ready for release

Sediments underneath the Arctic Ocean hold vast amounts of methane. Just one part of the Arctic Ocean alone, the East Siberian Arctic Shelf (ESAS, rectangle on map below, from the methane page), holds up to 1700 Gt of methane. A sudden release of just 3% of this amount could add over 50 Gt of methane to the atmosphere, and experts consider such an amount to be ready for release at any time (see above image).



Total methane burden in the atmosphere now is 5 Gt. The 3 Gt that has been added since the 1750s accounts for almost half of the (net) total global warming caused by people. The amount of carbon stored in hydrates globally was in 1992 estimated to be 10,000 Gt (USGS), while a more recent estimate gives a figure of 63,400 Gt (Klauda & Sandler, 2005). The ESAS alone holds up to 1700 Gt of methane in the form of methane hydrates and free gas contained in sediments, of which 50 Gt is ready for abrupt release at any time.



Imagine what kind of devastation an extra 50 Gt of methane could cause. Imagine the warming that will take place if the methane in the atmosphere was suddenly multiplied by 11.

Whiteman et al. recently calculated that such an event would cause $60 trillion in damage. By comparison, the size of the world economy in 2012 was about $70 trillion.

Shallow waters in the Arctic Ocean
Shallow waters and little hydroxyl

The danger is particularly high in the shallow seas that are so prominent in the Arctic Ocean, as illustrated by the light blue areas on the image on the right, from an earlier post.

Much of the waters in the Arctic Ocean are less than 50 m deep. Being shallow makes waters prone to warm up quickly during summer temperature peaks, allowing heat to penetrate the seabed.

This can destabilize hydrates and methane rising through shallow waters will then also enter the atmosphere more quickly, as it rises abruptly and in plumes.

Elsewhere in the world, releases from hydrates underneath the seafloor will largely be oxidized by methanotroph bacteria in the water and where methane does enter the atmosphere, it will quickly be oxidized by hydroxyl. In shallow waters, however, methane released from the seabed will quickly pass through the water column.

Large abrupt releases will also quickly deplete the oxygen in the water, making it harder for bacteria to break down the methane.

Very little hydroxyl is present in the atmosphere over the poles, as illustrated by the image on the right, showing global hydroxyl levels, from an earlier post.

In case of a large abrupt methane release from the Arctic Ocean, the little hydroxyl that is present in the atmosphere over the Arctic will therefore be quickly depleted, and the methane will hang around for much longer locally than elsewhere on Earth.

Shallow waters make the Arctic Ocean more prone to methane releases, while low hydroxyl levels make that methane that enters the atmosphere in the Arctic will contribute significantly to local warming and threaten to trigger further methane releases.

High levels of insolation in summer in the Arctic

Furthermore, the amount of solar radiation received by the Arctic at the June Solstice is higher than anywhere else on Earth, as illustrated by the image below, showing insolation on the Northern Hemisphere by month and latitude, in Watt per square meter, from an earlier post.

Warm water enters Arctic Ocean from Atlantic and Pacific Oceans

What further makes the situation in the Arctic particularly dangerous is that waters are not merely warmed up from the top down by sunlight that is especially strong over the Arctic Ocean in summer on the Northern Hemisphere, but also by warm water that flows into the Arctic Ocean from rivers and by warm water that enters the Arctic Ocean through the Bering Strait and through the North Atlantic Ocean. The latter danger is illustrated by the image below, from an earlier post.


Feedbacks

Furthermore, there are feedbacks that can rapidly accelerate warming in the Arctic, such as albedo losses due to loss of sea ice and snow cover on land, and changes to the jet stream resulting in more extreme weather. These feedbacks, described in more details at this page, are depicted in the image below.


Methane


Above image shows that methane levels on December 3, 2015, were as high as 2445 parts per billion (ppb) at 469 millibars, which corresponds to an altitude of 19,810 feet or 6,041 m.

The solid magenta-colored areas (levels over 1950 ppb) that show up over a large part of the Arctic Ocean indicate very strong methane releases.

Note there are many grey areas on above image. These are areas where no measurements could be taken, which is likely due to the strength of winds, rain, clouds and the jet stream, as also illustrated by the more recent (December 5, 2015) images on the right.

The polar jet stream on the Northern Hemisphere shows great strength, with speeds as high as 243 mph or 391 km/h (over a location over japan marked by green circle) on December 5, 2015.

So, high methane levels may well have been present in these grey areas, but didn't show up due to the weather conditions of the moment.

Furthermore, the white geometric areas are due the way the satellite takes measurements, resulting in areas that are not covered.

Finally, it should be noted that much of the methane will have been broken down in the water, before entering the atmosphere, so what shows up in the atmosphere over the Arctic is only part of the total amount of methane that is released from the seafloor.

In conclusion, the high methane levels showing up over the Arctic indicate strong methane releases from the seafloor due to warm waters destabilizing sediments that contain huge amounts of methane in the form of free gas and hydrates.

Climate Plan

As global warming continues, the risk increases that greater ocean heat will reach the Arctic Ocean and will cause methane to be released in large quantities from the Arctic Ocean seafloor. The 2015 El Niño has shown that a huge amounts of ocean heat can accumulate at a depth greater than 100 m (328 ft). Conditions in the Arctic and feedbacks make that methane threatens to be released there abruptly and in large quantities as warming continues.

The situation is dire and calls for comprehensive and effective action as described at the Climate Plan



On November 24, 2015, equatorial waters at ≈100 m (328 ft) depth at 110-135°W were over 6°C (10.8°F) warmer than average...
Posted by Sam Carana on Friday, December 4, 2015

Monday, November 23, 2015

Arctic Ocean Shows New Record Low Sea Ice

by Albert Kallio


Both the sea ice thickness and sea ice area have fallen to new record lows for this time of the year (22.11.2015), even surpassing all of the worst previous years.

From Naval Research Laboratory image - view animation
Immense thrust of fast moving sea ice is pushing through at the full width of the Fram Strait between Norway and Greenland. This amounts to huge transport of latent coldness out of the Arctic Ocean to North Atlantic, while the constantly forming new sea ice (as temperatures are below 0°C) is generating heat to keep the surface air temperatures higher across the Arctic Ocean. Thus, heat is constantly being added to the Arctic Ocean while heat is taken away from the North Atlantic Ocean.


The normal sea ice area for this time of year is 9,625,000 km2, whereas the sea ice covers currently just 8,415,890 km2,, which makes that 1,209,120 km2 sea ice is missing from the normal (22.11) sea ice area.



The combination image below shows the jet stream (November 23, 2015, left panel) and surface wind (November 24, 2015, right panel).


Jet stream is wavy and strong, showing speeds as high as 219 mph or 352 km/h (at location marked by the green circle). Right panel shows cyclonic winds between Norway and Greenland speeding up movement of sea ice into the North Atlantic.

Forecasts indicate that conditions could continue. The 5-day forecast on the right shows strong winds in the North Atlantic. Note also the cyclonic winds outside the Bering Strait.

Temperatures over the Arctic are forecast to remain much higher than they used to be, with anomalies at the far end of the scale over a large part of the Arctic Ocean showing up on the 5-day temperature anomaly forecast below.




[ further updates will follow ]

Saturday, November 21, 2015

Rapid Transition to a Clean World

100% clean and renewable wind, water, and solar (WWS)
all-sector energy roadmaps for 139 countries of the world


[ click here for explanatory video of above image ]
Above image is from an excellent study by Jacobson et al., showing that it is technically feasible and economically attractive to shift to clean energy facilities between now and 2050. This will create net jobs worldwide. It will avoid millions of air-pollution mortalities and avoid trillions of dollars in pollution and global warming damage. It will stabilize energy prices and reduce energy poverty. It will make countries energy independent and reduce international conflict over energy. It will reduce risks of large-scale system disruptions by significantly decentralizing power production.



Given that there are so many benefits and there are no technical and economic barriers to complete a 100% shift by the year 2050 (and 80% by 2030), why not make an even faster transition?

Sam Carana suggests that feebates, especially when implemented locally, can best facilitate the necessary shift. Moreover, when energy feebates are implemented jointly with feebates in further areas, greenhouse gas emissions could be cut by 80% by 2020, while soils, atmosphere and oceans could be restored to their pre-industrial status over the course of the century.

[ the above emission cuts and feebates images were used in a meanwhile dated 2011 post ]
To achieve the most effective and rapid shift, Sam Carana recommends implementing two types of feebates, i.e. energy feebates and further feebates such as fees on sales of livestock products while using the revenues to fund rebates on soil supplements containing biochar.


Sam Carana adds that further lines of action will be needed to prevent Earth from overheating, warning that comprehensive and effective action is needed as described in the Climate Plan.

The image below shows that a shift to 100% clean (WWS) energy by 2050 (80% by 2030) could reduce CO2 to ~350 ppmv by 2100.

[ from Jacobson et al. 2015 ]
Energy feebates are the most effective way to speed up the shift to clean energy. Further feebates could make additional cuts in greenhouse gases emissions, while also removing carbon from the atmosphere and oceans, allowing us to aim for bringing down carbon dioxide levels in the atmosphere to 280 ppmv by the year 2100.

Links

- How Renewable Energy Could Make Climate Treaties Moot (2015)

- 100% Wind, Water, and Solar (WWS) All-Sector Energy Roadmaps for Countries and States

- The Solutions Project - 100% Renewable Energy
thesolutionsproject.org

- Feebates
https://arctic-news.blogspot.com/p/feebates.html

- Climate Plan



Monday, November 9, 2015

Ocean Heat

Sea Surface Temperatures

Sea surface temperatures were as high as 15.8°C or 60.4°F near Svalbard on November 7, 2015, a 13.7°C or 24.7°F anomaly. Let this sink in for a moment. The water used to be close to freezing point near Svalbard around this time of year, and the water now is warmer by as much as 13.7°C or 24.7°F.

[ click on image to enlarge ]
Above image further shows that sea surface temperature anomalies as high as 6.7°C or 12.1°F were recorded on November 7, 2015, off the coast of North America, while anomalies as high as 6°C or 10.9°F were recorded in the Bering Strait.

NOAA analysis shows that the global sea surface in September 2015 was the warmest on record, at 0.81°C (1.46°F) above the 20th century average of 16.2°C (61.1°F). On the Northern Hemisphere, the anomaly was 1.07°C (1.93°F).

[ click on image to enlarge ]

How did temperatures get so high near Svalbard? The answer is that ocean currents are moving warm water from the Atlantic Ocean into the Arctic Ocean. The ocean is warmer underneath the sea surface and at that location near Svalbard warm water from below the surface emerges at the surface.

Ocean Heat

The oceans are warming up rapidly, especially the waters below the sea surface. Of all the excess heat resulting from people's emissions, 93.4% goes into oceans. Accordingly, the temperature of oceans has risen substantially over the years and - without action - the situation only looks set to get worse.

NOAA's ocean heat content figures for 0-2000 m are very worrying, as illustrated by the image below.


The image below was created with data for January through to March, while adding non-linear trendlines for ocean heat at depths of 0-700 m and 0-2000 m. For growth of ocean heat content for 0-700 m, a polynomial trend is added, while for growth of ocean heat content for 0-2000 m an exponential trend is added.

[ click on images to enlarge ]
The image below shows a polynomial trend based on all available quarterly data for ocean heat content from 0 to 2000 m. The trendline shows even faster growth.


The danger is that, as ocean heat continues to grow, ocean currents will keep carrying ever warmer water from the Atlantic and Pacific Oceans into the Arctic Ocean.

Merely watching temperatures at the surface of the ocean may underestimate the warming that is taking place below the sea surface. At the sea surface, evaporation takes place that cools the water. Furthermore, melting of sea ice and glaciers will make that a layer of cold freshwater spreads at the surface, preventing much transfer of heat from the ocean to the atmosphere, as discussed at this earlier post. The blue-colored areas on the Northern Hemisphere on the top image are partly the result of this meltwater. There is another reason why these areas are relatively cool, i.e. sulfates, as further discussed in the section below.

Aerosols

Particulates, in particular sulfate, can provide short-term cooling of the sea surface. Large amounts of sulfate are emitted from industrial areas in the east of North America and in East Asia. On the Northern Hemisphere, the Coriolis effect makes that such emissions will typically reach areas over the nearby ocean to the east of such industrial areas, resulting in the sea surface there being cooled substantially, until the particulates have fallen out of the sky. Since the sulfate is emitted on an ongoing basis, the cooling effect continues without much interruption.

[ click on image to enlarge ]
This sulfate has a cooling effect on areas of the sea surface where ocean currents are moving warm water toward the Arctic Ocean. Because the sea surface gets colder, there is less evaporation, and thus less heat transfer from the ocean to the atmosphere during the time it takes for the water to reach the Arctic Ocean. As a result, water below the sea surface remains warmer as it moves toward the Arctic Ocean.


Similarly, as illustrated by above image, sulfur dioxide emitted in industrial areas in North America and East Asia can extend over the oceans, cooling the surface water of currents that are moving water toward the Arctic Ocean.

Methane

The image below shows that atmospheric methane levels in 2014 were 1833 parts per billion (WMO data) or 254% the pre-industrial level. WMO data are for 1984-2014 and are marked in red, while IPCC data (AR5) are for the years 1755-2011 and are marked in blue.


The image below shows the rise of methane levels from 1984 created with World Metereological Organization (WMO) data. The square marks a high mean 2015 level, from NOAA's MetOp-2 satellite images, and it is added for comparison, so it does not influence the trendline, yet it does illustrate the direction of rise of methane levels and the threat that global mean methane levels will double well before the year 2040.


The image below illustrates the danger that large amounts of methane will erupt from the Arctic Ocean, particularly in East Siberian Arctic Shelf, where the sea is quite shallow, so much of the methane can reach the atmosphere without being broken down by microbes on the way up through the water column.


The video below shows how methane concentrations start to rise close to sea level, and how concentrations strengthen at higher altitudes, and to eventually get lower at even higher altitudes.



The Threat

Ocean heat threatens to increasingly reach the seafloor of the Arctic Ocean and unleash huge methane eruptions from destabilizing clathrates. Such large methane eruptions will then warm the atmosphere at first in hotspots over the Arctic and eventually around the globe, while also causing huge temperature swings and extreme weather events, contributing to increasing depletion of fresh water and food supply, as further illustrated by the image below, from an earlier post.

[ click on image at original post to enlarge ]

The image below gives an indication of the ocean heat that is pushed by the Gulf Stream toward the Arctic Ocean. Note that this image shows the situation on November 15, 2015. Water off the east coast of North America is even warmer at the peak of the Northern Hemisphere summer and it is this water that is now arriving in the Arctic Ocean.


Below is a radio version of this post, roughly as read by Debba Kale Earnshaw at this episode and the next episode of extinctionradio.org



Malcolm Light comments:
To a geologist-oceanographer, the increasing rate of heat gain in the deep water seems obvious. Massive quantities of heat are generated in the earth's interior by radioactivity and find their way to the surface in rising convection systems to erupt along mid-ocean ridges as basaltic lava flows, pushing the plates apart. Under normal circumstances, prior to the arrival of civilized man, the plates cooled as they expanded by passing their heat into the oceans, which then was radiated into space.

Now, with the fast evolving atmospheric greenhouse Arctic methane global warming veil. the heat is simply being reflected back into the oceans and onto the land. Therefore, just like a pressure cooker, the Earth's interior heat is becoming trapped more and more and of course the end result will be a final blow-out. The more than 400 thousand years of ice core data show that we can expect a massive atmospheric methane peak caused by destabilization of the Arctic subsea methane hydrates very soon (8 to 16 years away) and it will produce a Permian style extinction event with a temperature increase of some 8 to 10 degrees C.


Climate Plan

The situation is dire and calls for comprehensive and effective action, as discussed at the Climate Plan.

Sea surface temperatures were as high as 15.8°C or 60.4°F near Svalbard on November 7, 2015, a 13.7°C or 24.7°F anomaly....
Posted by Sam Carana on Monday, November 9, 2015

Friday, October 30, 2015

Methane Vent Hole In Arctic Sea Ice?

Methane vent hole in the ice?

In October 2015, an area appeared in the Arctic sea ice where the temperature of the ice was a few degrees Celsius higher and where ice concentration and salinity levels were substantially lower than the surrounding ice. The image below pictures the situation on October 11, 2015.

[ click on image to enlarge ]
Could this have been an iceberg? If so, ice concentration should have been higher, rather than lower. More likely is that this is a vent hole with methane rising through cracks in the sea ice.

Malcolm Light comments: "The whole of the Arctic seabed is covered with methane hydrates and NASA satellites should have long ago defined where the major plumes were coming out. It is clearly a surface methane vent hole in the ocean ice analogous to the large methane vent holes that appeared all over northern Siberia this year. It means we have overheated the Arctic seafloor to the extent where the methane hydrates are now unstable and we could have further major releases at any time. We have already lit the fuse on a giant methane subsea permafrost bomb in the Arctic which can go off at any moment."

Roger Caldwell responds: "I think it's upwelling warm water. There is a ridge right below the spot. I can see warm spots through the ice on the nullschool program. The warm water comes through the Bering Strait and sinks to the mid levels. When it gets to the ridge it flows upward, making a temporary polynya."

The image below shows warm water entering the Arctic Ocean from the Pacific Ocean (through the Bering Strait) and the Atlantic Ocean, with the dark-red color of many areas in the Arctic Ocean indicating warm waters, including an area close to the North Pole marked by the red circle. So, the spot could indeed be a polynya caused by upwelling of warm water. Alternatively to the Pacific Ocean, the warm water could have originated from the Atlantic Ocean. In the Fram Strait, near Svalbard, sea surface temperatures as high as 11.9°C or 53.5°F were recorded on October 28, 2015, i.e. 9.6°C or 17.2°F warmer than 1981-2011 (at the location marked by the green circle).

[ click on image to enlarge ]
Of course, with water this warm reaching the center of the Arctic Ocean, the threat that this will cause (further) destabilization of methane hydrates at the seafloor of the Arctic Ocean is equally ominous. The more recent image below shows warm waters in the Arctic Ocean in a different way, partly because the anomaly is calculated from the period 1961 to 1990.


The image below shows that sea surface temperatures as high as 12°C or 53.5°F were recorded near Svalbard on October 31, 2015, i.e. 9.7°C or 17.4°F warmer than 1981-2011 (at the location marked by the green circle).

[ click on image to enlarge ]
On the image below, Malcolm Light added the Gakkel Ridge, i.e. the fault line that extends on the seafloor of the Arctic Ocean from the northern tip of Greenland to Siberia (red line), and the location of explosive volcanoes (lilac spot), with content from Sohn et al., 2008.

A zone of increased heat near the North Pole which may be related to large quantities of gas released from a group of extremely pyroclastic carbon dioxide-rich volcanoes located at the Gakkel Ridge 
The table below shows the height that emerging carbon dioxide plumes can be expected to reach for a given carbon dioxide volume fraction in the foam at the top of a magma chamber.

Malcolm Light adds:
"Sohn et al. (2007) outlined how the sequence of extreme pyroclastic eruptions occur along the Gakkel Ridge (85°E volcanoes) at an ultra-slow plate spreading rate (<15-20 mm/year). These volcanoes formed from the explosive eruption of gas-rich magmatic foams. Long intervals between eruptions with slow spreading caused huge gas (volatile) build up high storage pressures, deep in the crust. 

Extension of the 85°E seismic swarm occurred over 3 months but later earthquakes were caused by large implosions from the explosive discharge of pressurized magmatic foam from a deep-lying magma chamber through the fractured chamber roof which rapidly accelerated vertically, expanded and decompressed. There were many periods of widespread explosive gas discharge from 1999 over two years detected by small-magnitude sound signals from seismic networks on the ice. 

Pyroclastic rocks contain bubble wall fragments and were widely distributed over an area of more than 10 square km. Deep fragmentation was caused by the accumulation of a gas (volatile) foam within the magma chamber which then fractured, formed a pyroclastic fountain 1-2 km high in the Arctic Ocean and spread the pyroclastic material over a region whose size was proportional to the depth of the magma chamber (see above table). A volatile carbon dioxide content of 14% (Wt./Wt. - volume fraction 75%) is necessary at 4 km depth in the Arctic Ocean to fragment the erupting magma." 

As said, with water this warm reaching the center of the Arctic Ocean from the Atlantic and Pacific Oceans, the threat is that added heat from volcanic activity or pressure shocks from underwater earthquakes or landslides will trigger (further) destabilization of methane hydrates at the seafloor of the Arctic Ocean.

Below follows some more background.

Animations

Naval Research Laboratory 30-day animations are added below for temperature, concentration, salinity and thickness of the sea ice. Click on each of them to view full versions.

Temperature
Concentration

Salinity

Thickness

[ click on animations to enlarge ]

Background on tectonic plates and faults

A major fault line crosses the Arctic Ocean, forming the boundary between two tectonic plates, the North American Plate and the Eurasian Plate. These plates slowly diverge, creating seismic tension along the fault line. From where the Mid-Atlantic ridge enters the Arctic Ocean, it is called the Gakkel Ridge. The fault continues as the Laptev Sea Rift, on to a transitional deformation zone in the Chersky Range in Siberia, then the Ulakhan Fault between the North American Plate and the Okhotsk Plate, and then continues as the Aleutian Trench to the end of the Queen Charlotte Fault system.



The situation in October 2013

High methane readings were recorded for a period of just over one day, October 19 - 20, 2013, as shown in the images below. Indicated in yellow are all methane readings of 1950 ppb and over.


To pointpoint more closely where methane is venting along the Laptev Sea Rift, the image below gives readings for October 20, 2013, pm, at just three altitudes (607 - 650 mb).


Satellite measurements recorded methane readings of up to 2411 ppb on October 20, 2013.

Methane venting in the Laptev Sea in 2005 and 2007

For further reference, large amounts of methane have been venting in the Laptev Sea area in previous years. Added below is an edited part of a previous post, Unfolding Climate Catastrophe.

In September 2005, extremely high concentrations of methane (over 8000 ppb, see image on the right) were measured in the atmospheric layer above the sea surface of the East Siberian Shelf, along with anomalously high concentrations of dissolved methane in the water column (up to 560 nM, or 12000% of super saturation).

The authors conclude: "Since the area of geological disjunctives (fault zones, tectonically and seismically active areas) within the Siberian Arctic shelf composes not less than 1-2% of the total area and area of open taliks (area of melt through permafrost), acting as a pathway for methane escape within the Siberian Arctic shelf reaches up to 5-10% of the total area, we consider release of up to 50 Gt of predicted amount of hydrate storage as highly possible for abrupt release at any time".

In 2007, concentrations of dissolved methane in the water column reached a level of over 5141 nM at a location in the Laptev Sea. For more background, see the previous post, Unfolding Climate Catastrophe.

Methane levels in October 2015

The image below shows high methane concentrations over the Arctic Ocean on October 11, 2015, pm, at 840 mb, i.e. relatively close to sea level.


The image below shows high levels of methane over the Arctic Ocean at higher altitude (469 mb) on October 28, 2015, pm, when methane levels were as high as 2345 ppb. 


Note that the above two images have different scales. The data are from different satellites. The video below shows images from the MetOp-2 satellite, October 31, 2015, p.m., at altitudes from 3,483 to 34,759 ft or about 1 to 11 km (241 - 892 mb).


Peak methane levels were as high as 2450 ppb on November 1, 2015.

Update: Warm Water in Arctic Ocean

On November 5, 2015, sea surface temperatures as high as 8.5°C or 47.3°F showed up in the Bering Strait, an anomaly of 6.6°C or 11.9°F, while sea surface temperatures as high as 14.4°C or 57.9°F showed up near Svalbard on November 5, 2015, a 12.2°C or 22°F anomaly. The situation is illustrated by the image below.

[ click on image to enlarge ]
These high temperatures indicate that the sea can be a lot warmer below the surface than at the surface, and it appears that very warm waters are continuing to enter the Arctic Ocean from both the Pacific Ocean and the Atlantic Ocean. As discussed in previous posts such as this one, the danger is that ever warmer waters will (further) destabilize methane hydrates at the seafloor of the Arctic Ocean, resulting in abrupt methane eruptions that could dwarf the impact of existing greenhouse gases in the atmosphere.

Climate Plan

The situation is dire and calls for comprehensive and effective action, as discussed at the Climate Plan.


Links

- Explosive volcanism on the ultraslow-spreading Gakkel ridge, Arctic Ocean, Sohn et al. (2007, published 2008)
http://www.nature.com/nature/journal/v453/n7199/full/nature07075.html

- Unfolding Methane Catastrophe
http://arctic-news.blogspot.com/2013/10/unfolding-methane-catastrophe.html

- Further Confirmation of a Probable Arctic Sea Ice Loss by Late 2015, by Malcolm P.R. Light (Sep. 1, 2012)
http://arctic-news.blogspot.com/2012/09/further-confirmation-of-a-probable-arctic-sea-ice-loss-by-late-2015-loss.html

In October 2015, an area appeared in the Arctic sea ice where the temperature of the ice was a few degrees Celsius...
Posted by Sam Carana on Friday, October 30, 2015