Tuesday, November 5, 2019

A record CO2 rise rate since the KT dinosaur extinction 66 million years ago

By Andrew Glikson
Earth and climate scientist
Australian National University

As the concentration of atmospheric CO₂ has risen to 408 ppm and the total greenhouse gas level, including methane and nitrous oxide, combine to near 500 parts per million CO₂-equivalent, the stability threshold of the Greenland and Antarctic ice sheets, currently melting at an accelerated rate, has been exceeded. The consequent expansion of tropics and the shift of climate zones toward the shrinking poles lead to increasingly warm and dry conditions under which fire storms, currently engulfing large parts of South America (Fig. 1), California, Alaska, Siberia, Sweden, Spain, Portugal, Greece, Angola, Australia and elsewhere have become a dominant factor in the destruction of terrestrial habitats.

Figure 1. Sensors on NASA satellites Terra and Aqua captured a record of thousands of points
of fire in Brazil in late August. Credit: NASA Earth Observatory
Since the 18th century, combustion of fossil fuels has led to the release of more than 910 billion tons of carbon dioxide (GtCO₂) by human activity, raising CO₂ to about 408.5 ppm (Fig. 2), as compared to the 280-300 ppm range prior to the onset of the industrial age. By the early-21st century the current CO₂ rise rate has reached of 2 to 3 ppm/year.

Figure 2. Global temperature and carbon dioxide - Climate Central
Allowing for the transient albedo enhancing effects of sulphur dioxide and other aerosols, mean global temperature has potentially reached ~2.0 degrees Celsius above pre-industrial temperatures. Current greenhouse gas forcing and global mean temperatures are approaching Miocene-like (5.3-23 million years-ago) composition.

The current carbon dioxide rise rate exceeds the fastest rates estimated for the K-T asteroid impact (66.4 million years-ago) and the PETM (Paleocene-Eocene Temperature Maximum) hyperthermal event (55.9 million years ago) by an order of magnitude (Fig. 3). The current growth rate of atmospheric greenhouse gases, in particular over the last 70 years or so, may appear gradual in our lifetime, but it constitutes an extreme event in the recorded history of Earth.
Figure 3. Cenozoic CO₂ and temperature rise rates. Current rise rates of CO₂ (2.86 ppm CO2/year) and temperature (0.15-0.20°C per decade since 1975) associated with extreme weather events raise doubt regarding gradual linear climate projections. Instead, chaotic climate conditions may arise from the clash between northward-shifting warm air masses which intersect the weakened undulating Arctic jet stream boundary and freezing polar air fronts penetrating Siberia, North America and Europe.
The definition of a “tipping point” in the climate system is a threshold which, once exceeded, can lead to large changes in the state of the system, or where the confluence of individual factors combines into a single stream. The term “tipping element” describes subcontinental-scale subsystems of the Earth system that are susceptible to being forced into a new irreversible state by small perturbations. In so far as a tipping point can be identified in current developments of the climate system, the weakening of the Arctic boundary, indicated by slowing down and increased disturbance of the jet stream heralds a likely tipping point, an example being the recent ‘Beast from the East” freeze in northern Europe and North America (Fig. 4).

Figure 4. The cold fronts penetrating Europe from Siberia and the North Atlantic and North America from the Arctic, 2018. UK Met Office.
A report by the National Academy Press 2011 states: “As the planet continues to warm, it may be approaching a critical climate threshold beyond which rapid (decadal-scale) and potentially catastrophic changes may occur that are not anticipated.”

Direct evidence for changing climate patterns is provided by the expansion of the tropics and migration of climate zones toward the poles, estimated at a rate of approximately 56-111 km per decade. As the dry subtropical zones shift toward the poles, droughts worsen and overall less rain falls in temperate regions. Poleward shifts in the average tracks of tropical and extratropical cyclones are already happening. This is likely to continue as the tropics expand further. As extratropical cyclones move, they shift rain away from temperate regions that historically rely on winter rainfalls for their agriculture and water supply. Australia is highly vulnerable to expanding tropics as about 60 percent of the continent lies north of 30°S.

Low-lying land areas, including coral islands, delta and low coastal and river valleys would be flooded due to sea level rise to Miocene-like (5.3-23 million years ago) sea levels of approximately 40±15 meters above pre-industrial levels. Accelerated flow of ice melt water flow from ice sheets into the oceans is reducing temperatures over tracts in the North Atlantic and circum-Antarctic oceans. Strong temperature contrasts between cold polar-derived fronts and warm tropical-derived air masses lead to extreme weather events, retarding habitats, in particular over coastal regions. As partial melting of the large ice sheets proceeds the Earth’s climate zones continue to shift polar-ward (Environmental Migration Portal, 2015). This results in an expansion of tropical regions such as existed in the Miocene, reducing the size of polar ice sheets and temperate climate zones.

According to Berger and Loutre (2002) the effect of high atmospheric greenhouse gas levels would delay the next ice age by tens of thousands of years, during which chaotic tropical to hyper-tropical conditions including extreme weather events would persist over much of the Earth, until atmospheric CO₂ and insolation subside. Humans are likely to survive in relatively favorable parts of Earth, such as sub-polar regions and sheltered mountain valleys, where cooler conditions would allow flora and fauna to persist.

To try and avoid a global calamity, abrupt reduction in carbon emissions is essential, but since the high level of CO₂-equivalent is activating amplifying feedbacks from land and ocean, global attempts to down-draw about of 50 to 100 ppm of CO₂ from the atmosphere, using every effective negative emissions, is essential. Such efforts would include streaming air through basalt and serpentine, biochar cultivation, sea weed sequestration, reforestation, sodium hydroxide pipe systems and other methods.

But while $trillions continue to be poured into preparation of future wars, currently no government is involved in any serious attempt at the defense of life on Earth.


Andrew Glikson
Dr Andrew Glikson
Earth and climate scientist
Australian National University

Books:

- The Archaean: Geological and Geochemical Windows into the Early Earth
- The Asteroid Impact Connection of Planetary Evolution
- Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia
- Climate, Fire and Human Evolution: The Deep Time Dimensions of the Anthropocene
- The Plutocene: Blueprints for a Post-Anthropocene Greenhouse Earth
- Evolution of the Atmosphere, Fire and the Anthropocene Climate Event Horizon
- From Stars to Brains: Milestones in the Planetary Evolution of Life and Intelligence



Monday, October 21, 2019

Which policy can help EVs most?

In many countries, it has been proven hard to implement policies that help electric vehicle (EVs). In France, fuel taxes have triggered huge protests. In Ecuador, huge protests followed a steep rise in fuel prices, as a result of a decision to end gasoline and diesel subsidies.

An analysis conducted by Arctic-news compares eight policies on two criteria, i.e. how effective they are from a policy perspective and how popular the policies will likely be. As the image below shows, many policies are little or no better at helping EVs than continuing with business as usual (BAU).


“Tightening fuel economy standards may aim to reduce fuel use,” says Sam Carana, editor of Arctic-news, “but the Jevons paradox shows that this may lead to people buying more powerful cars, drive longer distances, etc. Moreover, it does little to help EVs, in fact, it may make it cheaper for people to keep driving fossil fuel-powered cars.

Sam Carana adds: “Subsidies for EVs aren't popular with pedestrians and cyclists, or with people who use public transport to go to work. These are often the poorest people and they feel that money that is spent on subsidies for EVs comes at the expense of social services for the poor. Subsidies are unlikely to gain popular support. Similarly, when subsidies for EVs take the form of tax deductions given to EV buyers, this mainly benefits those who can afford to buy EVs. Additionally, this reduces overall tax revenue, leaving less money for social services.”

“Taxes aren't much better, they may make driving a polluting car more expensive, but as long as people keep driving polluting cars, it won't help EVs and it won't help much with the climate crisis either. Higher taxes on fuel and cars haven't made EVs much more common in Europe than they are in the U.S., where such taxes are lower. The worst form of tax is 'Cap & Trade', as it enables people to keep driving polluting cars by paying for emission cuts elsewhere. Even if those cuts are indeed made elsewhere, they aren't made locally. Tax and Dividend seeks to get popular support by promising people part of the revenue, but this means the money isn't used to fight pollution and it may even be counterproductive, by helping people to keep driving fossil fuel-powered cars. Simple carbon taxes therefore seem more effective, while they may also be more popular with the poor, since more of the revenues can be spent on social services.”

Sam Carana: “Local feebates are the best way to go. It makes sense to add fees to the price of fuel, and - in order to most effectively facilitate the necessary transition to EVs - the revenues are best used to support EVs locally, which also helps such polices gain popular support locally.”

The analysis also looks at a wider set of local feebates, such as fees on sales of fossil fuel-powered cars, with the revenues used to fund rebates on local sales of EVs. Fees on facilities that sell or process fuel could also raise revenues that could be used to fund rebates on, say, EV chargers.  Furthermore, differentiation in fees on car registration, on car parking and on toll roads could all help make EVs more attractive.


In conclusion, a wide set of local feebates can most effectively facilitate the necessary changes and can best gain local support. The climate crisis urgently needs comprehensive and effective action, as described in the Climate Plan, which recommends implementation of local feebates to facilitate the necessary changes.

An associated issue is the Urban Heat Island effect, as illustrated by the image on the right. Buildings, roads and cars can significantly increase temperatures and pollution including ozone at surface level.

One way to reduce temperatures, pollution and road congestion is by using electric vertical take-off and landing (VTOL) air taxis.

Lilium plans to start offering air taxi services from 2025. While using about the same amount of electricity as an EV traveling over roads, the Lilium Jet travels as fast as 300 km/h and has a radius of 300 km.”

Sam Carana adds: “In practice, most trips are less than 10 km. A fleet of 10,000 Lilium Jets could cater for all trips otherwise made by cars in an area where one million people live.”

In theory, this could remove virtually all cars from a city, resulting in less need for roads, bridges, tunnels, parking spaces, garages, driveways, airports, etc. These air taxis can use the roofs of large buildings for landing and take off, or dedicated areas in parks or custom-built places along the shore (see image below).


This also means there will be less need for resources, infrastructure and space to manufacture, sell and service vehicles. As a result, urban centers could use the spaces gained for more trees, parks, footpaths and bike-ways, while becoming more compact, enabling people to live closer together and closer to workplaces, shops, restaurants, educational and medical facilities, etc. As cities become more compact, the average trip within a city will become shorter in distance and take up less time.



Local councils should be keen to help make this happen, for a number of reasons. A fleet of air taxis can help combat road congestion, global heating, including the Urban Heat Island effect, and pollution by cars. At first glance, creating places for 10,000 air taxis to land and take off may look like a big job, but many businesses will be keen to accommodate air taxis. Moreover, it is very attractive when considering that 10,000 air taxis can replace the need for up to a million vehicles, as well as the need to build and maintain the associated roads, bridges, tunnels, parking spaces, garages, etc. It can also double the amount of land available for parks, houses and other buildings. Lilium plans to start offering commercial services from 2025, so it's time to start planning now and create places for air taxis to land and take off where they will be needed.

The video below, 'The Urban Green', was posted by WWF International on March 17, 2016.




Links

• Climate Plan (page)
https://arctic-news.blogspot.com/p/climateplan.html

• Climate Plan (post)
https://arctic-news.blogspot.com/2019/06/climate-plan.html

• Climate Plan (group)
https://www.facebook.com/groups/climateplan

• Feebates
https://arctic-news.blogspot.com/p/feebates.html

• Who are the gilets jaunes and what do they want?
https://www.theguardian.com/world/2018/dec/03/who-are-the-gilets-jaunes-and-what-do-they-want

• Ecuador's Morena scraps fuel subsidy cuts in big win for indigenous groups
https://www.reuters.com/article/us-ecuador-protests/ecuadors-moreno-scraps-fuel-subsidy-cuts-in-big-win-for-indigenous-groups-idUSKBN1WT265

• Ecuador’s Government Crisis, Explained
https://www.washingtonpost.com/business/energy/ecuadors-government-crisis-explained/2019/10/08/d54f19f2-ea17-11e9-a329-7378fbfa1b63_story.html

• Ecuador: Society's Reaction to IMF Austerity Package 


Monday, October 14, 2019

Arctic Ocean October 2019


Above image shows temperatures north of 80°N. The red line on the image shows the 2019 daily mean temperature up to Oct 13, 2019. The temperature is now well above the 1958-2002 mean (green line). The image also shows the freezing point of fresh water (273.15K, 0°C or 32°F, blue line).

The freezing point for salt water is lower, at around -2°C, or 28.4°F, or 271.2°K. In other words, a rise in the salt content of the water alone can make ice melt, i.e. even when the temperature of the water doesn't rise.


Above combination image shows forecasts for October 26, 2019. The left panel shows that air temperatures (2 m) are forecast to be 5.4°C higher over the Arctic than 1979-2000. Parts of the Arctic Ocean where there is no sea ice are forecast to be especially hot, since this is where heat gets transferred from the Arctic Ocean to the atmosphere. Anomalies are as high as 30°C, the top end of the scale. Temperature anomalies are in line with changes to the Jet Stream, as illustrated by the forecast in the right panel.


As above image shows, there was very little sea ice north of Greenland on October 11, 2019. Arctic sea ice extent is very low. As the image below shows, Arctic sea ice extent was 4.88 million km² on October 13, 2019, the lowest on record for the time of year.

[ click on image to enlarge ]

As the image below shows, the heat rising from the Arctic Ocean is such that sea ice extent is hardly growing.


The image below shows Arctic sea ice extent for the years, 1980,1990, 2010, 2012 and 2019, for the period as indicated.



The image below indicates that Arctic sea ice volume has been at record low levels for the time of year for some time.

Rising temperatures of water in the Arctic Ocean cause the sea ice to melt away from below. The image below, created with NOAA 2007-2019 June-September sea surface temperature data, shows heating of the sea surface on the Northern Hemisphere, with an ominous trend added.


The image indicates that a critical tipping point was crossed this year, with the disappearance of the thick sea ice that hangs underneath the surface.


This indicates that the buffer has gone that has until now been consuming ocean heat as part of the melting process. As long as there is sea ice in the water, this sea ice will keep absorbing heat as it melts, so the temperature will not rise at the sea surface. The amount of energy absorbed by melting ice is as much as it takes to heat an equivalent mass of water from zero to 80°C.

[ click on image to enlarge ]
The situation is so precarious because hot, salty water keeps flowing into the Arctic Ocean, at a time of year when the sea ice is growing in extent and sealing off the surface of the Arctic Ocean, thus reducing the heat that can get transferred to the atmosphere.

How hot is that water flowing into the Arctic Ocean? The image on the right shows sea surface temperature anomalies. On October 13, 2019, the sea surface near Svalbard at the green circle was 18.3°C or 65°F, i.e. 14.7°C or 26.4°F hotter than 1981-2011.

This is an indication of how hot the water is underneath the sea surface. At the sea surface, water gets colder due to evaporation and rain, resulting in a lid of fresh water at the surface sealing off hot and salty water underneath.

This hot and salty water moves underneath the sea surface in line with the deeper parts of the ocean, to emerge at this area near Svalbard (marker in the image below), as the water at this area becomes more shallow, making the sea current push the water to the surface.


Back in 2011, a study by Micha Ruhl et al. pointed at huge methane releases from clathrates during the end-Triassic mass extinction event, as discussed in an earlier post. The danger is that, in the absence of thick sea ice, hot water with a high salt content will reach the seafloor of the Arctic Ocean, making it easier for ice in cracks in sediments at the seafloor to melt, resulting in huge methane releases.

[ from an earlier post ]
Ominously, methane levels as high as 2961 parts per billion were recorded by the MetOp-2 satellite on October 24, 2019, in the afternoon at 469 mb.


The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.


Links

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Critical Tipping Point Crossed In July 2019
https://arctic-news.blogspot.com/2019/09/critical-tipping-point-crossed-in-july-2019.html

• Most Important Message Ever
https://arctic-news.blogspot.com/2019/07/most-important-message-ever.html

• Arctic Ocean overheating
https://arctic-news.blogspot.com/2019/09/arctic-ocean-overheating.html

• How extreme will it get?
https://arctic-news.blogspot.com/2012/07/how-extreme-will-it-get.html

• Warning Signs
https://arctic-news.blogspot.com/2018/03/warning-signs.html

Friday, September 27, 2019

IPCC Report Ocean and Cryosphere in a Changing Climate


The IPCC has issued another special report: The Ocean and Cryosphere in a Changing Climate.

How much carbon is there in the Arctic?

[ click on images to enlarge ]
How much carbon is present in the northern circumpolar permafrost region (map)?

According to the report, there is 1460 to 1600 billions of tons of carbon (GtC¹) present in the soil on land. The report also mentions that there is additional carbon present on shallow Arctic sea shelves, but the report doesn't add figures.

Natalia Shakhova et al. once estimated the accumulated methane potential for the Eastern Siberian Arctic Shelf alone to be about 500 Gt of organic carbon, with an additional amount in hydrates of about 1000 Gt and a further amount of methane in free gas of about 700 Gt. Back in 2008, Natalia Shakhova et al. considered release of up to 50 Gt of predicted amount of hydrate storage as highly possible for abrupt release at any time.

Note ¹: 1 billion ton of carbon = 1 GtC = 1.33 Gt of CH₄ (methane) and 1 GtC = 3.67 Gt of CO₂ (carbon dioxide)

How much of these vast amounts could be released to the atmosphere?

The IPCC report projects permafrost near the surface (top 3–4 m) to decrease in area by up to 89% by 2100 under a high emissions scenario (RCP8.5), leading to cumulative release of tens to hundreds of billions of tons of carbon in the form of carbon dioxide and methane to the atmosphere by 2100.

The report fails to warn that, as the Arctic Ocean keeps heating up, huge seafloor methane eruptions could be triggered, and that this could happen within years, as discussed at the extinction page. Abrupt release of 10 Gt of methane would triple the amount of methane in the atmosphere, resulting in huge heating, while it would also trigger the clouds feedback tipping point to be crossed that in itself could push global temperatures up by 8°C within a few years, as earlier discussed in this post and this post.

Sea ice

The report notes that between 1979 and 2018, the areal proportion of multi-year Arctic sea ice at least five years old has declined by approximately 90%. The report refers to a study by Pistone that concludes that the additional heating due to complete Arctic sea ice loss would hasten global warming by an estimated 25 years. Below is a NASA video showing the melting away of the multi-year sea ice over the years.


The image below shows the difference in Arctic sea ice extent between the years, from an earlier post.


The report concludes that Antarctic sea ice extent overall has had no statistically significant trend. At the same time, the report notes that the Southern Ocean's share of the total heat gain in the upper 2000 m global ocean increased to 45–62% between 2005 and 2017. Below is an image illustrating the difference in Antarctic sea ice extent between the years.


The image below shows how much global sea ice extent has decreased over the past few years.

Sea ice decline makes that less sunlight gets reflected back into space and more heat gets absorbed by the ocean. The report also mentions latent heat changes and increased water vapor and increased cloudiness over the Arctic Ocean. Furthermore, as the temperature difference between the North Pole and the Equator narrows, the Jet Stream changes, which makes it more likely that a large influx of hot, salty water can enter the Arctic Ocean. While the IPCC acknowledges that permafrost thaw could release large amount of greenhouse gases, it fails to warn people about the potential for a huge, abrupt temperature rise as a result of the combined impact of warming elements, such as the one illustrated by the image below.


Meanwhile, the MetOp-1 satellite recorded a mean global methane level as high as 1914 parts per billion, on September 30, 2019, pm at 293 mb.


In the report launch press conference video below, IPCC authors respond to the question “May we have already passed the tipping point of abrupt and irreversible change and not knowing it yet?”


Valerie Masson-Delmotte, co-chair of WG1: “I would like to speak about irreversible change in this report. Irreversible means changes that will not be possible to be avoided on timescales of centuries, and climate change is already irreversible, due to the heat uptake in the ocean. We can't go back whatever we do with our emissions. Climate change is already irreversible.”

The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.


Links

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• IPCC special report, The Ocean and Cryosphere in a Changing Climate
https://www.ipcc.ch/srocc/home

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Most Important Message Ever
https://arctic-news.blogspot.com/2019/07/most-important-message-ever.html

• When Will We Die?
https://arctic-news.blogspot.com/2019/06/when-will-we-die.html

• Critical Tipping Point Crossed In July 2019
https://arctic-news.blogspot.com/2019/09/critical-tipping-point-crossed-in-july-2019.html

• Radiative Heating of an Ice‐Free Arctic Ocean, by Kristina Pistone et al.
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL082914

• Weekly Arctic Sea Ice Age with Graph of Ice Age By Area: 1984 - 2019, by NASA
https://svs.gsfc.nasa.gov/4750

• IPCC Report Climate Change and Land
https://arctic-news.blogspot.com/2019/08/ipcc-report-climate-change-and-land.html

• IPCC keeps feeding the addication
https://arctic-news.blogspot.com/2018/10/ipcc-keeps-feeding-the-addiction.html

• IPCC seeks to downplay global warming
https://arctic-news.blogspot.com/2018/02/ipcc-seeks-to-downplay-global-warming.html

• Just do NOT tell them the monster exists
https://arctic-news.blogspot.com/2013/10/just-do-not-tell-them-the-monster-exists.html