Showing posts with label clathrates. Show all posts
Showing posts with label clathrates. Show all posts

Thursday, November 20, 2014

Ocean Temperature Rise Continues


Ocean Temperature Rise

Of all the excess heat that results from people's emissions, 93.4% goes into oceans. Accordingly, the temperature of oceans has risen substantially.

NOAA analysis shows that the most recent 12-month period, November 2013–October 2014, broke the record (set just last month) for the all-time warmest 12-month period in the 135-year period of record. The global oceans were the warmest on record for October. For January–October, the average global sea surface temperature was also record high.


The danger is that ocean temperatures will continue to rise, especially in the North Atlantic, and that the Gulf Stream will keep carrying ever warmer water from the North Atlantic into the Arctic Ocean, threatening to unleash huge methane eruptions from the Arctic Ocean's seafloor, in turn causing even higher temperatures and more extreme weather events, wildfires, etc.


High Methane Levels

High methane levels were recorded over the Arctic Ocean in October, as discussed in this earlier post, and were sustained in November, as discussed in this post. Methane levels as high as 2717 ppb were recorded on November 16, 2014, p.m, by the MetOp-1 satellite at 469 mb (i.e. 19,820 ft or 6,041 m altitude), as the image below shows.

Methane levels as high as 2549 ppb were recorded on November 19, 2014, p.m, by the MetOp-2 satellite at 586 mb (i.e. 14,385 ft or 4,384 m altitude), as the image below shows.

Above image further confirms earlier indications that these high methane levels do indeed result from large methane eruptions from the seafloor of the Arctic Ocean.

Greenhouse gas levels in general are very high over the Arctic, as earlier discussed in a recent post and as illustrated by the image below, showing carbon dioxide levels as high as 420 ppm at high latitudes, while the global mean was 403 ppm, on November 19, 2014, p.m., at 945 mb (i.e. 1,916 ft or 584 m altitude).


As said, sustained instances of large abrupt methane eruptions from the seafloor of the Arctic Ocean threaten to strongly accelerate warming in the Arctic even further, in turn resulting in ever more methane being released, as illustrated in the image below, from an earlier post.


Self-reinforcing Feedback Loops



Such methane eruptions are part of a number of self-reinforcing feedback loops that can strongly accelerate warming in the Arctic. Above image, from an earlier post, illustrates two such feedbacks, i.e. albedo changes due to snow and ice demise, and methane releases. Further feedbacks are described in this post and this post, and in the image below.

For a discussion of these and further feedbacks, see this page at the Climate Plan blog 
The threat is that such rapid temperature rises will appear at first in hotspots over the Arctic and eventually around the globe, while also resulting in huge temperature swings that could result in depletion of supply of food and fresh water, as further illustrated by the above image, from an earlier post, and the image below, from another earlier post.
[ click on image at original post to enlarge ]


IPCC warnings not strong enough



In above paragraph, the IPCC warns about the risk of methane eruptions from the seafloor of the Arctic Ocean further accelerating global warming. While the IPCC does model for a temperature rise that could exceed 12 degrees Celsius in a 'business as usual' scenario (i.e. without action taken), the IPCC does not anticipate that such a rise could occur before the year 2250, as illustrated by the image below.


The situation could be much worse than foreseen by the IPCC, due to a number of reasons, including:
  1. The non-linear way feedbacks can hugely increase temperature rises.
  2.  The IPCC's underestimation of the amount of methane contained in sediments under the Arctic Ocean and prone to be released as temperatures rise. Shakhova et al. estimate the accumulated methane potential for the Eastern Siberian Arctic Shelf (ESAS) alone as follows:
    - organic carbon in permafrost of about 500 Gt;
    - about 1000 Gt in hydrate deposits; and
    - about 700 Gt in free gas beneath the gas hydrate stability zone.
    Back in 2008, Shakhova et al. considered release of up to 50 Gt of predicted amount of hydrate storage as highly possible for abrupt release at any time.
    Furthermore, mantel methane could add to our predicament, as discussed in an earlier post.
  3. Back in 2002, Malcolm Light already warned that seismic events could trigger destabilization of methane hydrates. Furthermore, huge temperature swings can combine with pressure swings and storms, and with swings between expansion and contraction of soil and ice, resulting in severe shocks to ecosystems, as described in an earlier post
  4. The IPCC's ignoring of large methane eruptions from the seafloor of the Arctic Oceans and the resulting growth of mean global methane levels at higher altitudes, as discussed in an earlier post.
Steven Sherwood et al. wrote back in 2010 that peak heat stress, quantified by wet bulb temperature, across diverse climates today never exceeds 31 degrees Celsius (see also this update). Some may believe that this doesn't apply to the Arctic and the higher altitudes in mountain regions. However, at the June Solstice the amount of solar radiation received in the Arctic is higher than anywhere else on Earth, An increased occurence and intensity of heatwaves could expose large areas of the Arctic and mountain regions to sustained heatwaves exceeding peak heat stress temperatures. In addition, ocean acidification and oxygen depletion in the Arctic Ocean would make it hard for fish, seals, polar bears and further wildlife to survive. Furthermore, the short growth season combined with a long, cold winter limits vegetation in the Arctic, while ecosystems are also becoming increasingly exposed to wild weather swings and wildfires.


Risk Assessment

When taking above points into acount, an absence of action seems to guarantee human extinction by the year 2050. Little action will be ‘too little, too late’ and will merely delay human extinction by a few years, as illustrated by the graph below.


The graph identifies the years 2030 and 2040 as critical. Beyond the year 2030, the risk that humans will go extrinct grows larger than 1% in the absence of action. By the year 2040, the risk of human extinction will have increased substantially, especially if no action will have been taken, but also if too little action will have been taken up to 2040, while even with the best possible programs put in place by the year 2015, there will be a 2% risk of human extinction by 2040, e.g. due to war over what action to take, or due to political opposition or errors making such programs ineffective or even counter-productive.

In conclusion, it is highly likely that the risk of human extinction already now is intolerably high and rising with every moment passing with little or no action taken to reduce the risk. The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.


Links

• Intergovernmental Panel on Climate Change (IPCC) WGI Fifth Assessment Report (AR5), Final Draft (7 June 2013), page 168.
http://www.climatechange2013.org/images/uploads/WGIAR5_WGI-12Doc2b_FinalDraft_Chapter02.pdf

• Intergovernmental Panel on Climate Change (IPCC) WGI Fifth Assessment Report (AR5), Final Draft (7 June 2013), Figure 12.5.
http://www.climatechange2013.org/images/uploads/WGIAR5_WGI-12Doc2b_FinalDraft_Chapter12.pdf

• An adaptability limit to climate change due to heat stress - by Steven C. Sherwood & Matthew Huber
http://www.pnas.org/content/early/2010/04/26/0913352107.full.pdf

• Ocean Temperature Rise - by Sam Carana
https://arctic-news.blogspot.com/2014/10/ocean-temperature-rise.html

• Methane release from the East Siberian Arctic Shelf and the Potential for Abrupt Climate Change - by Natalia Shakhova & Igor Semiletov
http://symposium2010.serdp-estcp.org/content/download/8914/107496/version/3/file/1A_Shakhova_Final.pdf

• Anomalies of methane in the atmosphere over the East Siberian shelf: Is there any sign of methane leakage from shallow shelf hydrates? - by Shakhova, Semiletov, Salyuk & Kosmach  http://www.cosis.net/abstracts/EGU2008/01526/EGU2008-A-01526.pdf

• Mantle Methane - by Malcolm Light
https://arctic-news.blogspot.com/2014/02/mantle-methane.html

• Evidence linking Arctic amplification to extreme weather in mid-latitudes - by Jennifer A. Francis and S.J. Vavrus, in: Geophysical Research Letters 39 (6):. doi:10.1029/2012GL051000
http://onlinelibrary.wiley.com/doi/10.1029/2012GL051000/abstract

• Near-Term Human Extinction - by Sam Carana
https://arctic-news.blogspot.com/2014/04/near-term-human-extinction.html

• Warm waters threaten to trigger huge methane eruptions from Arctic Ocean seafloor - by Sam Carana
https://arctic-news.blogspot.com/2014/08/warm-waters-threaten-to-trigger-huge-methane-releases-from-arctic-ocean-seafloor.html

• How many deaths could result from failure to act on climate change? - by Sam Carana
https://arctic-news.blogspot.com/2014/05/how-many-deaths-could-result-from-failure-to-act-on-climate-change.html

• Methane linked to Seismic Activity in the Arctic - by Malcolm P. Light & Sam Carana
https://arctic-news.blogspot.com/p/seismic-activity.html

• Wild Weather Swings - by Sam Carana
https://arctic-news.blogspot.com/2014/10/wild-weather-swings.html

• Four Hiroshima bombs a second: how we imagine climate change - by Sam Carana
https://arctic-news.blogspot.com/2013/08/four-hiroshima-bombs-second-how-we-imagine-climate-change.html

• Polar jet stream appears hugely deformed
https://arctic-news.blogspot.com/2012/12/polar-jet-stream-appears-hugely-deformed.html

• Near-Term Human Extinction
https://arctic-news.blogspot.com/2014/04/near-term-human-extinction.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html


Sunday, November 2, 2014

Methane Erupting From East Siberian Arctic Shelf

Methane is erupting in huge amounts from the seafloor of the Arctic Ocean, as illustrated by the images below, showing methane over the East Siberian Arctic Shelf on October 31, 2014.

The top image on the right shows methane at an altitude of 19,820 feet (6,041 m), on October 31, 2014, pm, as captured by the MetOp1 satellite.

The middle image shows the location of the seas north of Siberia, and shows methane over the Arctic Ocean close to sea level, for reference.

The bottom image is an animation, starting at an altitude close to sea level and rising over 25 frames to an altitude of 19,820 feet (6,041 m).

As altitude increases, the methane can be seen emerging from the Laptev Sea at first, then spreading over further parts of the Arctic Ocean.

The yellow color indicates that methane is present at levels of 1950 ppb or higher.

High CO2 levels over Arctic Ocean

As in the previous post, an image has been added (below) showing recent carbon dioxide levels. Close to ground level (or rather sea level), mean CO2 level increased to 402 ppm on November 1, 2014 am, as measured by the MetOp-1 satellite.


The image below shows a comparison between CO2 (left) and methane (right).

[ Image added later, Ed. Click on image to enlarge ]
Above images indicate that large amounts of methane are broken down at higher latitudes on the Northern Hemisphere, especially over the Arctic Ocean.

Large methane eruptions from the seafloor of Arctic Ocean continue

The two images below [added later, ed.] further confirm the huge size of the methane erupting from the seafloor of the Arctic Ocean. The image directly below shows that levels as high as 2362 ppb were recorded on November 5, 2014 p.m.by the MetOp-1 satellite at an altitude of 14,385 ft (4,384 m) altitude. The image also shows that the methane is predominantly visible over the Arctic Ocean, further confirming that this is indeed the cause of the continued high methane levels.


The recent methane eruptions from the seafloor of the Arctic Ocean also appear to be pushing up methane levels at Mauna Loa, Hawaii, as measured by NOAA on November 6, 2014, as illustrated by the combination image below showing daily averages (left) and hourly averages (right).


Methane eruptions from Arctic Ocean seafloor look set to continue for months to come

As oceans keep warming, the Gulf Stream
will keep moving ocean heat into the Arctic Ocean, and ever more methane threatens to erupt from the seafloor of the Arctic Ocean.

The image on the right shows the huge sea surface temperature anomalies off the coast of North America and in the Arctic. Heat in the North Atlantic will take some time to travel to the Arctic Ocean, so this heat has yet to arrive there and contribute to cause further methane eruptions.

Nations are ignoring the growing dangers and keep each seeking a bigger share of a 'carbon budget', but in reality there is no carbon budget to divide. Instead, there is a huge debt built up by a joint failure of nations to act on pollution.

Increased methane eruptions from the seafloor of the Arctic Ocean threaten to further accelerate warming in the Arctic, in turn resulting in ever more methane being released, as illustrated in the image below, from an earlier post.

Methane in historic perspective

The image below shows that global methane levels have risen from 723 ppb in 1755 to 1839 ppb in 2014, a rise of more than 254%. Growth did flatten down for a few years in the early 2000s, but the overall rise does not appear to slow down.

The right-end of this graph is shown in greater detail on the image below, which also has a trendline extended to the year 2021, against a background of methane levels measured by the MetOp-1 satellite on November 2, 2014, p.m.

Note that the image used as background in the plot area has different axis labels, i.e. latitude for the vertical axis and longitude for the horizontal axis. The image below gives the levels associated with the colors on the background image, with yellow indicating levels of 1950 parts per billion (ppb) and higher.


Remember that the level of 723 ppb in 1755 was not a paleo-historic low, but instead was the high peak of a Milankovitch Cycle. The image below further illustrates this point.


And so does the image below, by Reg Morrison.


Comprehensive and effective action needed

The situation is dire and calls for comprehensive and effective action. The Climate Plan seeks emission cuts, removal of pollution from soils, oceans and atmosphere, and further action, as illustrated by the image below, from an earlier post.




Tuesday, October 14, 2014

Royal Society snubs important Arctic scientists and their research

by Dorsi Diaz

Nick Breeze interview with East Siberian Arctic Shelf researcher (ESAS) Dr. Natalia Shakhova on why the important news about methane news is not reaching mainstream news. Powerful interests seem to be in the way of Arctic methane education.

A few days ago an important Royal Society meeting took place that presented important research on the current state of the Arctic. Called ‘Arctic sea ice reduction: the evidence, models, and global impacts’, the event was held in London, England. It was advertised as a “Scientific discussion meeting organised by Dr Daniel Feltham, Dr Sheldon Bacon, Dr Mark Brandon and Professor (Emeritus) Julian Hunt FRS.”

Powerful interests seem to be standing in the way of
important research on 
methane and a dwindling Arctic.
Nick Breeze, Dorsi Diaz
The presenters and attendees there included a list of over 200 important climate scientists from different parts of the world. One could assume from the list of workshops that this conference was being held to talk about and discuss the critical loss of ice we are seeing in the Arctic, and that the purpose of the meeting would be to include any and all data relevant to this never-before-seen-in-human-history event.

People following the rapid loss of Arctic ice and all that data could even be forgiven for feelings of excitement and hope that at least someone is ‘working on it’. We could have assumed that communication was one of the goals here, especially since the conference was tweeted widely, even from inside the conference. Following those tweets we could also have assumed that it was intended that people in the conference were to share information that was important not only about climate change but the loss of the Arctic sea ice.

Such a conference sounds like a great idea, doesn't it? We could have a cause for hope and the organizers seemed transparent, even going so far as to tweet plans. But such assumptions and presumptions would have been misplaced. Instead, what happened has turned into what has been called a Royal Society snubbing of scientists: a brouhaha has developed both in scientific circles and the world wide web, and has now raised serious questions. The main issue was that cutting edge scientists Dr Shakhova and Dr Semiletov were not even invited to present or discuss their very recent findings on important Arctic sea ice and methane releases.

Who are they and what did they have to offer to this conference? Perhaps it was an ‘accident’ that they were not invited? Maybe they were just not on the guest list? Or, if they were deliberately not invited, what could be the reason?

As it turns out Dr Shakhova & Dr Semiletov had just returned from a crucial expedition to the Arctic. The Swerus C3 expedition was conveyed aboard the icebreaker Oden. The goal was to gather data about the Arctic, in particular concerning methane hydrates and systems interaction.

Arctic Expedition

Martin Jakobsson, Professor at Stockholm University and chief scientist on Leg 2, says: “SWERUS-C3 is a two-leg Swedish-Russian-US cooperation that will investigate the linkages between climate, the cryosphere, and carbon. Leg one of the expedition departed from Tromsø, Norway, on 5 July and travelled along the Russian Arctic coast to reach Barrow, Alaska, where a change-over of research staff and crew took place on 20 August. On 21 August SWERUS-C3 set off for its return journey back to Tromsø, this time over the Lomonosov Ridge, an underwater mountain range.”

Jakobsson continues: “During the expedition's second leg we studied the warm Atlantic water that flows into the Arctic Ocean and pockmarks at 900-meter depths as well as the enormous tracks on the ocean floor left by previous ice sheets found in the central Arctic Ocean. The material will be able to provide new perspectives on Arctic sea ice development and history as well as stability of gas hydrates along the Arctic continental shelf.”

Findings in the Arctic have not been particularly reassuring; in fact they portend a dire scenario. A press release from University of Stockholm described that they discovered: “Vast methane plumes escaping from the seafloor of the Laptev continental slope. These early glimpses of what may be in store for a warming Arctic Ocean could help scientists project the future releases of the strong greenhouse gas methane from the Arctic Ocean.”

This could all be read as some mere diplomatic or career-based tussle among scientists, or some type of television drama happening at an obscure conference of less-than household names, so why would the average reader be interested in what this has to do with life on earth?

It does have everything to do with every being that inhabits this planet. To put it into context: Arctic events are turning into a planetary emergency and are developing as you read. Key is the full meltdown of Arctic sea ice, akin to our planetary air conditioner going kaput. Please see the startling Arctic Death Spiral photo here to check just how little Arctic ice is left: Arctic Death Spiral 1979-2013 ( Sea Ice Decline / Deglaciation)

Key words: Planetary emergency

A recent article in USA Today entitled Study: Earth in the midst of sixth mass extinction states: “The loss and decline of animals around the world — caused by habitat loss and global climate disruption — mean we're in the midst of a ‘sixth mass extinction’ of life on Earth, according to several studies out Thursday in the journal Science. One study found that although the human population has doubled in the past 35 years, the number of invertebrate animals – such as beetles, butterflies, spiders and worms – has decreased by 45% during that same period.” Simple Google searches on this topic allow one to uncover a recent addition of many such articles on the same topic.

To be clear, I have the utmost respect for the scientific community and what they have contributed to the advancement of science. I have interviewed some, and helped give voice to the work of scientists, professors, teachers. and experts: I believe in open communication. I believe that when there is a huge problem as in this case of our planetary emergency or ‘6th mass extinction event’, we need all hands on deck, especially the ones out there on the front lines. Dr Shakhova & Dr Semiletov are two of these.

According to computer modelling, our ‘Arctic air conditioner’ was supposed to stay intact and run effectively for many years. Previously the year 2100 was said to have been the year we would really see all ‘he##’ break loose. Now we realize that those models were way off. In fact, our ‘air-conditioner’ is self-destructing more every minute, causing a meandering jet stream which is already reeking climate havoc around the world: typhoons, hurricanes, tornadoes, and other such catastrophic climate events are more commonplace. Indeed, climate change has already become downright nasty. What we were told would not happen until much later is actually taking place right now.

Scientists and governments realize we have a great big problem and have started doing lots and lots of research into our ‘Arctic air conditioner’. Experts were sent to view the problem, Dr Shakhova & Dr Semiletov on board, and told to report back their findings.

The Problem

The air conditioning experts that were sent to check on the problem were not invited to address the Royal Society event to report back, nor to even discuss the air conditioner break down. To be fair, some of them were called upon, including Professor Peter Wadhams (although other significant issues arose to do with Prof Wadhams too). However, the only reporting scientists who were called upon to report on the problem were those same who have been using those same types of conservative computer modeling methods that have traditionally proved to be seriously behind the time actual timeline followed by the Arctic ice.

Clearly it is has been safe to say for years now that those computer modeling methods are more conservative than accurate, and are now in fact far and away off the mark of accuracy. Even a non-scientist can clearly see there is a deeply serious divide between the predictions of conservative models and the dramatic melting events of current days.

The Royal Society plans a ‘communicative’ conference on Arctic sea-ice and leaves out experts recently returned from a life-threatening expedition specifically to review the problem. Meanwhile, others in comfortable office chairs merely crunch data for help guessing at possible problem scenarios. To whom would you listen? Would you trust just one expert or would you call on as many experts as possible to pool resources? Do you feel safe just listening to one side of the story without real-world observations, data, and discussion being included?

created by Zaven Ohannessian with screenshot from interview with Dr. Natalia Shakhova, by Nick Breeze

Imagine for a minute that you are Shakhova and her colleagues. You have been sent to view and report back on the broken air conditioner. You have observed rapid and almost unbelievable changes taking place on your expeditions. It is falling apart and leaking methane. You know that methane is many times more potent and powerful than carbon dioxide and can cause way more damage to the earth if lots of it are coming out. In fact, you have not seen such massive changes before on numerous previous expeditions. You are deeply concerned and really need to let others involved with the ‘Arctic air conditioner’ know what you have seen.

But, when a chance to talk about your data and observations comes up, you are not invited. The very important meeting goes on without you and nothing that you have seen, documented, and observed will become public knowledge. You are stunned by this snub. You want to be able to tell them and therefore the world what is going on. You want to get this information out so that they will let others know what is happening to our ‘Arctic air conditioner’ and the symptoms that its melt are causing.

I can only imagine how that must have felt, sitting on this newest and very important data and not being able to share. Politely though, Dr Shakhova writes a letter about her exclusion, and asks to be able to present her data and observations. She sends a letter to Sir Paul Nurse at the Royal Academy (via climate communication journalist Nick Breeze):

October 4th, 2014
By mail and email

Dear Sir Paul Nurse,

We are pleased that the Royal Society recognizes the value of Arctic science and hosted an important scientific meeting last week, organised by Dr D. Feltham, Dr S. Bacon, Dr M. Brandon, and Professor Emeritus J. Hunt (https://royalsociety.org/events/2014/arctic-sea-ice/).

Our colleagues and we have been studying the East Siberian Arctic Shelf (ESAS) for more than 20 years and have detailed observational knowledge of changes occurring in this region, as documented by publications in leading journals such as Science, Nature, and Nature Geosciences. During these years, we performed more than 20 all-seasonal expeditions that allowed us to accumulate a large and comprehensive data set consisting of hydrological, biogeochemical, and geophysical data and providing a quality of coverage that is hard to achieve, even in more accessible areas of the World Ocean.

To date, we are the only scientists to have long-term observational data on methane in the ESAS. Despite peculiarities in regulation that limit access of foreign scientists to the Russian Exclusive Economic Zone, where the ESAS is located, over the years we have welcomed scientists from Sweden, the USA, The Netherlands, the UK, and other countries to work alongside us. A large international expedition performed in 2008 (ISSS-2008) was recognized as the best biogeochemical study of the IPY (2007-2008). The knowledge and experience we accumulated throughout these years of work laid the basis for an extensive Russian-Swedish expedition onboard I/B ODEN (SWERUS-3) that allowed more than 80 scientists from all over the world to collect more data from this unique area. The expedition was successfully concluded just a few days ago.

To our dismay, we were not invited to present our data at the Royal Society meeting. Furthermore, this week we discovered, via a twitter Storify summary (circulated by Dr. Brandon), that Dr. G. Schmidt was instead invited to discuss the methane issue and explicitly attacked our work using the model of another scholar, whose modelling effort is based on theoretical, untested assumptions having nothing to do with observations in the ESAS. While Dr. Schmidt has expertise in climate modelling, he is an expert neither on methane, nor on this region of the Arctic. Both scientists therefore have no observational knowledge on methane and associated processes in this area. Let us recall that your motto “Nullus in verba” was chosen by the founders of the Royal Society to express their resistance to the domination of authority; the principle so expressed requires all claims to be supported by facts that have been established by experiment. In our opinion, not only the words but also the actions of the organizers deliberately betrayed the principles of the Royal Society as expressed by the words “Nullus in verba.”

In addition, we would like to highlight the Anglo-American bias in the speaker list. It is worrisome that Russian scientific knowledge was missing, and therefore marginalized, despite a long history of outstanding Russian contributions to Arctic science. Being Russian scientists, we believe that prejudice against Russian science is currently growing due to political disagreements with the actions of the Russian government. This restricts our access to international scientific journals, which have become exceptionally demanding when it comes to publication of our work compared to the work of others on similar topics. We realize that the results of our work may interfere with the crucial interests of some powerful agencies and institutions; however, we believe that it was not the intent of the Royal Society to allow political considerations to override scientific integrity.

We understand that there can be scientific debate on this crucial topic as it relates to climate. However, it is biased to present only one side of the debate, the side based on theoretical assumptions and modelling. In our opinion, it was unfair to prevent us from presenting our more-than-decadal data, given that more than 200 scientists were invited to participate in debates. Furthermore, we are concerned that the Royal Society proceedings from this scientific meeting will be unbalanced to an unacceptable degree (which is what has happened on social media).

Consequently, we formally request the equal opportunity to present our data before you and other participants of this Royal Society meeting on the Arctic and that you as organizers refrain from producing any official proceedings before we are allowed to speak.

Sincerely,
On behalf of more than 30 scientists,
Natalia Shakhova and Igor Semiletov

Voicing concerns

Among concerned people following this closely is part-time Professor Paul Beckwith, PhD student of abrupt climate change. Beckwith offers his concerns on this latest turn of events at the Royal Society in his newest video: A little chat on methane

Beckwith’s latest statement about his overall assessment of the Arctic situation and where we stand is not particularly comforting either: Our climate system is presently undergoing preliminary stages of abrupt climate change. If allowed to continue, the planetary climate system is quite capable of undergoing an average global temperature increase of 5°C to 6°C over a decade or two. Precedence for changes at such a large rate can be found at numerous times in the paleo-records. From my chair, I conclude that it is vital that we slash greenhouse gas emissions and undergo a crash program of climate engineering to cool the Arctic region and keep the methane in place in the permafrost and ocean sediments.”

Beckwith points at research in the U.S., such as a study published in 2012 by Lawrence Livermore Laboratory researchers who sum up the situation as follows: “The question is not whether but how much and how quickly methane will be released due to warming, and whether it will be enough to trigger a runaway feedback loop.” The study, earlier discussed at the Arctic-news blog, concludes: “In our review of Arctic methane sources, we found that significant gaps in understanding remain of the mechanisms, magnitude, and likelihood of Arctic methane release. No authors stated that catastrophic release of methane—e.g., hundreds of Gt over years to decades—is the expected near-term outcome. But until the mechanisms are better-understood, such a catastrophe cannot be ruled out. The evidence is strong that methane had a role in past warming events, but the particular source and release mechanisms of methane in past warming is not settled. Whereas most authors indicated that a catastrophic release is unlikely, a chronic, climatically significant release of Arctic methane appears plausible. Such a release could undermine or overwhelm gradual emissions reductions made elsewhere, and thus warrants technological intervention.”

Beckwith further points at paper by 21 Russian scientists, including Shakhova and Semiletov, who sum up the situation as follows: “The emission of methane in several areas of the East Siberian Shelf is massive to the extent that growth in the methane concentrations in the atmosphere to values capable of causing a considerable and even catastrophic warming on the Earth is possible.”

In the meantime, we wait with anticipation to see what the U.K. Royal Society's response will be, and if we will be able to hear of Shakhova and Semiletov's latest data and observations on the state of the Arctic. I, for one, would like to know everything about how the ‘Arctic air conditioner’ is really doing; wouldn't you?

Planetary Emergency Update

As I write the text above, a new article is released: “It’s Worse Than We Thought” — New Study Finds That Earth is Warming Far Faster Than Expected. A small excerpt: “Earlier this week, a new study emerged showing that the world was indeed warming far faster than expected. The study, which aimed sensors at the top 2,000 feet of the World Ocean, found that waters had warmed to a far greater extent than our limited models, satellites, and sensors had captured. In particular, the Southern Ocean showed much greater warming than was previously anticipated.”

Many thanks to Julian Warmington, Associate Professor at BUFS, Busan University of Foreign Studies, for editing this news report.

Related

Climate Change: Paul Beckwith discusses the threat of methane
Dr. Malcolm Light interview on climate change: 'Extreme national emergency'
Special presentations on climate change and its effects by Dr. Guy McPherson



Thursday, September 18, 2014

Warm water flowing into Arctic Ocean

by Harold Hensel

For the first time in thousands of years, warm water is flowing into the Arctic Ocean. Warm water from the deep ocean is showing up on surface images. There is no way to put this into the context of 'normal.' Historic temperatures have kept the Arctic frozen on an even keel for thousands of years. Even if there was a 'natural cycle' it has been completely overridden by the astonishing amount of pollution that is going into the atmosphere.


Over 90 percent of Earth's energy imbalance has been going into the oceans, almost unnoticed by people keeping track of the temperatures in the atmosphere. The warmer ocean water is going through the Bering Strait and into the Chukchi Sea, Barents Sea, East Siberian Sea and worst of all, the Laptev Sea.

The Gakkel Ridge crosses the Arctic Ocean from Greenland to the Laptev Sea, see earlier post
There are methane hydrate concentrations in all of these areas up to 1,500 feet deep for miles and miles. There are fractures here that give mantel methane a route to the surface that have been safely sealed by ice. The hydrates and seals are thawing.

In 2013, huge amounts of methane erupted over the Gakkel Ridge and
the Laptev Sea
in October, with levels as high as 2662 ppb on November 9.
In 2014, levels over 2400 ppb were recorded on September 14, 15 and 16.

On the Greenland side, warm water is flowing into the Arctic from the Labrador, Greenland and Norway seas. The international SWERUSs-C3 expedition on the icebreaker Oden is recording 'mega flares' of methane. There are many factors involved in warming the Arctic Ocean, but warm water flowing into it is one of the worst.

Harold Hensel
Cedar Rapids

Thursday, September 4, 2014

State Of Extreme Emergency

by Malcolm Light

PRESIDENT OBAMA MUST DECLARE A STATE OF EXTREME NATIONAL EMERGENCY AND CEASE ORCHESTRATING A WAR WITH RUSSIA. HE MUST RECALL HIS ENTIRE ARMY AND NAVY PERSONNEL TO THE UNITED STATES TO BEGIN A MASSIVE CONVERSION OF THE US ENERGY SYSTEM TO SOLAR AND WIND POWER. THIS CONVERSION MUST RESULT IN ALL 600 COAL POWER STATIONS AND NUCLEAR STATIONS BEING COMPLETELY SHUT DOWN IN THE NEXT 5 TO 10 YEARS. ALL SURFACE TRANSPORT BOTH PRIVATE AND PUBLIC MUST BE ENTIRELY ELECTRIFIED AND AIR TRANSPORT CONVERTED TO METHANE OR HYDROGEN FUEL. IF THIS IS NOT DONE, HUMANITY WILL BE FACING TOTAL EXTINCTION IN AN ARCTIC METHANE FIRESTORM BETWEEN 2040 AND 2050.


The US and Canada must cut their global emissions of carbon dioxide by 90% in the next 10 to 15 years, otherwise they will be become an instrument of mass destruction of the Earth and its entire human population. Recovery of the United States economy from the financial crisis has been very unsoundly based by the present Administration on an extremely hazardous "all of the above" energy policy that has allowed continent wide gas fracking, coal and oil sand oil mining and the return of widespread drilling to the Gulf. Coast. This large amount of fossil fuel has to be transported and sold which has caused extensive spills, explosions and confrontations with US citizens over fracking and the Keystone XL pipeline. Gas fracking is in the process of destroying the entire aquifer systems of the United States and causing widespread earthquakes. The oil spills are doing the same to the surface river run off.

We are now facing a devastating final show down with Mother Nature, which is being massively accelerated by the filthy extraction of fossil fuels by US and Canada by gas fracking, coal and tar sand mining and continent wide bitumen transport. The United States and other developed nations made a fatal mistake by refusing to sign the original Kyoto protocols. The United States and Canada must now cease all their fossil fuel extraction and go entirely onto renewable energy in the next 10 to 15 years otherwise they will be guilty of planetary ecocide - genocide by the 2050's.

The volume transport of the Gulf Stream has increased by three times since the 1940's due to the rising atmospheric pressure difference set up between the polluted, greenhouse gas rich air above North America and the marine Atlantic Air. The increasingly heated Gulf Stream with its associated high winds and energy rich weather systems then flows NE to Europe where it recently pummeled Great Britain with catastrophic storms. Other branches of the Gulf Stream then enter the Arctic and disassociate the subsea Arctic methane hydrate seals on subsea and deep high - pressure mantle methane reservoirs below the Eurasian Basin- Laptev Sea transition. This is releasing increasing amounts of methane into the atmosphere producing anomalous temperatures, greater than 20°C above average. Over very short time periods of a few days to a few months the atmospheric methane has a global warming potential from 1000 to 100 times that of carbon dioxide.


There are such massive reserves of methane in the subsea Arctic methane hydrates, that if only a few percent of them are disassociated, they will lead to a jump in the average temperature of the Earth's atmosphere by 10°C and produce a "Permian" style major extinction event which will kill us all. The whole northern hemisphere is now covered by a thickening atmospheric methane global warming veil that is spreading southwards at about 1 km a day and it already totally envelopes the United States. A giant hole in the equatorial ozone layer has also been discovered in the west Pacific which acts like an elevator transferring methane from lower altitudes to the stratosphere where it already forms a dense equatorial global warming stratospheric band that is spreading into the Polar regions.


During the last winter, the high Arctic winter temperatures and pressures have displaced the normal freezing Arctic Air south into Canada and the United States producing never before seen, freezing winter storms and massive power failures. When the Arctic ice cap finally melts towards the end of next year, the Arctic sea will be aggressively heated by the sun and the Gulf Stream. The cold Arctic air will then be confined to the Greenland Ice cap and the hot globally warmed Arctic air with its methane will flow south to the United States to further heat up the Gulf Stream, setting up an anticlockwise circulation around Greenland. Under these circumstances Great Britain and Europe must expect even more catastrophic storm systems, hurricane force winds and massive flooding after the end of next year due to a further acceleration in the energy transport of the Gulf Stream. If this process continues unchecked the mean temperature of the atmosphere will rise a further 8° centigrade and we will be facing global deglaciation, a more than 200 feet rise in sea level rise and a major terminal extinction event by the 2050's.



Wednesday, August 13, 2014

Horrific Methane Eruptions in East Siberian Sea

A catastrophe of unimaginable propertions is unfolding in the Arctic Ocean. Huge quantities of methane are erupting from the seafloor of the East Siberian Sea and entering the atmosphere over the Arctic Ocean.


As the top image above shows, peak levels as high as 2363 ppb were recorded at an altitude of 19,820 ft (6041 m) on the morning of August 12, 2014. The middle image shows that huge quantities of methane continued to be present over the East Siberian Sea that afternoon, while the bottom image shows that methane levels as high as 2441 ppb were recorded a few days earlier, further indicating that the methane did indeed originate from the seafloor of the East Siberian Sea.

On August 12, 2014, peak methane levels at higher altitudes were even higher than the readings mentioned on above image. Levels as high as 2367 ppb were reached at an altitude of 36,850 ft (11,232 m). Such high levels have become possible as the huge quantities of methane that were released from the seafloor of the Arctic Ocean over the period from October 2013 to March 2014, have meanwhile descended to lower latitudes where they show up at higher altitudes.

Methane eruptions from the Arctic Ocean's seafloor helped push up mean global methane levels to readings as high as 1832 ppb on August 12, 2014.

Ironically, the methane started to erupt just as an international team of scientists from Sweden, Russia and the U.S. (SWERUS-C3), visiting the Arctic Ocean to measure methane, had ended their research.

Örjan Gustafsson describes part of their work: “Using the mid-water sonar, we mapped out an area of several kilometers where bubbles were filling the water column from depths of 200 to 500 m. During the preceding 48 h we have performed station work in two areas on the shallow shelf with depths of 60-70m where we discovered over 100 new methane seep sites.”

Örjan Gustafsson adds that “a tongue of relatively warm Atlantic water, with a core at depths of 200–600 m may have warmed up some in recent years. As this Atlantic water, the last remnants of the Gulf Stream, propagates eastward along the upper slope of the East Siberian margin, our SWERUS-C3 program is hypothesizing that this heating may lead to destabilization of upper portion of the slope methane hydrates.”

Schematics of key components of the Arctic climate-cryosphere-carbon system that are addressed by the SWE-C3 Program. a,b) Sonar images of gas plumes in the water column caused by sea floor venting of methane (a: slope west of Svalbard, Westbrook et al., 2009; b: ESAO, Shakhova et al., 2010, Science). c) Coastal erosion of organic-rich Yedoma permafrost, Muostoh Island, SE Laptev Sea. d) multibeam image showing pockmarks from gas venting off the East Siberian shelf. e) distribution of Yedoma permafrost in NE Siberia. f) Atmospheric venting of CH₄, CO₂. (SWERUS-C3)
Örjan Gustafsson further adds that SWERUS-C3 researchers have on earlier expeditions documented extensive venting of methane from the subsea system to the atmosphere over the East Siberian Arctic Shelf.

In 2010, team members Natalia Shakhova and Igor Semiletov estimated the accumulated methane potential for the Eastern Siberian Arctic Shelf alone to be as follows:
- organic carbon in permafrost of about 500 Gt;
- about 1000 Gt in hydrate deposits; and
- about 700 Gt in free gas beneath the gas hydrate stability zone.

Back in 2008, Shakhova et al. wrote a paper warning that “we consider release of up to 50 Gt of predicted amount of hydrate storage as highly possible for abrupt release at any time.”

Last year, a team of researchers including Professor Peter Wadhams calculated that such a 50 Gt release would cause global damage with a price-tag of $60 trillion.

As Prof Wadhams explains in the video below: “We really have no choice except to seriously consider the use of geoengineering.”



Sea surface temperatures as high as 18.8°C are now recorded at locations where warm water from the Pacific Ocean is threatening to invade the Arctic Ocean.

At the same time, huge amounts of very warm water are carried into the Arctic Ocean by the Gulf Stream through the North Atlantic. The image below illustrates how the Gulf Stream brings very warm water to the edge of the sea ice.

Waters close to Svalbard reached temperatures as high as 62°F (16.4°C) on July 29, 2014 (green circle). Note that the image below shows sea surface temperatures only. At greater depths (say about 300 m), the Gulf Stream is pushing even warmer water through the Greenland Sea than temperatures at the sea surface.

Since the passage west of Svalbard is rather shallow, a lot of this very warm water comes to the surface at that spot, resulting in an anomaly of 11.1°C. The high sea surface temperatures west of Svalbard thus show that the Gulf Stream can carry very warm water (warmer than 16°C) at greater depths and is pushing this underneath the sea ice north of Svalbard. Similarly, warm water from greater depth comes to the surface where the Gulf Stream pushes it against the west coast of Novaya Zemlya.


[ click on image to enlarge ]
As Malcolm Light writes in an earlier post: The West Spitzbergen Current dives under the Arctic ice pack west of Svalbard, continuing as the Yermak Branch (YB on map) into the Nansen Basin, while the Norwegian Current runs along the southern continental shelf of the Arctic Ocean, its hottest core zone at 300 metres depth destabilizing the methane hydrates en route to where the Eurasian Basin meets the Laptev Sea, a region of extreme methane hydrate destabilization and methane emissions.

The images below give an impression of the amount of heat transported into the Arctic Ocean.



The image below gives an idea how methane eruptions from the seafloor of the Arctic Ocean could unfold over the coming decades. For more on this image, see this post and this page.


As said, the situation is dire and calls for comprehensive and effective action, as discussed at the Climate Plan blog at climateplan.blogspot.com and as illustrated by the image below.





Monday, July 21, 2014

Methane rising through fractures

by Harold Hensel



Methane is colorless and odorless and it is right above us in the atmosphere.

In addition to other sources, methane has traveled from the Arctic and has blanketed most of the Northern Hemisphere.

The well-known sources are methane hydrates from the Arctic Ocean floor and methane coming from thawing permafrost.

There is also another less well-known source. During the geologic history of the Arctic area, tectonic plates have spread, crashed into each other and subducted under one another. Geologists call the Arctic a tectonic plate junkyard. There are numerous fractures in the earth's crust there.

A quote from earth scientist Malcolm Light: ‘Mantle methane formed from the reduction of oceanic carbonates by water in the presence of iron (II) oxides buried to depths of 100 km to 300 km in the Asthenosphere and at temperatures above 1200°C.’ This is a nonorganic source of methane formed near the earth's mantel. Katey Walter Anthony from the University of Alaska calls it geologic methane.

Vast reservoirs of methane have been created by chemical reactions and stored near the mantle under a lot of pressure for millennia.

The methane has had a route to the surface through the fractures in the earth's crust, but the fractures have been sealed over by ice. Now for the first time in human history, the ice sealing the fractures is thawing. Methane is rising through the fractures and into the atmo­sphere. This methane has migrated to the United States and is over us.




Harold Hensel, 
Cedar Rapids.
Earlier published as 
Letter to the Editor 
Cedar Rapids Gazette 
(without images)


Related

- Study: Geologic methane seeping from thawing cryosphere - by Marmian Grimes
http://uafcornerstone.net/study-geologic-methane-seeping-from-thawing-cryosphere

- Focus on Methane - by Malcolm Light
http://arctic-news.blogspot.com/2014/07/focus-on-methane.html

- Arctic Atmospheric Methane Global Warming Veil - by Malcolm Light, Harold Hensel and Sam Carana

- Mantle Methane - by Malcolm Light



Thursday, March 6, 2014

Presentation by Guy McPherson

Presentation by Guy McPherson, February 2014, Traditions Cafe, Olympia WA.



View the video of the presentation below:



Friday, February 28, 2014

Mantle Methane

High Rate of Spreading of the the Arctic Atmospheric Global Warming Veil South of the Gulf Coast is Driven by Deep Seated Methane Release from Giant Mantle Geopressured-Geothermal Reservoirs below the Siberian Craton at Depths of 100 km to 300 km and at Temperatures above 1200 Degrees Celsius

by Malcolm P.R. Light
February 28th, 2014

Abstract

During the Late Permian (Figures 16 to 19) there was a major global extinction event which resulted in a large loss of species caused by catastrophic methane eruptions from destabilization of subsea methane hydrates in the Paleo-Arctic (Figures 16, 17 and 13a)(Wignall 2009). Extreme global warming was caused when vast volumes of carbon dioxide were released into the atmosphere from the widespread eruption of volcanics in northern Siberia (Siberian Traps Large Igneous Province) (Figure 17; Wignall 2009) whose main source zone on land in northern Siberia is not a great distance from the present trend of the Gakkel Ridge and the Enrico Pv Anomaly extreme methane emission zone (Figure 17). Because the Arctic forms a graveyard for subducted plates, the mantle there is highly fractured and it is also primary source zone for mantle methane formed from the reduction of oceanic carbonates by water in the presence of iron (II) oxides buried to depths of 100 km to 300 km in the Asthenosphere and at temperatures above 1200°C (Figures 12, 13a and 15) (Gaina et al. 2013; Goho 2004; Merali 2004).

In addition to the widespread eruption of volcanics in Northern Siberia in the Late Permian (250 million years ago), swarms of pyroclastic kimberlites erupted between 245 and 228 million years ago along a NNE trending shear system in the mantle which extends up the east flank of the Lena River delta and intersects the Gakkel Ridge slow spreading ridge on the East Siberian Arctic Shelf (Figures 17 to 19, LIP 2013). Cenozoic volcanics also occur to the north and north east of the Lena River delta marking the trend of the slow spreading Gakkel Ridge on the East Siberian Arctic Shelf (Sekretov 1998). All this pyroclastic activity along the slow spreading Gakkel Ridge from the Late Permian to the present is evidence of deep pervasive vertical mantle fracturing and shearing which has formed conduits for the release of carbon dioxide and deeply sourced mantle methane out of the Arctic sea floor and then into the atmosphere (Figures 12, 13a, 15, 17, 18 and 19).

During the Late Permian these events initiated a massive eruption phase along the entire central and north eastern part of the Taimyr Volcanic arc producing an extremely wide and thick sheet-like succession of flood trap lavas and tuffs that spread south eastwards over the Siberian Craton (Figure 17). The massive volume of carbon dioxide released into the atmosphere during these cataclysmic eruptions produced extreme global warming in the air and oceans which dissasocciated the Paleo-Arctic subsea methane hydrates and the methane hydrate seals above the Enrico Pv Anomaly generating a massive seafloor and mantle methane pulse into the atmosphere (Figures 13a and 17)(Wignall. 2009). This release of methane caused the average atmospheric temperature to rise to 26.6°C producing the Major Late Permian Extinction Event (Wignall, 2009). Our present extreme fossil fuel driven carbon dioxide global warming is predicted to produce exactly the same methane release from the subsea Arctic methane hydrates and deep mantle methane from the Enrico Pv Anomaly Extreme Methane Emission Zone by the 2050's, leading to total deglaciation and the extinction of all life on Earth.

What mankind has done in his infinite stupidity, with his extreme hydrocarbon addiction and fossil fuel induced global warming, has opened a giant, long standing (Permian to Recent) geopressured, mantle methane pressure-release safety valve (Enrico Pv Anomaly Extreme Methane Emission Zone) for gases generated between 100 km and 300 km depth and temperatures above 1200°C in the asthenosphere (Figures 4, 6, 12 and 15). This is now a region of massive methane emissions (Carana, 2014). There is now no fast way to reseal this system because it will require extremely quick cooling of the Arctic Ocean, which cannot be achieved in the short time frame we have left to complete the job. Our only hope is to destroy the methane in the water before it gets into the atmosphere and simultaneously destroy the existing atmospheric methane using radio-laser systems (Alamo and Lucy Projects, Light and Carana, 2012, 2013). Scientists at Georgia Tech University have found that at very low temperatures in the ocean, two symbiotic methane eating organisms group together, consume methane in the presence of tungsten and excrete carbon dioxide which then reacts with minerals in the water to form carbonate mounds (Glass et al. 2013). This means that the United States must fund a major project at Georgia Tech to quickly develop the means to grow these methane consuming bacteria in massive quantities with their tungsten enzyme and find the means to deliver them to the Polar oceans as soon as possible.
Introduction

The Extreme Arctic Methane Eruption Zone (a) is located where the Gakkel mid-ocean ridge enters the Laptev Sea at the end of the Eurasian Basin (Figure 1, Wales from IBCAO, 2013). Methane eruption sites also appear at locations (b.) and (c.) north of Svalbard located above old mantle shear faults which also form plate boundaries (Figure 1). In Figure 1 the slow-spreading Gakkel mid-ocean ridge coverges toward the Laptev Sea and Siberia and is spreading in a wedge like fashion at 1.33 cm/year off Greenland to 0.63 cm/year off Siberia (Wales, 2013). The Gakkel mid-ocean ridge formed in the Cenozoic (Palaeocene) 58 million years ago (Wales 2013).

Figure 2 shows two views of the steep eastern end of the Eurasian Basin where the Gakkel Ridge enters the Laptev Sea. It is here that the Extreme Methane Eruption Zone is located as well as the Enrico Pv (pressure sound wave velocity) Anomaly (Gebco 1979; IBCAO 2000, Gusev 2013; Yakovlev et al. 2012). Linear zones of methane emissions north of Svalbard, almost at right angles to the trend of the Gakkel Ridge are probably more deeply sourced methane that has entered along mantle shear fault system and plate boundary zones (Figure 3a, Carana 2014).



The most Extreme Methane Emission Zone in the Arctic occurs at the transition of the Eurasian Basin to the Laptev Sea where the Gakkel Ridge is covered by hydrothermal methane hydrates (Figure 3b and 4, Max and Lowrie 1993, Light 2012) and is most clearly defined on the USGS methane atmospheric concentration map where it forms methane clouds about 2.5 km to 3 km in height (Carana, 2013, 2014). Three distinctly different types of methane emission can be seen on Figure 4 (Light 2012 after Pravettoni, 2009). The western half of the Laptev Sea and Kara Seas were covered by low and fairly constant atmospheric methane concentrations between 2 and 2.5 ppm (Figure 4).

To the east higher more variable methane concentrations occur above the shallow part of the Laptev Sea and East Siberia Sea (2.5 to 5.75 ppm)(Figure 4). A zone of extreme methane emissions lies between these centred at latitude 132° (range 125° to 135°) where the atmospheric methane concentration peaks at about 8.3 ppm (Pravettoni 2009).

The Extreme Methane Emission Zone at the junction of the Laptev Sea and the Eurasian Basin is marked by a particular type of methane hydrate associated with hydrothermal emanations from the slow-spreading Gakkel Ridge (Figure 5; Max and Lowrie 1993). Another belt of these Gakkel Ridge hydrothermal methane hydrates also occurs along the plate boundary zone north and west of Svalbard (Figure 5; Max and Lowrie, 1993). This suggests a much deeper source zone for the methane in these hydrothermal methane hydrate regions than found elsewher in the Arctic.

The location of the Enrico Pv (sound pressure wave velocity) Anomaly at the junction of the Eurasian Basin and Laptev Sea is shown in Figure 6 at 100 km and 220 km depth within the asthenosphere part of the Earth's mantle (from Yakovlev et al. 2012). The Enrico Pv Anomaly occurs beneath the region (Figure 2) where there are deep hydrothermal methane hydrates (Figure 5; Max and Lowrie 1993) and the Extreme Methane Emission Zone occurs (Figure3b Light 2012; Carana 2013, 2014). The centre of the Enrico Pv Anomaly is marked by a pressure sound wave velocity anomaly (dv/V)% of about -1.6 (Yakovlev et al. 2012).

A plate-tectonic oceanic-slab graveyard underlies the Arctic region and is represented by positive anomalies on Figure 7. which probably represent cold subducted oceanic crust and lithosphere (Gaina et al. 2013). The Enrico Pv Anomaly located on the updip edge of one of these subducted oceanic slabs (Figure 7; Gaina et al. 2013).

The global atmospheric methane concentration levels in the last quarter of 2013 and in January 2014 are shown on Figures 8, 9a, 9b (from Carana, 2014; Harold Hensel pers com. 2014).

The latitudinal front of the Methane Global Warming Veil for an 1850 ppb atmospheric methane concentration is clearly visible (the southern boundary of the orange zone) crossing the north end of Baja California and running parallel to, but north of the Gulf Coast (Carana 2014).

The southwards movement of the 1850 ppm atmospheric methane concentration front during one year (Figure 9a from Carana 2014) was used to determine when the Methane Global Warming Veil will completely envelop the Earth.

The likely pressure of the methane source was also estimated, here assumed to be the Extreme Methane Eruption Zone at the transition from the Eurasian Basin to the Laptev Sea.

The rate of spreading of the Methane Global Warming Veil and the fast escalation of the methane concentrations in the Arctic atmosphere through time (Carana, 2012, 2013, 2014) were used to calibrate the actual tropospheric and stratospheric atmospheric methane concentration curve (Figure 10).

This curve fixes the time when the 8°C atmospheric temperature anomaly will be exceeded indicating that total deglaciation and major extinction will occur by about 2053 (Figure 10).

The buildup of the global atmospheric methane concentration (Figure 11) indicates that the oceans should start to boil off at 115°C to 120°C when the atmospheric methane concentration anomaly exceeds 20,000 ppb (20 ppmv) by 2080. The atmospheric temperatures will approach those on the surface of Venus (460°C to 467°C) when the atmospheric methane concentration anomaly reaches 80,000 ppb (80 ppmv) by 2100 (Figure 11).
Bubbles of methane formed from reactions between iron oxide, calcite and water at high temperatures and pressures, during the simulation of conditions in the Earth's Mantle (asthenosphere) (Figure 12, Goho 2004).
The yellow zone on Figure 13a is the region in the asthenosphere below 100 km depth where methane is stable and is generated from the reaction of water and calcite in the presence of iron (II) oxide at temperatures above 1200°C (Merali 2004; Goho 2004; Scott et al. PNAS).




Shallower methane can also be generated in sea water convection cells on the flanks of mid-ocean ridges (Figure 13b), but the required pressure source for the expanding 1850 ppb Global Methane Warming Veil is far to high for this to be the origin of the Extreme Methane Emission Zone.


The relative vertical micro-crack porosity of the Enrico Pv (sound pressure wave velocity) Anomaly has been calculated from sound wave velocities by the O'Connel model (Liu et al. 2001) calibrated to the known porosity of the Anderson et al. model (Figure 14a, Liu et al. 2001; Anderson et al. 1974; Anderson 1989).



The relative porosity of the standard crust and mantle using PREM data (Dziewonski and Anderson, 1981) has also been determined by the same method (Figure 14a).



Typical pressures, temperatures and depths within the Earth's interior are shown in Table 1 with part of the asthenosphere methane generation zone shown in yellow (Braile 2012, Merali 2004; Goho 2004; Scott et al. PNAS). In the Earth's mantle elongated olivine crystals form a large part of the rock (Table 1) and become aligned by vertical flow in the asthenosphere between 100 km and 350 km within rising mid ocean ridge magmas (e.g. the Gakkel Ridge) and in downwelling subduction zones such as the High Arctic (Figures 14b and 14c, Anderson 1989 and Gaina et al. 2013). 

These also represent regions (such as the Enrico Pv Anomaly) where vertical gas filled micro-crack fractures form in regions where geopressured-geothermal methane is generated by the reaction of of calcite, water and iron (II) oxide at temperatures above 1200°C and depths between 100 km and 300 km (Merali 2004; Goho 2004; Scott et al. PNAS).

An estimated relative vertical micro-crack porosity of 0.9% at 220 km depth in the Enrico Pv Anomaly (Figure 15) is 3.5 times larger than the relative horizontal micro-crack porosity of the mean asthenosphere at 220 km calculated from from PREM data (Dziewonski and Anderson 1981). 


At a depth of 100 km in the Enrico Pv Anomaly, the relative vertical micro-crack porosity has halved to 0.43% but it is now almost 11 times higher than the relative horizontal micro-crack porosity of the mean asthenosphere/base lithosphere at 100 km depth (PREM data, Dziewonski and Anderson 1981). It is possible that the relative vertical porosity in the Enrico Pv Anomaly may reach 14% at shallow depths (10 km to 4 km) as this is the estimated carbon dioxide volume in pyroclastic gas charged volcanics at depths of 4 km on the Gakkel Ridge (Sohn 2007). This makes the Enrico Pv Anomaly a very effective vertical conduit for the escape of geopressured-geothermal methane generated in the asthenosphere which will allow it to vent upwards into the lithosphere, crust, ocean and thence into the Arctic atmosphere to form the fast expanding Methane Global Warming Veil.

Note that in the average asthenosphere (PREM data Dziewonski and Anderson, 1981) there appears to be a zero porosity seal line forming a transition from relative horizontal micro-crack porosity within the underlying horizontally micro-cracked and convecting asthenosphere which drives plate tectonics and the relative vertical micro-crack porosity within the upper asthenosphere between 114.4 km and 100 km where vertically rising partial melt magmas accumulate at the base of the lithosphere (Figures 14 and 15). The vertically micro-fractured zone between 114.4 km and 100 km in the asthenosphere also corresponds to the zone between 100 km and 110 km where normal island arc volcanics form vertically rising magmas above a subduction zone from the effect of fluids released into the asthenosphere due to dehydration of the subducting slab of oceanic crust (Lecture 5 2014; Columbia, 2014).

Figure 15 is a north-south schematic cross-section over the Enrico Pv Anomaly (100 km to 220 km depth-Yakovlev et al. 2012) which corresponds to the zone of most extreme methane eruptions along the slow-spreading pyroclastic Gakkel Ridge at the point where the Eurasian Basin abuts the Laptev Sea (Pravettoni 2009; Light 2012). 

This also represents a zone of hydrothermal methane hydrates formed from hydrothermal methane emissions (Max and Lowrie 1993). 

Using the 1850 ppb atmospheric concentration calculated methane global warming veil spreading rate and the estimated pressure of the source regions, the timing of when different depths will be subjected to depressurization in the Enrico Pv Anomaly are shown as dates on the right of the Enrico Pv Anomaly in Figure 15. 

The 1850 ppb methane global warming veil is presently drawing from slightly deeper than 112 km in the upper vertically micro-fractured asthenosphere within the mantle methane generation zone (Merali 2004; Goho 2004; Scott et al. PNAS) and will reach the South Pole by 2046. 

The entire column of geopressured-geothermal methane in the asthenosphere between 100 km to 300 km depth will start to drain via the Enrico Pv Anomaly into the Arctic ocean and atmosphere by 2053 by which time the Earth's atmospheric temperature anomaly will have exceeded 8°C and we will be facing total global deglaciation and a major extinction event (Figure 15).



During the Late Permian (Tartarian - 250 Ma) the tectonic plates were arranged as in Figure 16 (Lawver et al. 2009). This was the time the Siberian Trap volcanics (Large Igneous Province) erupted releasing vast volumes of carbon dioxide into the atmosphere which destabilized the subsea methane hydrates in the Paleo-Arctic and resulted in a major global warming and mass extinction event (Wignall 2009). A Paleo-Arctic Ocaen already existed in the Late Permian, 250 Ma ago as did the location of the Enrico Pv Anomaly extreme methane emission zone (Figures 16 and 17). The Enrico Pv Anomaly which presently forms an extreme Arctic methane emission zone developed at the intersection of the trend of the Gakkel Ridge, the Kara Subduction Zone in the south and the southern plate boundary of the Paleo Arctic Ocean to the north (Figure 17). The Enrico Pv Anomaly was probably also a massive mantle methane eruption vent during the Late Permian Major Extinction Event (Figures 16 and 17).

The widespread Siberian Trap basalts (Large Igneous Province) erupted along the Taimyr Arc on the NW side of the Taimyr Fold Belt and the Siberian Craton (Figures 16, 17 and 18; Ivanov et al. 2008; LIP 2013). Siberian trap carbonatites and alkaline complexes sourced from less than 100 km depth and kimberlites from below 150 km depth intruded between 245 Ma and 225 Ma due to continued easterly subduction along the Taimyr Arc (Late Permian to Triassic) which was partly driven by oceanic crust spreading along the Kara rift on the Barents Plate (235 Ma to 218 Ma)(Figures 17 to 19)(Khain 1994; Zohenstain et al. 1990; LIP 2013; Petrology 2013). 


Present zones of atmospheric methane eruptions occur offshore Svalbard where the Gakkel Ridge is cut by a plate boundary (Figure 17). A linear zone of atmospheric methane eruptions mark out an old shear fault systems in the Gakkel Ridge which is an extension of a north Greenland plate boundary (Figure 17). The distribution of different aged Kimberlites on the Siberian Craton that define a NE trending mantle shear zone are shown in Figures 18 and 19 (Petrology 2013; LIP 2013). The kimberlites get younger to the NE and a major HALIP kimberlite swarm has intruded into the Laptev Sea, as have other Cenozoic intrusives along the probable trend of the Gakkel Ridge across the East Siberian Arctic Shelf (LIP 2013; Sekretov 1998).

The eruption of subsea methane torches from shallow methane hydrate deposits produce a pock-marked ocean floor in the Arctic (Figure 20a, Paull et al. 2007; Carana 2011). These pock-marks contain carbonate mounds (C1, C2) and methane hydrate pingoes (P1, P2) at the top end of methane emission conduits formed by vertical fractures/faults/shears in sediments (Hovland et al. 2006; Carana 2011). 

The pingoes were formed, when methane escaping from methane hydrates depressurized and adiabatically cooled the fractures developing an icy seal for the escaping gas (Hovland et al. 2006; Carana 2011). Similar seals must have formed at the top of the vertical micro-crack fractures in the extreme methane eruption zones during the cooler past, but have now been breached by fossil-fuel carbon-dioxide-pollution-induced global warming, opening the taps on an immense geopressured-geothermal methane reservoir in the mantle between 100 km and 300 km depth (Figures 13a, 15, 20a and 20b). 

The supply of mantle methane gas is so vast that if we are not able to destroy it in the oceans and the atmosphere it will soon lead to our extinction by the mid century (2053)(Light 2014).




Extreme Arctic Methane Eruption Centre and the Origin of the Gas in the Earth's Mantle

Images from NASA (Figures 8, 9a and 9b, Carana 2014) clearly define the low level atmospheric Arctic Methane Global Warming Veil and allow its rate of advance to be determined from the southwards latitudinal movement of the various fronts of the concentration profile (Carana 2013 and 2014). Three atmospheric methane concentration levels are shown on these maps, 1750 ppb; 1850 ppb and more than 1950 ppb (Carana 2013 and 2014). The 1750 ppb methane concentration front is now in the southern hemisphere of the Earth, completely surrounds and is very close to Antarctica (Figure 9b). Its exact boundary is very diffuse and has not been used in this analysis. The atmospheric methane concentration rise between 1850 ppb and 1750 ppb is the reason for the extreme summer heating, with uncontrollable wildfires in Australia which has resulted in a 0.22°C temperature rise in 2013 (Light 2013). At this rate of temperature increase the temperature anomaly in 33 years will be more than 8°C (7.26°C + 0.8°C, the present temperature anomaly) and the world will be facing total deglaciation and extinction between 2047 and 2053.

The southward movement of the 1850 ppb atmospheric methane concentration anomaly is more clearly visible in the northern hemisphere and has been imaged over two identical time periods one year apart (January 1 - 11, 2013 and 2014) by Carana (2014)(Figure 9a). On enhanced versions of these figures the southerly latitudinal advance of the 1850 ppm boundary was determined by its intersection with the coastline of the United States and the determined latitudes used to find the rate of expansion of the growing Arctic methane global warming veil for heights below about 7 km altitude as below (Figure 9a).

The surface area of a spherical zone on a hemisphere of the Earth is equal to 2*Pi*r*h (Larousse and Auge, 1968).

Where:-
r = the mean radius of the Earth = 6371 km
(Lide and Frederickse, 1995)
h = the vertical height of the zone in km


In January (1-11) 2013 the front of the 1850 ppb atmospheric methane global warming veil was close to 35.2° North (Figure 9a). By January (1-11) 2014, the front of the atmospheric global warming veil had moved south so that it now lay near the Gulf Coast at a Latitude of 32° North (Figure 9a). The surface area (a) between these two latitudinal lines which equals the surface expansion of the atmospheric methane global warming veil in one year and can be solved as below:-

a = 2*Pi*r*(h1 - h2) Where:-

h1 = the height of the 35.2° north latitude zone in km
h2 = the height of the 32° north latitude zone in km
r = the mean radius of the Earth = 6371 km
(Lide and Frederickse, 1995)
h = r*Sin(Latitude)


Therefore:-

a=2*Pi*r*r*(Sin (35.2o) - Sin (32o)) = 11727381.43 square km

The area (a) of the Earth that was covered in exactly one year (365.25636 days - Lide and Frederickse 1995) by the spreading 1850 ppb atmospheric methane global warming veil between January (1-11¬), 2013 to 2014 is 11727382.43 square km. Therefore the 1850 ppb methane global warming veil is spreading at 32107.3 square km per day or 3.21073*Ten power 14 square cm per day. At 32° north the small circle latitude line is 2*Pi*r*Cos (Latitude) = 33947.5125 km long. Hence at a latitude of 32°, the 1850 ppb atmospheric methane global warming veil is advancing south at about 946 metres per day (Figure 9a). The 1850 ppb atmospheric methane global warming veil will reach the South Pole in 2047 and when it passes over Australia will cause even more extreme temperature anomalies than the country has already had to face during the last few years. Almost identical results were found using the 1860 ppm front for the Methane Global Warming Veil imaged on different maps by Carana 2014 so the results for the 1850 ppb front are discussed, as this boundary is the most continuous and well defined (Figures 8, 9a and 9b).

Gas flow rates per unit methane "diffusion coefficient" (flow rate constant at 20°C and one atmosphere pressure) are directly proportional to the partial pressures of the methane gas when standardised to 20°C. This is close to the maximum Arctic atmospheric temperature anomaly (Carana 2013, 2014) and atmospheric pressure at the surface of the ocean (Marero and Mason 1972; Kostin et al 1984) at the Extreme Methane Emission Zone that occurs at the transition from the Eurasian Basin to the Laptev Sea (Figures 3 and 4). Therefore the relative methane partial pressure can be estimated at the sea surface above the extreme Arctic methane emission zone by multiplying the ratio of the rate of expansion of the 1850 ppb atmospheric methane global warming veil to methane "diffusion coefficient" multiplied by the partial pressure of an atmospheric methane concentration of 1850 ppb measured at 20°C and atmospheric pressure (Lide and Frederickse, 1995).

The temperature anomaly at the Arctic Ocean sea surface in the Extreme Methane Emission Zone at the junction of the Eurasian Basin/Laptev Sea has exceeded 20°C during the winters of 2013 and 2014 (Figures 3 and 4, Light 2012; Pravettoni 2009; Carana 2013 and 2014). Therefore we can roughly assume a standard temperature-pressure regime of 20°C and one atmosphere at sea level for the moment that the erupting deeply sourced methane gas comes in contact with the base of the Arctic atmospheric Methane Global Warming Veil. This is the moment when these deeply sourced methane eruptions are in pressure continuity with the partial pressure of the 1850 ppb methane in the Arctic atmospheric global warming veil. In other words, the emission rate of the mantle methane is such that it links the deeply sourced pressure field of the mantle source zone with the partial pressure field of the 1850 ppb methane atmospheric concentration at sea level, at one atmosphere pressure and a temperature of 20°C. At 20°C and one atmosphere pressure (1.01325*Ten power 5 Pascals), the diffusion rate of methane ("diffusion coefficient") in air is 0.106 square cm per second which is 9158.4 square cm per day (Lide and Frederickse 1995). At atmospheric pressure, the flow rate of methane is proportional to the product of the diffusion coefficient and partial pressure so long as the gas lies in a regime where binary collisions predominate (Marreo and Mason 1972; Kestin 1984). Consequently we find that the high rate of spreading of the 1850 ppb Arctic atmospheric methane global warming veil at sea level and 20°C is 3.5058 * Ten power 10 times as fast as the natural diffusion rate. This means that a massively high methane pressure field must be being tapped in the Arctic to cause such high rates of expansion of the Arctic atmospheric Methane Global Warming Veil over the Earth.

The high rate of expansion of the 1850 ppb methane global warming veil of 32107.3 square km per day caused by the excessive rate of subsea methane emissions at the extreme methane emission zone is equivalent to a relative methane pressure field at the source of the methane of 35979 atmospheres or 36.4 kilobars/3.64*Ten power 9 pascals/3.64 Gpa (Gigapascals). This is equivalent to a depth of about 112.2 km (with temperatures near 1220°C) in the upper part of the Earth's mobile asthenosphere, the horizontal convection of which drives the Earth's plate tectonic overturning (Figures 13a and 15, Table 1)(Windley, 1986). It is clearly evident that humanities addiction to fossil fuel, which has caused the extreme carbon dioxide pollution increase and global warming of the Earth's atmosphere has seriously angered somebody down there deep in Mother Earth with fatal consequences for our continued existence.

In the same way that erupting subsea lavas on mid-ocean ridge systems (Figure 13b) are almost at the mantle temperatures (1200°C) which exist below 100 km at the top of the mobile asthenosphere, the massive methane emission flow rates on the Arctic Ocean sea surface above the Extreme Methane Emission Zone at 20°C and atmospheric pressure reflect the exteme pressures of their source zone beneath 100 km in the Earth. This methane is formed from the reaction of calcite with water in the presence of iron (II) oxide below 100 km depth and temperatures above 1200°C (Figures 12 and 13a)(Merali, 2004, Goho 2004; Scott et al., PNAS). The extremely high methane flow rates on the surface of the Extreme Arctic Methane Emission zone are a consequence of existing high rock load pressures within the Earth at depths below 100 km and temperatures above 1200°C that cause the locally generated methane to accumulate in giant geopressured-geothermal reservoirs within the vertically fractured Enrico Pv Anomaly (Extreme Arctic Methane Emission Zone)(Figure 3 to 7, 12, 13a and 15).


The Generation of Mantle Methane

Methane is generated in the mantle of the Earth by the reduction of calcite with water in the presence of Fe (II) oxide at temperatures above 1200°C and depths from 100 km to more than 300 km within the Asthenosphere which is the horizontally convecting part of the mantle that drives plate tectonics (Figures 12 and 13a)(Windley 1986). Partial melt magmas and volatiles accumulate at the top of the asthenosphere between 100 km and 110 km depth later to rise and be erupted as major pyroclastic volcanoes along slow spreading mid-ocean ridge systems such as the Gakkel Ridge (Merali, 2004, Goho 2004; Scott et al., PNAS; Sohn et al. 2007)(Figures 12, 13a and 13b). Russian researchers have generated methane with hydrocarbons up to C10H22 by reacting calcium carbonate, water and iron oxide under mantle pressures and temperatures (Kenney et al. 2002). These compounds are abundant in subduction zones and the mantle (Figures 13a and 13b) (Wales, 2013). Hydrogen also reacts in water with dissolved carbon compounds to form methane and more complex carbon compounds (MacDonald 1988). The formation of methane in the absence of biological reactions is confirmed by the abundance of hydrocarbons in comets (Huebner 1990, Zuppero DOE) and in the atmosphere of Titan, one of Saturn's moons (Glasby 2006; Hook et al. 2010).

Mantle methane will most likely to be formed over regions of subducting oceanic plates where deeply buried zones of previously water, carbonate, organic carbon, iron oxide rich rocks are abundant (Goho 2004). Water has been detected to a depth of at least 12 km (Smithson et al. 2000) although metamorphic reactions in kimberlites indicate its activity within the mantle (Winkler, 1976). The North Arctic Basin is a slab graveyard for subducted oceanic plates making it a prime source zone for the generation of mantle methane within the overlying asthenosphere between 100 km and 300 km depth (Figures 7 and 13a) (Gaina et al. 2013; Goho 2004; Merali 2004). The genesis of methane in the presence of serpentinites is restricted to mid -ocean ridges (like the Gakkel Ridge) and the upper levels of subduction zones (such as the Arctic Ocean slab graveyard Gaina et al. 2013) (Figures 7 and 13a). Methane, carbon dioxide and mantle helium 3 are present in the gases and fluids of mid-ocean ridge spreading centre hydrothermal fields (Figure 13a and 13b)(Chapelle et al. 2002) which have formed the hydrothermal subsea methane hydrates at the Extreme Methane Eruption Center on the Gakkel Ridge at the transition from the Eurasian Basin to the Laptev Sea (Figures 3 to 6)(Max and Lowrie 1993; Pravettoni 2009; Light 2012; Carana 2013). Helium 3 of mantle origin is also found in natural gas fields (Figure 13b)(Peterson USGS; Mineral Commodities - Helium, USGS).

A mantle origin for some methane is confirmed by the presence of hydrocarbon inclusions in diamonds which are generally sourced from about 150 km depth (Figure 13a) (Liu et al. 2004). Diamondiferous kimberlites are also massive carbon dioxide driven, pyroclastic mantle eruptions caused by the reactions between silicates and the rising carbon dioxide charged magmas and they are located along the surface expression of a deep crust-mantle shear zones in the Northern Siberian Craton that extends towards the Gakkel Ridge in the Lena River delta area (Figures 17 to 19)(Yirka 2012). Other swarms of kimberlites occur in the Arctic Basin on the N flank of the Gakkel Ridge ,the HALIP swarm 130 - 90 Ma in age (Figures 17 and 19, LIP 2013). Kimberlites get progressively younger to the NE from 320 Ma in the SW to 90 Ma in the NE where this mantle shear in the Siberian Craton has bisected the Gakkel Ridge in the Arctic Ocean (HALIP swarm, Figure 17 and 19) To the west of this shear, carbonatites and alkaline complexes also occur and probably have their origin at depths less than 100 km, in remobilised subducted carbonate formations from the subducted Arctic Ocean plate graveyard (Figures 6 and 7; Gaina et al. 2013, Yakovlev et al. 2012). The exposed N-S trend of part of this subduction zone may lie to the east in the region of the Lena River (Figures 6, 17 to 19). A north trending and east dipping subduction zone east of the Lena River is represented by the red zones in the 220 km map which extends eastwards into Siberia from the Enrico Pv Anomaly along the Gakkel Ridge (Figure 6; Yakovlev et al. 2012).


The Permian Exinction Event a Remarkably Accurate Analog for the Present Day Carbon Dioxide Driven Methane Emission Extinction Event

During the Late Permian there was a major global extinction event which resulted in a large loss of species caused by catastrophic methane eruptions from destabilization of subsea methane hydrates in the Paleo-Arctic (Figures 16 to 19;Wignall 2009). Extreme global warming was caused after vast volumes of carbon dioxide were released into the atmosphere from the widespread eruption of volcanics in northern Siberia (Siberian Trap Large Igneous Province)(Wignall 2009). The main source zone of these Siberian Trap volcanics on land in northern Siberia, is not a great distance from the present trend of the Gakkel Ridge and the Enrico Pv Anomaly Extreme Methane Emission Zone (Figure 16, 17 and 19). Because the Arctic forms a graveyard for subducted plates (Figures 6 and 7), the mantle there is highly fractured and it is also primary source zone for mantle methane formed from the reduction of deeply buried oceanic carbonates by water in the presence of iron oxides (Figures 12 and 13a) (Gaina et al. 2013; Goho 2004; Merali 2004).

In addition to the widespread eruption of volcanics in northern Siberia in the Late Permian (250 million years ago, LIP 2013; Figures 17 and 19), swarms of pyroclastic Kimberlites erupted between 245 and 228 million years ago along a NE trending shear system in the mantle which intersects the Gakkel Ridge slow spreading ridge on the East Siberian Arctic Shelf (Figures 17 to 19, LIP 2013). A smaller swarm of kimberlites also erupted in the same time interval to the west of this shear associated with carbonatites and alkaline complexes all forming part of the Late Permian (250 million year old) Siberian Trap volcanic Large Igneous Province (LIP 2013). This is a further indication of deep mantle shearing in the Late Permian, which would have produced routes for the escape of deeply sourced carbon dioxide and mantle methane to the surface (Figures 12 and 13a) (Gaina et al. 2013; Goho 2004; Merali 2004).

A large swarm of kimberlites (Cretaceous HALIP event, 130 to 90 million years old) also intruded the axis of the Gakkel Ridge just south of the Enrico Pv anomaly Extreme Methane Emission Zone on the East Siberian Arctic Shelf, while a smaller HALIP event kimberlite swarm occurs south west of the Lena River delta on the major NE trending mantle fracture (Figures 16 to 19, LIP 2013). Cenozoic volcanics also occur to the north and north east of the Lena River delta marking the trend of the slow spreading Gakkel Ridge on the East Siberian Arctic Shelf (Sekretov 1998). All this pyroclastic activity along the slow spreading Gakkel Ridge from the Late Permian to the present is evidence of pervasive vertical deep mantle shearing which has formed conduits for the release of carbon dioxide and mantle methane to the Arctic sea floor and atmosphere and the surface of the northern Siberian craton (Figures 12 to 19).


Locating the Late Permian Taimyr Volcanic Arc

The location of the Late Permian (250 Ma - LIP 2013) Taimyr Volcanic Arc within the Taimyr Fold belt was determined by tracing the exposed edjes of the wide regions within which the Late Permian Siberian Trap volcanic flood basalts flowed back to their likely volcanic throat origin points (Figure 17). The western volcanic flood basalts converge on a single point of origin at the western end of the Taimyr Fold belt (Figure 17). The eastern Late Permian Siberian Trap volcanics appear to be a giant sheet-like flood of basalts fed from a whole string of linked volcanoes or a major fissure eruption along the central part of the Taimyr Fold Belt (Figure 17).

The subducting Kara plate first intersected the front of the Siberian Craton at the south west end of the Taimyr Fold Belt at a depth of some 172 km where the ambient temperature of the Asthenosphere had reached about 1040°C. (Figures 17 and 13a). These thoeliitic magmas rose some 28.5 km driven by high geothermal geopressured carbon dioxide released by the Kara plate before they passed into the solidus+water zone (Figure 13a).

The initial Siberian Trap volcanics on the SW end of the Taimyr Volcanic Arc erupted from a single group of volcanoes producing a radial zone of flood basalts. The subducting Kara plate then progressively struck the Siberian cration at about 194 km in the centre of the Taimyr volcanic arc and then 216 km at its NE end while the temperature of the surrounding asthenosphere rose from 1100°C to 1150°c (Figures 17 and 13a). These much higher temperatures and the fact that the subducting Kara plate immediately entered the solidus + water zone at the north east end of the Taimyr Volcanic Arc meant that the thoeliitic volcanics here were extremely fluid and contained large volumes of free water and carbon dioxide (Figure 17 and 13a). The determined temperature range for the Taimyr Volcanic Arc magmas between 1040°C to 1150°C with a mean of 1100°C (Figure 13a) are exactly within the magma temperature range for flood basalt provinces (1000°C to 1200°C) (Baker et al. 1999) and the mean 1100°C is very close to the determined melting temperatures of the extensive Columbia River flood basalts (1080°C to 1100°C)(Wales 2014).

The dehyration and melting events above the Kara Plate beneath the Late Permian Taimyr Volcanic Arc initiated a massive eruption phase along the entire central and north eastern part of the arc producing an extremely wide and thick sheet-like succession of flood Trap lavas and tuffs that spread to the SE over the Siberian Craton (Figure 17). The massive volume of carbon dioxide released into the atmosphere during these cataclysmic eruptions produced extreme global warming of the atmosphere and oceans which disocciated the Paleo Arctic subsea methane hydrates and the methane hydrate seals above the Enrico Pv Anomaly generating a massive seafloor and mantle methane pulse into the atmosphere (This Paper; Wignall. 2009; Carter 2013). This release of methane caused the average atmospheric temperature to rise to about 26.6°C producing the Major Late Permian Extinction Event (Wignall, 2009). Our present extreme fossil fuel driven, carbon-dioxide global warming is predicted to produce exactly the same methane release by the 2050's with total deglaciation and the extinction of all life on Earth (except perhaps at the deep oceanic black smokers (Figure 13b).


The Japan Subduction Zone Compared to the Kara Subduction Zone. The Taimyr Volcanic Arc and its Relevance to the Extreme Volcanicity of the Siberian Trap Basalts

During the Late Permian (250 Ma) the Kara subduction zone (suture) was located some 670 km northwest of the NNE trending mantle fracture zone along which a series of kimberlites intruded between 245 Ma and 228 Ma (Figures 17 to 19; LIP 2013). Mantle pressure-temperature data indicate that these kimberlites must have been erupted with abundant water and carbon dioxide, rising vertically above the dehydrating Kara subducting plate when it was between 250 km and 300 km depth (Figure 13a). The presence of similar aged (250 Ma to 228 Ma) kimberlites NW of the main NE trending kimberlite mantle fracture zone imply that the main fracture to the SE most closely represents an approximate 300 km deep contour line, representing the cut off depth for kimberlites on the upper surface of the Kara subducting plate. This gives a mean dip of the Kara Subduction Zone of 24.2°. This 300 km cut off depth for kimberlites also corresponds to the contour line on the upper surface of a subducting plate where earthquake foci change from tensional (above 300 km) to compressional below 300 km (Allen and Allen, 1990).

The 5 Ma time difference between the age of the Siberian Trap lavas (250 Ma) and the earliest time of Late Permian kimberlite eruption (245 Ma ) suggests that the Kara plate began to be subducted around 259.6 Ma in the Middle Permian at a rate of some 4.8 cm/yr beneath the Siberian Craton (Figure 17 to 19; LIP 2013). 100 million years ago, the mean subduction rate along the Japan suture beneath the Asian continent was 12.7 cm/year and the suture had a dip angle of some 40 degrees (Windley, 1986; LIP 2013). The mean dip of subduction zones beneath continental regions lies close to 53° (range from 40° to 70°) with a mean rate of subduction of 8.6 cm/yr (range 5.8 cm/yr to 12.7 cm/yr)(Windley 1986). However in Peru the subuction zone has a mean dip of 14o beneath South America (Allen and Allen, 1990). For plates that subduct only slowly, they may heat up a sufficient amount to prevent earthquakes (Allen and Allen, 1990).

The reason for the shallow dip of the subducting Kara plate (24.2°) may have been caused by the proximity of the Kara mid-ocean ridge rift and the Kara suture. This meant that the Kara subducting plate had a very narrow fetch of ocean to cool in and was consequently less dense than the present oceanic plates in the Pacific subduction zones, so its increased buoyancy meant that it subducted at a much shallower angle (24.2o) under the edge of the Siberian Craton (Figure 17). Because of the very slow rate of subduction of the Kara plate (4.8 cm/yr) it had a long residence time in contact with the continental crust allowing metamorphic reactions and dehydration to go to completion throughout the entire depth of the oceanic crust (Winkler, 1976). Consequently when the Kara plate contacted the hot asthenospheric wedge between 172 km and 216 km beneath the Siberian Craton at temperatures between 1040°C and 1100°C (Figure 13a), the entire oceanic crustal section was remobilised and erupted as the widespread Siberian Trap lavas and tuffs and was also injected as sills (Ivanov et al. 2008; LIP 2013).

The Siberian Trap flood basalts, tuffs and associated intrusives are the largest magmatic igneous province emplaced on continental lithosphere (Ivanov et al 2008). They cover an area of 7 million square km and represent a volume estimated between 4 and 16 million cubic kilometres (Ivanov et al. 2008). The width of the Taimyr Volcanic Arc is estimated at 453 km (from Ivanov et al. 2008) and if we assume the entire 10 km thickness of oceanic crust was remobilised during this massive eruptive event then some 884 km to 3535 km of ocean crust would need to be subducted to generate the volume of the Siberian Trap Large Igneous Province. As the Kara plate was being subducted at 4.8 cm/yr this suggests that the Siberian Trap lavas were erupted in the Late Permian (250 Ma ago) over a time period somewhere between 18,400 years to 73,650 years in length (LIP 2013).

Subduction appears to have begun on the NE end of the Kara Subduction Zone 6 Ma before it began on it's SW end which suggests that the giant transform on the SW side of the Kara subduction zone was active between 263 Ma and 257 Ma allowing the ocean floor to expand without being subducted (Figure 17). This giant transform/shear zone can be tracked right into Central Siberia along the SW margin of the Siberian Trap sheet flood basalt flows (Figure 17). Although the start of subduction moved SW along the Kara subduction zone at some 7.1 cm/yr, the kimberlites which fill the NE trending mantle fracture SE of the Taimyr Volcanic Arc get younger to the NE at a rate of 2mm/yr related to the general NE younging of the Subduction zones from the Upper Silurian - Lower Devonian Scandinavian Caledonian suture in the SW to the Late Permian Kara Subduction Zone in the NE (Figure 17 and 19, LIP 2013).


Porosity in the Shallow and Deep Arctic Crust and Mantle

Sohn et al. 2007 outlined how in the Arctic Ocean, the sequence of extreme pyroclastic mantle magma eruptions developed along the Gakkel Ridge (85o E volcanoes) at an ultra-slow spreading rate (< 15 - 20 mm/year). These volcanoes formed from the explosive eruption of gas-rich magmatic foams. Long intervals between eruptions during the slow spreading caused huge gas and other volatile buildup at extremely high storage pressures very deep in the crust (Sohn et al. 2007).

A swarm of earthquakes at 85° E occured over 3 months but was followed by other earthquakes caused by large implosions due to the explosive discharge of pressurized magmatic foam. This pressurized mgmatic foam was sourced from a deep lying magma chamber, accelerated rapidly vertically and then expanded and decompressed through the fractured chamber roof. There were many periods of widespread explosive gas discharge from 1999 over two years which were detected by small-magnitude sound signals recorded in seismic networks on the ice (Sohn et al. 2007).

Pyroclastic rocks at the 85° E volcanoes contain bubble wall fragments and were widely distributed over an area of more than 10 square km. 

This deep oceanic fragmentation was caused by the accumulation of a volatile rich gas foam within the magma chamber, which then fractured, formed a pyroclastic fountain 1 to 2 km high in the Arctic Ocean which spread the pyroclastic material over a region whose size was proportional to the depth of the magma chamber (Table 2). 

A volatile carbon dioxide content of 14% (Wt./Wt. - volume fraction 75%) is necessary at the 4 km depth in this part of the Eurasian Basin (Arctic Ocean) to completely fragment the erupting magma (Sohn et al. 2007). This is evidence for a very high existing porosity (14%) in the Gakkel Ridge, slow spreading mid-ocean ridge magmas along the trend of the Arctic Ocean - Eurasian Basin (Figures 1 and 17).

Pyroclastic rocks at the 85° E volcanoes contain bubble wall fragments and were widely distributed over an area of more than 10 square km. This deep oceanic fragmentation was caused by the accumulation of a volatile rich gas foam within the magma chamber, which then fractured, formed a pyroclastic fountain 1 to 2 km high in the Arctic Ocean which spread the pyroclastic material over a region whose size was proportional to the depth of the magma chamber (Table 2). A volatile carbon dioxide content of 14% (Wt./Wt. - volume fraction 75%) is necessary at the 4 km depth in this part of the Eurasian Basin (Arctic Ocean) to completely fragment the erupting magma (Sohn et al. 2007). This is evidence for a very high existing porosity (14%) in the Gakkel Ridge, slow spreading mid-ocean ridge magmas along the trend of the Arctic Ocean - Eurasian Basin (Figures 1 and 17).
The pressure and shear wave velocity of sound passing through the Earth's crust and mantle rocks containing flat, oriented, gas-filled cracks depends on the elastic constants of the rock, its porosity, the direction the sound wave is travelling and the aspect ratio of the cracks (Figures 14a and 14b)(Anderson et al. 1974). The aspect ratio of the gas-filled, penny-shaped, ellipsodal, aligned cracks (ratio width to diameter) has been assumed to be 1/20 (Anderson et al. 1974). The cracks could contain different amounts of other fluids, producing more variables in the equations but only dry, gas-filled cracks are considered here (Figure 14c)(Anderson et al. 1974). The most common mineral in mantle rocks, elongated olivine crystals are usually oriented parallel to the vertical cracks and the mantle flow direction beneath mid-ocean ridges and in subduction zones (Figure 14b)(Anderson, 1989).

O'Connel (Liu et al. 2001) determined that the crack porosity N (volume percentage of micro-cracks in the rock) can be determined as below:-

N = (c/a)*((4*Pi*E)/3) = (4/60)*Pi*E = (Pi*E)/15 Where c/a = 1/20
E = crack density for dry gas-filled fractures

E = ((45/16)l(V-V")/(1-(V"*V"))l*(2-V"))/(((1+3V)*(2-V")) - (2*(1-(2*V))))

Where V = Poissons Ratio for uncracked rock
          V" = Poissons Ratio for cracked rock

Poissons Ratio V = (1/2)*(((Vp/Vs)*(Vp/Vs))-2)/(((Vp/Vs)*(Vp/Vs))-1)

Where Vp = pressure velocity of sound waves in the rock
          Vs = shear velocity of sound waves in the rock
(See:- Liu et al 2001; Anderson 1989; Anderson et al. 1974)


Sound wave velocities are slowed in the direction at right angles to the plane of gas-filled cracks and elongated olivine crystals in mantle rocks (See Figure 14b and 14c in Anderson 1989). The vertical micro -crack gas filled porosities for the Enrico Pv Anomaly at 100 km and 220 km depth were calculated from pressure wave dv/V% anomalies ( Yakovlev et al. 2012; Gaina et al. 2013) and are shown on Figures 14a and 15. To give a relative comparison, the mean horizontal gas filled porosities in the mantle outside the Enrico Pv Anomaly were determined using the Preliminary Reference Earth Model (PREM) from Dziewonki and Anderson (1981)(Figures 14a and 15).

Figure 15 shows that the gas-filled vertical crack porosity within the Enrico Pv Anomaly decreases from about 1.2% at 300 km depth to 0.43% at the top of the mantle methane generation zone in the asthenosphere at 100 km depth and then rises again to 14% in the crust where pyroclastic magmas beneath the Gakkel Ridge require these high carbon dioxide volumes to produce the extreme pyroclastic eruptions at subsea depths of 4 km in the Arctic Ocean (Sohn 2007). For comparison, the average porosities around the Enrico Pv Anomaly determined from mean PREM data (Dziewonski and Anderson, 1981) are generally less than 0.26% above 220 km depth (Figure 14a and 15).

Note that in the average asthenosphere (PREM data Dziewonski and Anderson, 1981) there appears to be a zero porosity seal line at 114.4 km forming a transition from horizontal micro-crack porosity within the underlying horizontally micro-cracked convecting asthenosphere which drives plate tectonics. This horizontally convecting asthenosphere contains horizontally oriented elongated olivine crystals. Above 114.4 km, vertical micro-crack porosity occurs within the upper asthenosphere, where vertically rising partial melt magmas (with verically oriented elongated olivine crystals) accumulate at the base of the lithosphere at 100 km (Figures 14a and 15). The vertically micro-fractured zone between 114.4 km and 100 km in the asthenosphere also corresponds to the zone between 100 km and 110 km where normal island arc volcanics form vertically rising magmas above a subduction zone from the effect of fluids released into the asthenosphere from dehydration of the subducting slab of oceanic crust (Lecture 5 2014; Columbia, 2014).

The estimated times that the different depths of the Enrico Pv Anomaly will degas methane upwards into the Arctic Ocean and the global atmosphere were calculated from the rate of expansion of the Global Warming Methane Veil (the southern latitudinal front of 1850 ppb global atmospheric methane concentration - Carana 2014) and these times are shown on Figure 15. The Enrico Pv Anomaly will degas down to 300 km by 2053 at which time the the global mean atmospheric temperature anomaly will have reached 8°C and mankind will be facing total deglaciation and extinction (Light 2013, 2014; Carana 2013).


The Plate Tectonic Location of Mantle Carbon Dioxide and Mantle Methane Emission Zones

The the carbon dioxide enriched (14% v/v CO2) mantle magmas at the 85° E subsea slowly opening Gakkel mid-ocean ridge have erupted as pyroclastic volcanoes at a depth of 4 km on the seafloor (Sohn et al. 2007). These extensive pyroclastic volcanoes, on a very slowly spreading mid ocean ridge are evidence that this region probably represents a stable hot spot which underlay the intersection of the Kara mid-oceanic ridge in the Barents Sea and the major deep penetrating transform that later became the Gakkel Ridge spreading centre (Figure 17). This suggests that carbon dioxide is the main remaining volatile in very slowly spreading mid-oceanic ridge pyroclastic systems where the regional mantle has become depleted in water. Elsewhere fast expansion, such as along the Pacific mid-ocean ridge is due to normal eruption of more water-rich magmas as pillow lavas (Windley 1986).

The extensive 85°E pyroclastic volcanics, at the intersection of the Kara mid ocean ridge and the plate boundary forming the axis of the Paleo - Gakkel Ridge are probably located at the apex of a hot-spot mantle plume that has remained relatively stationary (within 5°) from the Late Permian (250 Ma) to the present as did other hotspots in the Atlantic and Pacific from 200 Ma to 20 Ma (Figure 17)(Morgan 1981, Windley, 1986). However a massive series of swarms of diamondiferous kimberlites that have intruded along a major NE trending mantle fracture parallel to the Late Permian Kara suture and get younger to the north from 370 Ma, 245 Ma, 228 Ma to 90 Ma (LIP, 2013) suggest that subduction activity along the regional suture system migrated from west to east over that time period (Middle Devonian - Triassic)(Figures 17 to 19)(LIP 2013). These kimberlites are related to the Late Permian Kara subduction event and formed when the oceanic crust had reached a depth of some 300 km beneath the Siberian Craton (Figures 17 to 19).

The Kara subduction zone was most active in the Late Permian (250 Ma) resulting in massive eruptions of the Siberian Trap, carbon dioxide rich lavas, tuffs and sills (LIP 2013; Wignall 2009)(Figure 17). The release of this vast volume of carbon dioxide into the atmosphere resulted in extreme global warming, destabilization of subsea Paleo - Arctic methane hydrates, the release of vast volumes of methane into the atmosphere which then caused the mean temperature of the atmosphere rise to 26.6o C and precipitated a major extinction event (Figures 17 to 19)(LIP, 2013; Wignall 2009).

The Late Permian subduction along the Kara subduction zone was preceeded to the west by Caledonian subduction along the Scandinavian and N. German Polish suture lines (420 Ma - 370 Ma - 360 Ma) (Cocks and Torsvik 2006 and Zwart and Dornsiepen 1980) and a similar trend of diamondiferous kimberlites in Finland, Kola Peninsula and Arkangelsk dated 380 Ma to 360 Ma in age (Mahotkin et al 1999) are related to this subduction event when the oceanic crust had also reached a depth of some 250 km to 300 km beneath the Finnish and Russian cratons (Figure 17).

From the Late Permian (250 Ma) to the present, the oceanic crust that had been subducted along the Taimyr suture and now lies beneath the Siberian Craton has been heated by the adjacent sub-Siberian mantle wedge (Figure 17 and 13a). Water, oceanic carbonates and iron (II) oxides trapped within the mantle at depths below 100 km to 300 km and temperatures above 1200°C have been converted into vast volumes of mantle methane (Figure 12, 13a and 17; Merali 2004; Goho 2004 and Scott et al. PNAS). This mantle methane now forms a giant geopressured-geothermal reservoir which is using the Enrico Pv Anomaly extreme methane eruption zone as an escape route to the Arctic Ocean and the atmosphere (Figures 4, 6, 13a, 15 and 17). When Arctic ocean temperatures were low, methane hydrate crystallized in the vertical fracture conduit systems because of gas depressurization (adiabatic cooling) and the geothermal geopressured mantle methane was sealed underground in the Enrico Pv Anomaly (Figure 13a, 17, 20a and 20b; Carana 2013; Hovland et al. 2006). When recent extreme fossil fuel burning-carbon-dioxide-induced global warming heated the Gulf Stream and then the Arctic waters, they dissasociated the methane hydrate seals on the vertical fracture conduit systems at the top of the Enrico Pv Anomaly and geopressured methane began to erupt into the ocean and enter the atmosphere as is presently the case at the Extreme Methane Eruption Centre on the Enrico Pv Anomaly (Figures 3, 4, 13a, 15 and 17)( Light, 2012, Pravettoni, 2008. Evidence for a deep mantle source for this methane is the extremely high methane emission rates at the Enrico Pv anomaly compared the the generally lesser amounts of methane released from dissociation of subsea Arctic methane hydrates on the East Arctic Siberian Shelf (Figure 4 - Pravettoni 2008) and the fact that some regional emissions track along deep mantle fault lines related to the northern border of the Greenland plate (Figure 3a Carana 2014).


The Enrico Pv Anomaly Extreme Methane Emission Zone - A Deep Penetrating Mantle Safety Valve - Now Open to Vertically Rising Geothermal - Geopressured Mantle Methane formed between 100 km and 300 km in the Asthenosphere.

Hovland et al. (2006) (Figure 20a, 20b; Carana 2011) show that submarine pingoes form seals in vertical methane charged fractures cutting through shallow methane hydrates and trapped free methane in the pock-marked sea floor at Nyegga in the Norwegian Sea. These gas escape conduits are sealed by methane hydrate that formed from depressurization (adiabatic cooling) when methane escaped from the underlying methane hydrates or from deep mantle methane sources in the past and came in contact with the cold Arctic Ocean water (Carana, 2011; Light, this article).

Globally heated seawater, drawn down fractures, cracks and conduits in the sea floor flanking the Gakkel Ridge can destabilize the methane hydrate in the pingoes and in the hydrates resulting in huge abrupt release of methane into the sea and atmosphere (Figure 13b, Wales 2012; Carana, 2013; Light 2013).

During periods when the carbon dioxide content of the atmosphere was reduced and conditions were mild, methane hydrates formed from the depressurizing (adiabatic cooling) of deeply sourced mantle methane formed very effective seals in the linked verticle fractures at the Enrico Pv Anomaly confining the mantle methane in undersea rock formations (Figures 6, 13a and 15). This mantle methane was therefore not able to enter the sea or the atmosphere and cause extreme global warming. However the major global warming caused by humanities sustained and stupid use of fossil fuels in preference to sustainable energy sources has destabilized the methane hydrate seals (pingoes) above the Enrico Pv Anomaly now giving it free rein to vent more and more geopressured mantle methane directly into the sea and the atmosphere.

The methane partial pressure calculated from the rate of advance of the latitudinal front of the 1850 ppm atmospheric Methane Global Warming Veil, that has now passed the Gulf Coast of the United States indicates a depth of origin of the geopressured-geothermal methane of some 112 km in the upper asthenosphere within the mantle methane generation zone (Figures 13a and 15). Calculations show that by the Mid 21st Century, the Enrico Pv Anomaly extreme methane emission zone will be draining methane from as deep as 300 km, the mean temperature of the earth's atmosphere will be 8° C hotter and we will be facing total deglaciation and extinction (Light, 2012; Carana 2012).

What mankind has done in his infinite stupidity with his extreme hydrocarbon addiction and fossil fuel induced global warming has opened a giant, long standing (Permian to Recent) geopressured mantle-methane pressure-release safety valve (Enrico Pv Anomaly Extreme Methane Emission Zone) for gases generated between 100 km and 300 km depth and temperatures above 1200°C in the Asthenosphere. There is now no fast way to reseal this system because it will require extremely quick cooling of the Arctic Ocean, which cannot be achieved in the short time frame we have left to complete the job. Our only hope is to destroy the methane in the water before it gets into the atmosphere and simultaneously destroy the existing atmospheric methane using radio-laser systems (Alamo and Lucy Projects, Light and Carana, 2012, 2013).

Scientists at Georgia Tech University have found that at very low temperatures in the ocean, two symbiotic methane eating organisms group together, consume methane and excrete carbon dioxide which then reacts with minerals in the water to form carbonate mounds (Glass et al. 2013). These two symbiotic creatures, the bacteria and anaerobic methanotrophic archaea form bundles and require an enzyme (formyl methofuran dyhydrogenase) in the final methane oxidation reactions to convert methane to carbon dioxide. However these organisms need tungsten for this process to operate (Glass et al. 2013). In the low temperature environments of the methane seeps, tungsten appears easier for the organisms to use than molybdenum (Glass et al. 2013).

A method must be immediately developed for growing these methane consuming organisms in great quantities and delivering them with their vital tungsten operating enzyme to the Arctic Ocean. The Arctic Ocean, west of Svalbard in the area south of the ice-front, where the West Spitbergen Current dives beneath the ice should be continuously seeded (possibly by aircraft or boats) with these methane consuming bacteria and tungsten enzymes, as should the Yermack Current in the Barents Sea. The entire length of the Eurasian Basin, The Enrico Pv anomaly extreme emission zone and Laptev Sea should also be seeded during the summer season when the ice cap has receeded from these regions. As the Arctic ice cap shrinks, the size of the area that needs to be seeded will grow requiring greater resources from the worlds nations. This has to be done for our very future existence depends on it. Similar seeding should be done with currents flowing beneath the Antarctic ice cap to prevent the release of large quantities of methane into the atmosphere from the destabilization of methane hydrates there. This means that the United States must fund a major project at Georgia Tech to quickly develop the means to grow these methane consuming bacteria in massive quantities with their tungsten enzyme and find the means to deliver them to the Polar oceans as soon as possible.