Saturday, February 8, 2014

CO2 growth highest on record

Despite many promises, global emissions of carbon dioxide (CO2) continue to grow.

NOAA figures show that 2013 CO2 level growth was the highest ever recorded, i.e. 2.95 ppm.

The EPA expects U.S. 2013 energy-related CO2 emissions to be 2% higher than in 2012.

The UC San Diego image below shows CO2 levels in the atmosphere over the past two years.

Back in September 2013, John Davies warned: The world is probably at the start of a Runaway Greenhouse Event which will end most human life on Earth before 2040. This will occur because of a massive and rapid increase in the carbon dioxide concentration in the air which has just accelerated significantly. The increasing Greenhouse Gas concentration, the gases which cause Global Warming, will very soon cause a rapid warming of the global climate and a chaotic climate.

The post featured a graph with a 4th-order polynomial trendline pointing at some 7.5 ppm CO2 annual growth by 2040. While many welcomed the warning contained in the graph, some argued against using higher-order polynomial trendlines. So, for those who don't feel comfortable with a 4th-order polynomial trendline, the graph below adds both a linear trendline and a 3rd-order polynomial trendline.



The 3rd-order polynomial trendline, based on the recent data, points at CO2 annual growth of some 7 ppm by 2040, justifying the warning sounded by the 2013 graph.

And what do the recent data say, when a 4th-order polynomial trendline is applied? As the image below shows, they show an even steeper rise, reaching 7 ppm growth per year as early as 2030.



As many posts at this blog have warned, rapid growth in greenhouse gases and numerous feedbacks are threatening to push Earth into runaway global warming. This calls for comprehensive and effective action to - among other things - reduce atmospheric CO2 levels back to 280 ppm, as illustrated by the image below and as further discussed at the Climate Plan blog.


Tuesday, February 4, 2014

As continental U.S. freezes, Alaska gets record high temperatures

While much of the continental United States endured several cold snaps in January 2014, record-breaking warmth gripped Alaska. Spring-like conditions set rivers rising and avalanches tumbling. NASA Eartobservatory illustrates the above words with the two images below.


Above map depicts land surface temperature anomalies in Alaska for January 23–30, 2014. Based on data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite, the map shows how 2014 temperatures compared to the 2001–2010 average for the same week. Areas with warmer than average temperatures are shown in red; near-normal temperatures are white; and areas that were cooler than the base period are blue. Gray indicates oceans or areas where clouds blocked the satellite from collecting usable data.

A persistent ridge of high pressure off the Pacific Coast fueled the warm spell, shunting warm air and rainstorms to Alaska instead of California, where they normally end up. The last half of January was one of the warmest winter periods in Alaska’s history, with temperatures as much as 40°F (22°C) above normal on some days in the central and western portions of the state, according to Weather Underground’s Christopher Bart. The all-time warmest January temperature ever observed in Alaska was tied on January 27 when the temperature peaked at 62°F (16.7°C) at Port Alsworth. Numerous other locations—including Nome, Denali Park Headquarters, Palmer, Homer, Alyseka, Seward, Talkeetna, and Kotzebue—all set January records.

The combination of heat and rain has caused Alaska’s rivers to swell and brighten with sediment, creating satellite views reminiscent of spring and summer runoff. On January 25, 2014, the Aqua satellite collected this image of sediment flowing into the Gulf of Alaska from numerous rivers along the state’s southeastern coast.

All of the heat, moisture, and melting snow has elevated the risk of avalanches. A series of extremely large avalanches in late January sent snow and debris crashing onto the Richardson Highway, blocking the road and cutting the port town of Valdez off from highway access. The avalanches dumped a mound of snow 100 feet (30 meters) tall and up to 1,500 feet (460 meters) long on the highway.


Below are two videos with forecasts for the period from February 4, 2014, to February 11, 2014. The top video shows temperature forecasts and the bottom video shows temperature anomaly forecasts.

Saturday, February 1, 2014

Abrupt Climate Change - by Paul Beckwith

by Paul Beckwith

Humans have benefited greatly from a stable climate for the last 11,000 years - roughly 400 generations. Not anymore. We now face an angry climate. One that we have poked in the eye with our fossil fuel stick and awakened. Now we must deal with the consequences. We must set aside our differences and prepare for what we can no longer avoid. And that is massive disruption to our civilizations.

In a nutshell, the logical chain of events occurring is as follows:
  1. Greenhouse gases that humans are putting into the atmosphere from burning fossil fuels are trapping extra heat in the earth system (distributed between the oceans (93%), the cryosphere (glaciers, ice sheets, sea ice for 3%), the earth surface (rocks, vegetation, etc. for 3%) and the atmosphere (only an amazingly low 1%). The oceans clearly get the lions share of the energy, and if that 1% heating the atmosphere varies there can be decades of higher or lower warming, as we have seen recently. This water vapor rises and cools condensing into clouds and releasing its stored latent heat which is increasing storm intensity.
  2. (i)Rapidly declining Arctic sea ice (losing about 12% of volume per decade) and (ii)snow cover (losing about 22% of coverage in June per decade) and (iii)darkening of Greenland all cause more solar absorption on the surface and thus amplified Arctic warming (global temperatures have increased (on average) about 0.17oC per decade, the Arctic has increased > 1oC per decade, or about 6x faster)
  3. Equator-to-Arctic temperature difference is thus decreasing rapidly
  4. Less heat transfer occurs from equator to pole (via atmosphere, and thus jet streams become streakier and wavier and slower in west-to-east direction, and via ocean currents (like Gulf Stream, which slows and overruns continental shelf on Eastern seaboard of U.S.)
  5. Storms (guided by jet streams) are slower and sticking and with more water content are dumping huge torrential rain quantities on cities and widespread regions at higher latitudes than is “normal”.
  6. A relatively rare meteorological event called an “atmospheric river” is now much more common, and injects huge quantities of water over several days to specific regions, such as Banff (with water running downhill to Calgary) and Toronto and Colorado events.
The above is extracted from one of Paul's earlier posts.

Paul discusses more details in the videos below. Our abruptly changing climate system: where we are and where we are going.

Abrupt Climate Change - part 1


And the next part, Abrupt Climate Change - part 2


Extreme weather is like a sledgehammer repeatedly pounding away at the inaction, lethargy, and climate change denial that is prevalent in rich Western countries around the world.

Inevitably, the hammer pounding will increase in frequency, severity, duration, and spatial extent over the next few years until the denial crumbles, in spite of the annual one billion dollars in fossil fuel money that is paid to support fraud by hiding the truth on the threat that we all face. 

A tipping point in collective societal behaviour will occur, and humanity will finally initiate action, albeit frantically, to begin to deal with the largest problem ever faced in our history.




Paul Beckwith is a part-time professor with the laboratory for paleoclimatology and climatology, department of geography, University of Ottawa. He teaches second year climatology/meteorology. His PhD research topic is “Abrupt climate change in the past and present.” He holds an M.Sc. in laser physics and a B.Eng. in engineering physics and reached the rank of chess master in a previous life.

Thursday, January 30, 2014

Forecast: America to be hit by temperatures as low as minus 40 degrees

The image on the right shows that large parts of North America, the Arctic Ocean and Siberia are experiencing low temperatures.

What many people may not realize is that temperatures in the Arctic are actually a lot higher than they used to be around this time of year.

Temperatures in the Arctic have risen due to feedbacks as described in the post The Biggest Story of 2013.

As a result, temperature anomalies above 20 degrees Celsius now feature in the Arctic. As the image on the right illustrates, the once-common temperature difference between the Arctic and lower latitudes has been shattered, and this is weakening the Jet Stream and the Polar Vortex, in turn making it easier for cold air to flow down to lower latitudes and for warmer air to enter the Arctic, as described in posts at this blog for years, e.g. this post.

This is illustrated by the image below, showing that the Arctic is hit by an overall temperature anomaly of 6.55 degrees Celsius, while some areas in the Arctic feature anomalies above 20 degrees Celsius.


Forecasts show that on February 2nd, 2014, 1200 UTC, the Arctic will be hit by a temperature anomaly of 7.85 degrees Celsius, while on February 6th, 2014, 1200 UTC, the U.S. will be hit by temperatures as low as -40 degrees, as illustrated by the image below.


The video below shows temperature forecasts from February 1to February 8, 2014.


The video below shows temperatire anomalies from February 2 to February 9, 2014.


Meanwhile, the Gulf Stream keeps pushing warm water into the Arctic Ocean, as illustrated by the image below.

Click on image to enlarge - view updated animation at earth.nullschool.net 
The image below shows how high sea surface temperature anomalies stretch out from the point where the Gulf Stream travels at high speeds, off the coast of North America, all the way into the Arctic Ocean.


This has already resulted in methane eruptions from the seafloor of the Arctic Ocean that started several months ago and are continuing to date - ominous signs of more to come. The image below, which compares peak methane levels at two altitudes between January 2013 and January 2014, suggests that January 2014 peak levels have increased strongly, compared to January 2013 peak levels. Furthermore, that the rise in average peak readings has been most dramatic at the higher altitude.


This suggests that huge quantities of methane have indeed been released from hydrates under the Arctic ocean, and that much of the methane is rising and building up at higher altitudes. The increasing appearance of noctilucent clouds further confirms indications that methane concentrations are rising at higher altitudes.

Of course, the above analysis uses a limited dataset, but if verified by further analysis, it would confirm a dramatic rise in the presence of methane in the atmosphere due to releases from hydrates. Moreover, it would confirm the immensity of threat that releases from the Arctic Ocean will escalate and trigger runaway warming, as high methane concentrations over the Arctic are contributing to the anomalously high temperatures there. The risk that this will eventuate is unacceptable, which calls for comprehensive and effective action such as discussed at the ClimatePlan blog.

Tuesday, January 28, 2014

Methane Man


At the 2014 State of the Union address, President Obama said that the all-of-the-above energy strategy he announced a few years ago is working, describing natural gas as the bridge fuel that can power our economy.

Just do NOT tell them the monster exists
President Obama said: "Businesses plan to invest almost $100 billion in new factories that use natural gas. I’ll cut red tape to help states get those factories built, and this Congress can help by putting people to work building fueling stations that shift more cars and trucks from foreign oil to American natural gas."

President Obama added: "And when our children’s children look us in the eye and ask if we did all we could to leave them a safer, more stable world, with new sources of energy, I want us to be able to say yes, we did."

Methane levels going through the roof
Sadly, President Obama doesn't. President Obama missed yet another opportunity to articulate a plan to shift to genuinely clean energy, and instead chose to persist supporting all types of energy, in particular natural gas.

As the U.S. shifts to natural gas, more methane is entering the atmosphere. At the same time, methane eruptions from the seafloor of the Arctic Ocean continue to contribute to the temperature rises in the Arctic that are making the weather ever more extreme. The image below shows surface temperature anomalies above 20°C in the Arctic, while anomalies below -20°C feature at lower latitudes.



Monday, January 27, 2014

Our New Climate and Weather - part 2



by Paul Beckwith

continued from part 1

In North America we are about to experience a late January, 2014 weather event that will likely go down in the record books, at least for a few weeks until the next event. Such is life on our rapidly changing planet in Climate 2.0, or perhaps this would better be called the great abrupt climate change transition between Climate 1.0 (our old climate) and the new, much warmer Climate 2.0.

In any event, the jet stream is configuring into that two crest/two trough mode that I discussed above. An enormous plug of cold Arctic air is descending southward across North America with temperature anomalies 20 degrees C below normal (36 degrees F below normal). It likely reaches far enough south to enter into northern Mexico and to cover large parts of Florida and extend out into the Gulf of Mexico and the Atlantic, resulting in northern Florida dropping below freezing (see my YouTube video below).

For more commentary on above video, see the post Deep Freeze and Abrupt Climate Change

Meanwhile, in turn, almost the entire Arctic region is seeing huge positive temperature anomalies that are 20 degrees C above normal (36 degrees F above normal). This air is changing the Arctic circulation patterns, and although the Arctic air temperature is still below zero, it is so much warmer than normal that the thickening and area growth of sea ice is being severely curtailed. There is strong ice motion out of the Fram Strait between Greenland and Svalbard which is carrying some of the thickest ridged ice just north of the Canadian archipelago out to warmer water and destruction. In the Bering Strait the ice motion is switching between transport of warm Pacific Ocean water into the Arctic Ocean and export of cold Arctic Ocean water out into the Pacific, leading to less ice formation outside the strait.


The easternmost and westernmost edges of North America are outside the jet stream trough, and being in the ridge on either side of the trough are experiencing record warm temperatures. Snow is minimal there, and lakes that would normally have frozen long ago are open water. Further south on the west coast, California is undergoing a record drought and the Sierra Nevada snow pack which feeds the rivers and reservoirs in the state is only at 15 to 20% of normal levels. And this is the normal rainy season for California, which is the breadbasket of the nation. If this drought continues, as it has for almost 3 years, it is very likely that food prices will increase substantially across North America.

Putting on my Engineering hat, it is very clear to me that the large temperature swings over short periods of time that occur as the jet stream troughs and ridges sweep past a fixed region such as a city are wreaking havoc on infrastructure. We have commonly been getting temperature swings of 40 degrees Celsius (72 degrees F) within a day or two. These swings usually cross zero, and result in torrential rain events followed by flash freezing and then large amounts of snow, or the inverse process occurs, often in a cycle over a week. Clearly buildings, roads, railroad tracks, and pipelines are under siege from these temperature swings, precipitation changes and repeated freeze/thaw cycles.

Consider a railroad track. The rails are basically two ribbons of steel of length L separated by width w that are held in place by spikes onto wooden railroad ties. Each section L is joined to adjacent sections with spacers. The tracks are designed for a nominal temperature range. At the high end temperature, the steel expands to its maximum length, and adjacent sections butt together at the join. At the low end temperature, the steel contracts and the gap between adjacent rails is at a maximum. As the daily temperature varies between the lows and highs, the rail expands and contracts. Similarly, for seasonal changes. All within design tolerances. What we are seeing now is a higher frequency of extreme temperature swings of 40 degrees C or larger (72 degrees F), which is greatly stressing the rail infrastructure. These large swings are stretching the limits of the design tolerances since they exceed the usual daily temperature ranges, and occur way faster than any seasonal change. In combination with the explosion of rail traffic from oil trains, the risk of derailment accidents has greatly increased, and we are seeing an enormous increase in derailments. We have also seen a large increase in the frequency, amplitude, duration, and spatial area of torrential rainfall events which have led to floods and extreme river flow rates which undercuts bridges and also leads to more rail derailments. Especially when the rail is submerged for extended periods of time, as occurred, for example in Colorado in late summer 2013.

Ditto with pipelines. Pipeline sections are attached to each other via welds or sleeves and during extreme temperature swings the expansion and contraction of concern is in the longitudinal direction of the pipe. The pipelines are usually buried a few meters under the ground, which can reduce the temperature variation during the atmospheric temperature swings, however where they cross rivers and streams they are exposed to the changing elements and river flows. They are also susceptible to flash freeze events in which large sections of the ground contract and lead to cracking and soil displacement. Water saturation levels in the soils has a large effect on pipeline stresses, and can undergo rapid changes from rapidly changing precipitation cycles.

We are all familiar with how roads fare under extensive freeze/thaw cycles. Even worse, the ice melting salt corrodes guardrails, signs, and posts and as cracks open up in the asphalt salty water percolates in and the freeze thaw cycles widen the cracks leading to potholes and road breakup. And that is in northern latitude regions that have a regular snow in winter climate. In more southern regions that are unaccustomed to snow, there is widespread use of concrete for road surfaces. When there are large temperature swings the concrete is more prone to cracking and it is more difficult to remove snow and ice from these roads, since there is a lack of snow removal equipment and salt in these regions, and the concrete is lighter in color and thus absorbs less solar energy than asphalt and thus stays colder.

The biggest problem that homeowners face in more southern latitudes from these deep freeze situations, apart from personal discomfort in poorly insulated homes, is water pipe freezing and rupturing. Leaving the water taps all partially open to ensure a trickle of water flow through the pipes alleviates a lot of this problem.

In summary, climate change caused extreme weather events are severely stressing infrastructure like roads, bridges, rail, pipelines, and buildings. Much of this infrastructure was built many years ago and upgrading and maintenance has been neglected due to postponed and reduced budgets; while traffic on rail, for example has exploded in volume and weight. We are now facing the consequences of accelerated climate change and the years of neglect of our aging infrastructure.

In the video below, Paul says more about the damage to railway tracks and pipelines.



Southern Hemisphere Climate Changes

In the video below, Paul Beckwith explains how declining Arctic sea ice is causing Australia to bake and Antarctic sea ice to grow.


to be continued

Saturday, January 25, 2014

Higher Altitude Methane Rise

Dramatic methane releases from the Arctic Ocean seafloor have been documented at this blog over the past few months. While the most recent IPCC figures for emissions from hydrates and permafrost are only 7 Tg per year, a recent post estimates current emissions from hydrates at 99 Tg per year, a figure that is growing rapidly. Furthermore, as discussed in an earlier post, the IPCC's estimated annual increase in global methane levels may seem small, but this figure appears to be based on low-altitude data collected over the past few decades.

These high methane releases undoubtedly contribute to higher global levels, but they may not (as yet) translate into higher global averages due to the way data are collected and figures are averaged and calculated. 

Global levels can be calculated by adding up and averaging readings from all measuring stations around the world. This works well for conventional emissions such as from wetlands, from agriculture or from burning fuel. Such emissions originate from numerous land-based sources that are spread out over large areas, while each emitting relatively small quantities of methane periodically or continuously, which makes it easy for hydroxyl to brake down this type of methane before it rises up into the air. Thus, such emissions can be relatively easily measured from land-based measuring stations. 

By contrast, the Arctic Ocean covers only 2.8% of the Earth's surface and releases from hydrates originate in only parts of the Arctic Ocean. Thus, the methane that enters the atmosphere over the Arctic Ocean is very concentrated to start with. Furthermore, hydroxyl levels in the Arctic atmosphere are low, especially at this time of year. As a result, much of the methane that enters the atmosphere over the Arctic Ocean will rise higher up into the atmosphere without being broken down, and much of the methane will continue to be present over the Arctic for years, exercizing methane's very high initial warming potential. 

There are only a few measuring stations in the Arctic and they are all land-based, making that measurements can be taken at altitudes that are too low to capture the full scale of the methane concentrations that have formed as a result of methane releases from the Arctic Ocean seafloor over the past few months. The local nature and further characteristics of releases from the Arctic Ocean can make that they are underestimated or even ignored in measurements taken at land-based stations and in global levels that are calculated from such data. 

The situation can be tested by looking at peak levels of methane showing up at specific altitudes, as measured by satellite sensors, specifically at two altitudes, i.e. at 14,385 Ft (or 4,385 m) and at 19,820 Ft (or 6,041 m), since methane as measured by the IASI MetOp polar-orbiting satellite shows up most prominently at these altitudes over the Arctic. Thus, to detect methane originating from hydrates under the Arctic Ocean, it's best to look at peak levels at these altitudes. The image below shows IASI data available in January 2013 and in January 2014, for these two altitudes.  





The results of this analysis are quite disturbing, for two reasons. Firstly, January 2014 peak levels have increased strongly, compared to January 2013 peak levels. Secondly, the rise in average peak readings has been most dramatic at the higher altitude (from 2066 ppb in 2013 to 2240 ppb in 2014). 

This suggests that huge quantities of methane have indeed been released from hydrates under the Arctic ocean, and that much of the methane is rising and building up at higher altitudes. The increasing appearance of noctilucent clouds further confirms indications that methane concentrations are rising at higher altitudes. 

Of course, the above analysis uses a limited dataset, but if verified by further analysis, it would confirm a dramatic rise in the presence of methane in the atmosphere due to releases from hydrates. Moreover, it would confirm the immensity of threat that releases from the Arctic Ocean will escalate and trigger runaway warming. The risk that this will eventuate is unacceptable, which calls for comprehensive and effective action such as discussed at the ClimatePlan blog