Showing posts with label fire. Show all posts
Showing posts with label fire. Show all posts

Thursday, July 25, 2019

Smoke Covers Much Of Siberia

Smoke covers much of Siberia, as shown by the NASA Worldview image dated July 25, 2019.


The enormous intensity of the fires is illustrated by the image below, showing carbon monoxide (CO) levels as high as 80,665 ppb on July 25, 2019.


The image below shows that, at that same spot on July 25, 2019, carbon dioxide (CO₂) levels were as high as 1205 ppm.


The image below shows that aerosols from biomass burning were at the top end of the scale.


When soot from fires settles on snow and ice, it darkens the surface, resulting in more sunlight getting absorbed (instead of reflected back into space, as was previously the case), thus further speeding up the melting.

The loss of sea ice north of Greenland is particularly worrying, since this is the area where once the thickest sea ice was present. The image below shows the situation on July 24, 2019.


The image below shows the sea ice disappearing north of Greenland and Ellesmere Island on July 25, 2019.


The huge recent fall in sea ice volume is illustrated by the graph below, by Wipneus.


The naval.mil animation below illustrates the rapid fall in sea ice thickness, showing 30-day period including seven forecasts up to August 1, 2019.


The combination image below shows sea ice thickness forecasts for July 25, 2019, and for August 1, 2019.


The video below, by Robin Westenra, further illustrates our predicament.


The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.


Links


• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html



Monday, July 8, 2019

Alaska On Fire

Fires are raging over Alaska. The satellite image below shows the situation on July 8, 2019.


The satellite image below shows the situation on July 9, 2019.


The image below shows carbon monoxide levels as high as 43,443 ppb over Alaska on July 8, 2019.


Carbon dioxide levels were as high as 561 ppm over that same spot in Alaska on July 8, 2019. Carbon dioxide levels were as high as 888 ppm on July 10, 2019, as the image below shows.


The image below shows a forecast for July 10, 2019, with temperatures forecast to be as high as 35.5°C or 95.8°F.


What causes such extreme weather events to occur?

The Arctic has been heating up faster than the rest of the world, due to self-reinforcing feedback loops such as the decline of the snow and ice cover in the Arctic, which results in less sunlight getting reflected back into space and more sunlight instead getting absorbed in the Arctic.

As the image on the right shows, sea surface temperatures in the Bering Sea were as high as 19.8°C or 67.64°F on June 21, 2019.

As the image underneath shows, sea surface temperatures in the Bering Sea were as high as 21.6°C or 70.88°F on July 15, 2019.

Warm water from rivers flowing into the Bering Strait have contributed to some of the high temperatures of the water near the coast of Alaska.

Furthermore, as the June 21, 2019, image below shows, sea surface temperature anomalies have also been high around Alaska further away from the coast.

Indeed, more than 90% of the extra energy caused by humans goes into oceans, and sea currents carry a lot of this extra heat toward the Arctic Ocean.

As a result, ocean temperatures have been high for some time around Alaska.

The image below shows sea surface temperature anomalies around Alaska on June 21, 2019.


Another feedback is that, as the Arctic heats up faster than the rest of the world, the jet stream becomes more wavy, making it easier for cold air to flow out of the Arctic to the south and for warm air from the south to enter the Arctic. These changes to the jet stream also cause stronger storms to occur in the Arctic and more water vapor to enter the atmosphere. All this further contributes to more heating to occur in the Arctic and more extreme weather events.

Heatwaves also cause more forest fires to occur in Alaska, and these forest fires are causing large amounts of soot to get deposited on mountains and on sea ice, thus further blackening the surface. More generally, the Arctic is getting more deposits of soot and dust, as well as stronger growth of algae, moss and microbes, all further speeding up the demise of the snow and ice cover in the Arctic.

The image below shows sea surface temperature anomalies around Alaska on July 11, 2019, with an anomaly of 7.7°C or 13.8°F compared to 1981-2011 showing up north of Alaska in the Arctic Ocean. The light blue areas indicate sea surface that is colder, due to heavy melting of the sea ice in those areas.


The image below shows a deformed jet stream (forecast for July 9, 2019) that enables hot air from the south to move over Alaska.


from an earlier post (2014)  
Heatwaves and forest fires are symptoms of the rapid heating that is taking place in the Arctic. Self-reinforcing feedback loops further accelerate heating in the Arctic and just one of them, seafloor methane, threatens to cause runaway heating.

Just the existing carbon dioxide and methane, plus seafloor methane releases, would suffice to trigger the clouds feedback tipping point to be crossed that by itself could push up global temperatures by 8°C, within a matter of years, as the image below shows.


As described on above image and in an earlier post, huge amounts of methane could be released from destabilizing hydrates contained in sediments at the seafloor of the Arctic Ocean. Such releases could be triggered by strong winds causing an influx of warm, salty water into the Arctic ocean, as described in an earlier post and discussed in the 2017 video below.



The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.


Links

• Extreme weather
https://arctic-news.blogspot.com/p/extreme-weather.html

• Feedbacks in the Arctic
https://arctic-news.blogspot.com/p/feedbacks.html

• When Will We Die?
https://arctic-news.blogspot.com/2019/06/when-will-we-die.html

• Warning of mass extinction of species, including humans, within one decade
http://arctic-news.blogspot.com/2017/02/warning-of-mass-extinction-of-species-including-humans-within-one-decade.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html



Sunday, February 10, 2019

CO₂ levels reach another record high

CO₂ levels just reached another record high. On February 9, 2019, an average daily CO₂ level of 414.27 ppm was recorded at Mauna Loa, Hawaii.

The image below shows hourly (red circles) and daily (yellow circles) averaged CO₂ values from Mauna Loa, Hawaii, for the last 31 days.


As the image shows, average hourly levels well above 414 ppm were recorded on January 21, 2019, but no daily average was recorded for that day. February 9, 2019, was the first time an average daily CO₂ level above 414 ppm was formally recorded and such levels have not been reached earlier over the past 800,000 years, as illustrated by the image below.

CO₂ levels can be expected to keep rising further this year to reach a maximum level in April/May 2019.

How much can CO₂ levels be expected to grow over the next decade? 

A recent Met Office forecast expects annual average CO₂ levels at Mauna Loa to be 2.75 ppm higher in 2019 than in 2018. The image below shows NOAA 1959-2018 CO₂ growth data (black) and uses this Met Office forecast used for 2019 (brown). The growth figures for 2018 and 2019 are spot on a trend that is added in line with an earlier analysis.


Strong CO₂ growth is forecast for 2019, due to a number of factors including rising emissions, the added impact of El Niño and less uptake of carbon dioxide by ecosystems. A recent study warns that global warming will enhance both the amplitude and the frequency of eastern Pacific El Niño events and associated extreme weather events. Another recent study warns that, while the terrestrial biosphere now absorbs some 25% of CO₂ emissions by people, the rate of land carbon uptake is likely to fall with reduced soil moisture levels in a warmer world. Furthermore, fire hazards can be expected to grow due to stronger winds and higher temperatures, each of which constitutes a factor on their own, while they jointly also increase two further factors, i.e. drying out of soils, groundwater and vegetation, and the occurrence of more lightning to ignite fires and to also cause more ground-level ozone that further deteriorates vegetation health. 

The warming impact of CO₂ can therefore be expected to increase over the next decade, given also that the warming impact of CO₂ reaches a peak ten years after emission. The earlier analysis furthermore warns about strong growth in CO₂ emissions due to fires in forests and peatlands, concluding that CO₂ emissions could cause an additional global temperature rise of 0.5°C over the next ten years.

Rise in methane is accelerating

Methane levels are also rising and this rise is accelerating, as illustrated by the image below.


The graph shows July 1983 through October 2018 monthly global methane means at sea level, with added trend. Note that higher methane means can occur at higher altitude than at sea level. On Sep 3, 2018, methane means as high as 1905 ppb were recorded at 307 mb, an altitude at which some of the strongest growth in methane has occurred, as discussed in earlier posts such as this one.

What does the historic record tell us? 

A 10°C higher temperature is in line with such high greenhouse gas levels, as illustrated by the graph below, based on 420,000 years of ice core data from Vostok, Antarctica, from an earlier post.


Tipping points

The threat is that a number of tipping points are going to be crossed, including the buffer of latent heat, loss of albedo as Arctic sea ice disappears, methane releases from the seafloor and rapid melting of permafrost on land and associated decomposition of soils, resulting in additional greenhouse gases (CO₂, CH₄, N₂O and water vapor) entering the Arctic atmosphere, in a vicious self-reinforcing cycle of runaway warming.

A 10°C rise in temperature by 2026?


Above image shows how a 10°C or 18°F temperature rise from preindustrial could eventuate by 2026 (from earlier post).

The situation is dire and calls for comprehensive and effective action, as described at the Climate Plan.


Links

• NOAA Mauna Loa CO2 annual mean growth rates 1959-2018
ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_gr_mlo.txt

• NOAA  monthly global methane means at sea level
ftp://aftp.cmdl.noaa.gov/products/trends/ch4/ch4_mm_gl.txt

• Faster CO₂ rise expected in 2019
https://www.metoffice.gov.uk/news/releases/2019/2019-carbondioxide-forecast

• Increased variability of eastern Pacific El Niño under greenhouse warming, by Wenju Cai et al.
https://www.nature.com/articles/s41586-018-0776-9

• El Niño events will intensify under global warming, by Yoo-Geun Ham
https://www.nature.com/articles/d41586-018-07638-w

• Large influence of soil moisture on long-term terrestrial carbon uptake, by Julia Green et al.
https://www.nature.com/articles/s41586-018-0848-x

• 2018 Continues Record Global Ocean Warming, by Lijing Cheng et al.
https://link.springer.com/article/10.1007/s00376-019-8276-x

• Blue Ocean Event
https://arctic-news.blogspot.com/2018/09/blue-ocean-event.html

• What Does Runaway Warming Look Like?
https://arctic-news.blogspot.com/2018/10/what-does-runaway-warming-look-like.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html



Sunday, August 19, 2018

Will August 2018 be the hottest month on record?


July and August are typically about 3.6ºC or 6.5ºF warmer than December and January. August is typically 1.8°C or 3.24ºF warmer than the average annual temperature. Above image shows how much higher the temperature was for selected months, compared to the annual global mean for the period 1980-2015. Will August 2018 be the hottest month on record?

Numerous temperature records have fallen across the world recently. Heat stress hazard is high under conditions of high surface air temperature and high relative humidity. When looking at heat stress hazards, it's therefore important to look at surface air temperatures over land, i.e. the temperature of the air above the land surface.

Fire hazard is high under conditions of hot and dry soil and strong wind. When looking at fire hazards, it's therefore important to look at land surface temperatures, reflecting how hot the surface of the Earth would feel to touch in a particular location. The map below shows land surface temperatures.


When calculating how much warmer it is now, a number of things must be taken into account:
  1. Baseline

    What baseline is used and how is the temperature at the baseline calculated? In the image at the top, the baseline is 1980-2015, which is a very recent period. When using a preindustrial baseline, anomalies could be more than 0.6°C higher than when using the 1951-1980 baseline that NASA normally uses.

  2. Surface temperatures or surface air temperatures?

    Above map shows land surface temperatures. As said above, this is different from surface air temperatures over land that show the temperature of the air above the land surface.

    Similarly, sea surface temperatures indicate the temperature of the water at the surface. Sea surface air temperatures, on the other hand, are slightly higher, they are measurements of the air temperature just above the surface of the water.

    NASA typically uses surface air temperatures over land, while using surface water temperatures over oceans. When instead using air temperatures globally, the temperature anomaly could be more than 0.1°C higher.
     
  3. Missing data

    How are missing data dealt with? To calculate the global mean on maps, NASA uses four zonal regions (90-24ºS, 24-0ºS, 0-24ºN, and 24-90ºN) and fills gaps in a region by the mean over the available data in that region. In datasets, however, missing data are typically ignored. This could make a difference of 0.2°C. Ignoring data for the Arctic alone could make a difference of 0.1°C.  
Depending on how the above three points are dealt with, the temperature in August 2018 may well be more than 3°C above the mean annual global temperature in 1750. The question is whether August 2018 will be warmer than August 2016, which was 2.3°C warmer than 1980-2015.

Anthropogenic Global Warming

Remember the Paris Agreement, when politicians pledged to take efforts to ensure that the temperature would not cross 1.5°C above pre-industrial? Why did the Paris Agreement not specify a year for pre-industrial? Perhaps the idea was that total anthropogenic global warming should not exceed 1.5°C. In other words, the warming that people had already caused by 1750, plus the warming people caused since 1750, plus the warming that is already baked in for the decades to come. The image below illustrates this idea and also shows that we're well above 1.5°C anthropogenic global warming.



In the image below, temperatures have also been adjusted to better reflect a preindustrial baseline (1750), showing that temperatures were not higher than 1°C above pre-industrial during the entire Holocene, until recently.


In a recent paper, James Hansen et al. conclude that temperatures also weren't more than 1°C above pre-industrial during the previous interglacial, the Eemian, which implies that temperatures haven't been more than 1°C above pre-industrial for the entire 200,000 years that modern people, i.e. the species homo sapiens, have existed, and that temperatures have only recently rising to levels more than 1°C above pre-industrial. Quite likely, to find temperatures as high as today's, one would have to go back some 3 million years.

Fires over North America, August 2018

Fires can significantly influence temperatures in a number of ways. The images below show how fires boosted carbon dioxide, carbon monoxide and sulfur dioxide levels on August 19, 2018. Carbon dioxide and carbon monoxide both raise temperatures. On the other hand, sulfur dioxide lowers temperature by reflecting sunlight back into space.

Top left: carbon monoxide as high as 51495 ppb
Top right: carbon dioxide as high as 836 ppm
Bottom left: Smoke over North America
Bottom right: sulfur dioxide as high as 1917.57 µg/m³
The image below illustrates to what extent smoke from fires boosted black carbon in the air over North America on August 23, 2018. Black carbon causes both cooling and warming. Black carbon shades the surface, somewhat cooling the surface of land and water, while it also absorbs heat, thus warming the air above the surface. Furthermore, black carbon causes warming by darkening the surface once it settles down. Studies have calculated that black carbon has a total net global warming effect of more than 1.1 W/m².


Dust and further aerosols

The impact of aerosols such as sulfur dioxide and dust is often overlooked. The image below shows that τ, i.e. light at 550 nm as a measurement of aerosol optical thickness due to dust aerosols, was as high as 4.0641 on June 16, 2018.


[ goats, from Wikipedia ]
Dust is one reason why temperatures didn't cross the 1°C above pre-industrial mark during the peak of the recent Milankovitch cycle. A recent study calculates that the global annual mean surface temperature increases by 0.3°C for the mid-Holocene (6 ka), if the dust is completely removed.

Most dust appears to originate from the Sahara Desert, which lost its vegetation during the Holocene due to goats, according to this study, as people removed predators such as lions and tigers. As the Sahara lost its vegetation, the surface became more reflective, while dust further made that temperatures didn't rise as much as they otherwise would have.

Deforestation has caused a lot of carbon dioxide to be added during pre-industrial times, and there is also the impact of black carbon aerosols, resulting from biomass and fossil fuel burning, which causes some 1.1W/m² warming today and some 0.2W/m² is coming from pre-industrial activities.

In conclusion, temperatures would be a lot lower in the absence of human activities, while total anthropogenic global warming over the past few thousand years is much larger than most people think.

The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.


Links

• NASA - The Northwest is Running Hot and Dry
https://earthobservatory.nasa.gov/images/92601/the-northwest-is-running-hot-and-dry

• NASA GISS (Goddard Institute for Space Studies) Surface Temperature Analysis (GISTEMP)
https://data.giss.nasa.gov/gistemp

• NASA - Just Another Day on Aerosol Earth
https://earthobservatory.nasa.gov/images/92654/just-another-day-on-aerosol-earth

• Aerosols
https://arctic-news.blogspot.com/p/aerosols.html

• How much warming have humans caused?
https://arctic-news.blogspot.com/2016/05/how-much-warming-have-humans-caused.html

• How much warmer is it now?
https://arctic-news.blogspot.com/2018/04/how-much-warmer-is-it-now.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html





Thursday, August 2, 2018

Global fires, droughts and Orwellian Newspeak while Nero fiddles

By Andrew Glikson

There was a time when the contamination of drinking water constituted a punishable crime. Nowadays those who willfully ignore or promote the destruction of the Earth’s atmosphere and ocean acidification through the rise in emission of carbon gases (2014 ~36.08 billion ton CO₂/year ; 2017 ~36.79 billion ton CO₂/year), hold major sway in the world. Consequently the rise rate of atmospheric CO₂ at 2 ppm/year (from 408.84 ppm in June 2014 to 410.79 ppm in June 2018) is the fastest observed in the geological record since 66 million years ago, when an asteroid hit the Earth, wiping out the dinosaurs. (onlinelibrary.wiley.com/doi/abs/10.1111/gcb.13342). The hapless residents of planet Earth are torn between survival in several parts of the world and sport circuses in other parts, while some of their representatives are playing with chunks of coal in their parliament.

See interactive version of image at:
carbonbrief.org/analysis-global-co2-emissions-set-to-rise-2-percent-in-2017-following-three-year-plateau

The consequences in terms of heat waves, fires, droughts, storms, floods, human lives and devastation of nature are everywhere. From Japan to Sweden, Oman to Texas and California, a global heat wave is setting records, igniting wildfires, and killing hundreds.
nymag.com/daily/intelligencer/2018/07/a-global-heat-wave-has-set-the-arctic-circle-on-fire.html

The south-central region is home to the highest temperatures in the U.S. this week, with nearly 35 million people living under excessive heat warnings issued by the National Weather Service. Temperatures are expected to be in the triple digits across Texas this weekend, marking the most severe heat wave in the state since 2011. The Texas heat has already led to record-breaking days for the Texas power grid twice this week. Things aren’t any better elsewhere in the region, with heat indexes in Oklahoma, Arkansas, and Louisiana reaching up to 110°F.

Dozens are dead in Japan from record-setting, long duration extreme heat event.
climatesignals.org/headlines/dozens-dead-japan-record-setting-long-duration-extreme-heat-event
theweek.in/news/world/2018/07/23/japanese-heat-wave-pushes-temperature-to-record.html
Across the globe in Kyoto, Japan, Thursday marked the seventh straight day of temperatures that exceeded 100 degrees, breaking all known records for the ancient capital city. At least 30 people have died in Japan during the heat wave, which has complicated rescue efforts following floods and landslides that killed more than 200 in western Japan earlier this month. On Thursday alone ten people died and 2,605 people were sent to hospitals in Tokyo due to heat, the Japan Times reports. The day before, Tokyo rescue workers set a record by responding to more than 3,000 emergency calls.

In Sweden, the Arctic Circle is on fire. High temperatures and a prolonged drought have caused 49 fires to ignite across Sweden, with temperatures reaching 90 degrees as far north as the Arctic Circle this week. According to the Washington Post, temperatures in Scandinavia typically settle in the 60s and 70s this time of year, meaning the current heat wave is making things around 20 degrees hotter than normal. In Quebec, more than 90 people were killed by extreme heat in early July. An Algerian city earlier this month broke the record for the highest temperature ever in Africa when it hit 124.3°F.
nymag.com/daily/intelligencer/2018/07/a-global-heat-wave-has-set-the-arctic-circle-on-fire.html

The current heatwave has been caused by an extraordinary stalling of the jet stream wind, which usually funnels cool Atlantic weather over the continent. This has left hot, dry air in place for two months – far longer than usual. The stalling of the northern hemisphere jet stream is being increasingly firmly linked to global warming, in particular to the rapid heating of the Arctic and resulting loss of sea ice.
theguardian.com/environment/2018/jul/27/heatwave-made-more-than-twice-as-likely-by-climate-change-scientists-find

Prof Michael Mann declares “This is the face of climate change … We literally would not have seen these extremes in the absence of climate change … The impacts of climate change are no longer subtle … We are seeing them play out in real time and what is happening this summer is a perfect example of that … We are seeing our predictions come true …". Mann points out that the link between smoking tobacco and lung cancer is a statistical one, which does not prove every cancer was caused by smoking, but epidemiologists know that smoking greatly increases the risk. “That is enough to say that, for all practical purposes, there is a causal connection between smoking cigarettes and lung cancer and it is the same with climate change.”
theguardian.com/environment/2018/jul/27/extreme-global-weather-climate-change-michael-mann

Australia, emitting 138 million tons of CO₂e in 2017 and in 2017 exporting 200 million tonnes thermal coal and 172 million tons metallurgical coal, is currently suffering major consequences in terms of drought in New South Wales, north-west Victoria and eastern South Australia.

The factors, as explained by Blair Trewin of the Bureau of Meteorology, include: “a stronger than usual sub-tropical ridge over southern Australia. That means that frontal systems that would normally start affecting southern Australia more generally during the winter are instead mostly passing south of the continent, really only affecting Tasmania and perhaps southern Victoria."

Although the polar-ward migration of climate zones pushed southward by the tropical Hadley Cell constitutes an integral feature of global climate change, rarely does the term “climate change” appear in relevant government and farmers’ statements. Orwellian Newspeak has won the day once again, where talk about the “National energy guarantee” appears to divert attention from the global climate crisis to power prices, in a country where the sky is the limit for alternative clean energy—solar, wind and tide.

The cover-up by the compliant mainstream media, radio and TV of the climate change origin of the heat waves and of fires in the northern hemisphere, and of the drought in the southern hemisphere, is now almost complete. In true Orwellian newspeak terms the words “climate change” have now been replaced with “energy security”..

Andrew Glikson
Dr Andrew Glikson
Earth and Paleo-climate science
ANU Climate Change Institute
ANU Planetary Science Institute
Books:
http://www.springer.com/gp/book/9783319079073
http://www.springer.com/gp/book/9789400763272
http://www.springer.com/us/book/9783319745442
http://www.springer.com/gp/book/9783319225111
http://www.springer.com/gp/book/9783319572369
http://www.springer.com/gp/book/9789400773318


Sunday, July 1, 2018

Can we weather the Danger Zone?

[ click on image to enlarge ]
As an earlier Arctic-news analysis shows, Earth may have long crossed the 1.5°C guardrail set at the Paris Agreement.

Earth may have already been in the Danger Zone since early 2014. This is shown by the image on the right associated with the analysis, which is based on NASA data that are adjusted to reflect a preindustrial baseline, air temperatures and Arctic temperatures.

As the added 3rd-order polynomial trend shows, the world may also be crossing the higher 2°C guardrail later this year, while temperatures threaten to keep rising dramatically beyond that point.

What is the threat?

As described at the Threat, much carbon is stored in large and vulnerable pools that have until now been kept stable by low temperatures. The threat is that rapid temperature rise will hit vulnerable carbon pools hard, making them release huge amounts of greenhouse gases, further contributing to the acceleration of the temperature rise.


Further release of greenhouse gases will obviously further speed up warming. In addition, there are further warming elements that could result in very rapid acceleration of the temperature rise, as discussed at the Extinction page.

The Danger Zone

Below are some images illustrating just how dire the situation is, illustrating how vulnerable carbon pools are getting hit exactly as feared they would be with a further rise in temperature.

On July 5, 2018, it was as hot as 33.5°C or 92.3°F on the coast of the Arctic Ocean in Siberia (at top green circle, at 72.50°N). Further inland, it was as hot as 34.2°C or 93.5°F (at bottom green circle, at 68.6°N).


The satellite image below shows smoke from fires over parts of Siberia hit strongly by heat waves.


The fires caused carbon monoxide levels as high as 20,309 ppb over Siberia on July 3, 2018.


Methane levels that day were as high as 2,809 ppb.


On July 4, 2018, forest fires near the Lena River cause smoke over the Laptev Sea and East Siberian Sea. CO (see inset) and CO₂ levels that day were as high as 45080 ppb and 724 ppm (at the green circle), as illustrated by the image below.


The Copernicus image below shows aerosol forecasts for July 4, 2018, 21:00 UTC, due to biomass burning.


Another Copernicus forecast shows high ozone levels over Siberia and the East Siberian Sea.


EPA 8-hour ozone standard is 70 ppb and here's a report on recent U.S. ozone levels. See Wikipedia for more on the strong local and immediate warming impact of ozone and how it also makes vegetation more vulnerable to fires.

The global 10-day forecast (GFS) below, run on July 3, 2018, with maximum 2 meter temperature, shows that things may get even worse over the coming week or more.


Could we move out of the Danger Zone?

What can be done to improve this dire situation?

One obvious line of action is to make more effort to reduce emissions that are causing warming. There's no doubt that this can be achieved and has numerous benefits, as described in an earlier post. Emission cuts can be achieved by implementing effective policies to facilitate changes in energy use, in diet and in land use and construction practices, etc.

One complication is that the necessary transition away from fossil fuel is unlikely to result in immediate falls in temperatures. This is the case because there will be less sulfur in the atmosphere to reflect sunlight back into space. Furthermore, there could also be an increase in biomass burning, as discussed at the Aerosols page, while the full wrath of recent carbon dioxide emissions is yet to come. As said, the resulting rise in temperature threatens to trigger numerous feedbacks that could accelerate the temperature rise even further. For more on how much temperatures could rise, see the Extinction page.

While it's clear that - besides emission cuts - further action is necessary, such as removing greenhouse gases from the atmosphere and oceans, the prospect is that such removal will have to continue for decades and decades to come before it can bring greenhouse gases down to safer levels. To further combat warming, there are additional lines of action to be looked at, but as long as politicians remain reluctant to even consider pursuing efforts to reduce emissions, we can expect that the world will be in the Danger Zone for a long time to come.

The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.



Links

• How much warmer is it now?
https://arctic-news.blogspot.com/2018/04/how-much-warmer-is-it-now.html

• 100% clean, renewable energy is cheaper
https://arctic-news.blogspot.com/2018/02/100-clean-renewable-energy-is-cheaper.html

• Feedbacks
https://arctic-news.blogspot.com/p/feedbacks.html

• How much warming have humans caused?
https://arctic-news.blogspot.com/2016/05/how-much-warming-have-humans-caused.html

• IPCC seeks to downplay global warming
https://arctic-news.blogspot.com/2018/02/ipcc-seeks-to-downplay-global-warming.html

• The Threat
https://arctic-news.blogspot.com/p/threat.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Aerosols
https://arctic-news.blogspot.com/p/aerosols.html

• How extreme will it get?
https://arctic-news.blogspot.com/2012/07/how-extreme-will-it-get.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html