Sunday, October 20, 2013

Methane presence over Arctic Ocean continues


The image on the right, created with IPCC data, shows that methane levels have risen even stronger than levels of two other greenhouse gases, i.e. carbon doxide (CO2) and nitrous oxide (N2O).

Methane levels have risen strongly over the past few years, especially over the Arctic.

Previous posts at this blog have illustrated that, from early October 2013, high methane readings have shown up persistently over the depths of the Arctic Ocean.

The persistence of these readings indicates that this methane wasn't blown there from elsewhere. Furthermore, the presence of methane appears to line up closely with the fault line that crosses the Arctic Ocean and extends into Siberia and further into the Sea of Okhotsk.

The latest data show a continuation of this worrying methane presence over the Arctic Ocean.


On October 18, 2013, readings of up to 2426 ppb were recorded. As the above image shows, high peak readings have occurred over the past few months. Currently, however, high readings can be more clearly attributed to methane venting from the depths of the Arctic Ocean. On the image below, methane shows up very prominently over the Arctic Ocean.



For more background, see posts below.

Related

- The Unfolding Methane Catastrophe
http://arctic-news.blogspot.com/2013/10/unfolding-methane-catastrophe.html

- Methane hydrates
http://methane-hydrates.blogspot.com/2013/04/methane-hydrates.html

- Myths about methane hydrates
http://methane-hydrates.blogspot.com/p/myths.html



Friday, October 18, 2013

Unfolding Methane Catastrophe


The above image shows that, over a period of less than two days, huge amounts of methane show up over the depth of the Arctic Ocean, especially along the fault line that crosses the Arctic Ocean and extends into Siberia and further into the Sea of Okhotsk. On October 17, 2013, readings of up to 2351 ppb were recorded.



The above image shows that such high readings have occurred before over the past few months. This time, however, this high reading can be more clearly attributed to methane escaping from the depth of the Arctic Ocean, as also indicated by the image below that shows that at 469 mb (i.e. the altitude at which this high reading was recorded on the afternoon of October 17) methane was predominantly present at higher northern latitudes.

The methane that appears over the depth of the Arctic Ocean is likely have traveled a long path through the vertical water column before entering the atmosphere. Clearly, some of the methane must have oxidized in the ocean. Therefore, methane must be escaping from the seabed in amounts far higher than what is visible in the air.

Below follows some history regarding this unfolding methane catastrophe. Note that methane concentrations in the water are measured in nM, while methane concentrations in the atmosphere are typically measured in parts per billion (ppb).

There are vast amounts of methane in sediments underneath the Arctic Ocean.  Natalia Shakhova et al. (2010) estimate the accumulated potential for the East Siberian Arctic Shelf (ESAS) region alone (image on the right) as follows:
  • organic carbon in permafrost of about 500 Gt
  • about 1000 Gt in hydrate deposits
  • about 700 Gt in free gas beneath the gas hydrate stability zone.8
Natalia Shakhova et al. (2008) consider release of up to 50 Gt of predicted amount of hydrate storage as highly possible for abrupt release at any time. By comparison, the total amount of methane currently in the atmosphere is about 5 Gt.3

The danger that volcanic and earthquake activity along the Gakkel Ridge could lead to destabilization and abrupt methane release into the atmosphere was highlighted by Light and Sorana back in 2002.1

Measurements taken in September 2003 and September 2004 show that the surface layer of shelf water in the East-Siberian Sea and Laptev Sea was supersaturated up to 2500% relative to the present average atmospheric methane content of 1.85 ppm. Anomalously high concentrations (up to 154 nM or 4400% supersaturation) of dissolved methane in the bottom layer of shelf water suggest that the bottom layer is somehow affected by near-bottom sources. Considering the possible formation mechanisms of such plumes, we favor thermo-abrasion and the effects of shallow gas or gas hydrates release, conclude the authors of this study, published in 2005.2

In September 2005, extremely high concentrations of methane (up to 8 ppm) were measured in the atmospheric layer above the sea surface of the East Siberian Shelf, along with anomalously high concentrations of dissolved methane in the water column (up to 560 nM, or 12000% of super saturation).3

The authors conclude: "Since the area of geological disjunctives (fault zones, tectonically and seismically active areas) within the Siberian Arctic shelf composes not less than 1-2% of the total area and area of open taliks (area of melt through permafrost), acting as a pathway for methane escape within the Siberian Arctic shelf reaches up to 5-10% of the total area, we consider release of up to 50 Gt of predicted amount of hydrate storage as highly possible for abrupt release at any time. That may cause ∼12-times increase of modern atmospheric methane burden with consequent catastrophic greenhouse warming".3

In 2007, concentrations of dissolved methane in the water column reached a level of over 5141 nM at a location in the Laptev Sea.4

A study published in 2008 found volcanoes up to 2,000 m in diameter and a few hundred metres high at the bottom of the Arctic Ocean, at Gakkel Ridge.5



End September 2011, a cluster of methane plumes, over one km in diameter, appeared in the Laptev Sea, as shown on the image below, from a paper on the unfolding "Methane Catastrophe".6

In early October 2013, high atmospheric levels of methane started to appear over the depth of the Arctic Ocean.9  See image at top for most recent readings.


References

1. Arctic Methane Hydrates: A Potential Greenhouse Gas Hazard. - Light, M.P.R. and Solana, C. (2002)
http://adsabs.harvard.edu/abs/2002EGSGA..27.4077L
For more details, see also
http://arctic-news.blogspot.com/p/seismic-activity.html

2. The distribution of methane on the Siberian Arctic shelves: Implications for the marine methane cycle. - Natalia Shakhova, Igor Semiletov and Gleb Panteleev (2005)
http://onlinelibrary.wiley.com/doi/10.1029/2005GL022751/abstract

3. Anomalies of methane in the atmosphere over the East Siberian shelf: Is there any sign of methane leakage from shallow shelf hydrates? - N. Shakhova, I. Semiletov, A. Salyuk and D. Kosmach (2008)
http://meetings.copernicus.org/www.cosis.net/abstracts/EGU2008/01526/EGU2008-A-01526.pdf

4. Siberian Sea Shelf Study, International Arctic Research Center, University of Alaska Fairbanks
http://research.iarc.uaf.edu/SSSS/data2010.php

5. Explosive volcanism on the ultraslow-spreading Gakkel ridge, Arctic Ocean. - Sohn RA et al. (2008)
http://www.ncbi.nlm.nih.gov/pubmed/18580949

6. The Degradation of Submarine Permafrost and the Destruction of Hydrates on the Shelf of East Arctic Seas as a Potential Cause of the “Methane Catastrophe”: Some Results of Integrated Studies in 2011. - V. I. Sergienko et al., in Oceanology (Sept. 2012)
http://link.springer.com/article/10.1134/S102833

7. On carbon transport and fate in the East Siberian Arctic land–shelf–atmosphere system. - Semiletov et al. (2012)
http://iopscience.iop.org/1748-9326/7/1/015201

8. Methane release from the East Siberian Arctic Shelf and the Potential for Abrupt Climate Change. - Natalia Shakhova and Igor Semiletov (2010), Presentation at Symposium, November 30, 2010
http://symposium2010.serdp-estcp.org/content/download/8914/107496/version/3/file/1A_Shakhova_Final.pdf

9. High Methane Readings continue over Depth of Arctic Ocean
http://arctic-news.blogspot.com/2013/10/high-methane-readings-continue-over-depth-of-arctic-ocean.html


Tuesday, October 15, 2013

High Methane Readings continue over Depth of Arctic Ocean

The image below contains 12 frames, with methane readings recorded over 12 days in the first half of October 2013.

[ click on image to enlarge ]
As discussed in earlier posts at this blog, high methane readings have been recorded recently over the depth of Arctic Ocean. Above image shows that these high readings are continuing. The image below shows that at 469 mb, the altitude at which the highest reading was recorded on the afternoon of October 13, methane shows up very prominently over the Arctic Ocean.

The fact that little methane shows up elsewhere indicates that methane is present at high levels, at times over 2200 ppb, over the depth of the Arctic Ocean, and that these high levels result from methane that originates from hydrates under the seabed.

The image below, with methane readings over the past few days (from October 12 10:00 pm to October 14 11:23 pm), shows high levels of methane over the depth of the Arctic Ocean.



The image below shows methane readings at 586 mb, the altitude at which the highest methane reading was recorded on the afternoon of October 14 (a reading of 2248 ppb). Again, methane is present very prominently over the depth of the Arctic Ocean.




 

Tuesday, October 8, 2013

Abrupt Climate Change

What is Abrupt Climate Change?

Abrupt climate change is defined by the IPCC as a large-scale change in the climate system that takes place over a few decades or less, persists (or is anticipated to persist) for at least a few decades, and causes substantial disruptions in human and natural systems.

Examples of components susceptible to such abrupt change are clathrate methane release, tropical and boreal forest dieback, disappearance of summer sea ice in the Arctic Ocean, long-term drought and monsoonal circulation.

Deposits of methane clathrates below the sea floor are susceptible to destabilization via ocean warming.

Anthropogenic warming will very likely lead to enhanced methane emissions from both terrestrial and oceanic clathrates.

Above extracted from:
- Intergovenmental Panel on Climate Change (IPCC), AR5 Workgroup 1, Technical Summary

New Finding Shows Climate Change Can Happen in a Geological Instant

The Paleocene/Eocene thermal maximum (PETM) is a climate shift that occurred 55 million years ago.

James Wright, Rutgers University Research News -
Morgan Schaller, James Wright, and the core sample
that helped them understand what happened
– and how fast it happened – 55 million years ago.
In a new paper in the Proceedings of the National Academy of Sciences, Morgan Schaller and James Wright present their finding that climate change can and did happen abruptly, or in geological terms, instantaneously.

Following a doubling in carbon dioxide levels, the surface of the ocean turned acidic over a period of weeks or months and global temperatures rose by 5 degrees centigrade – all in the space of about 13 years.

“We’ve shown unequivocally what happens when CO2 increases dramatically – as it is now, and as it did 55 million years ago,” James Wright said.

The film below goes into more detail regarding the current situation.

New Film: Last Hours

The film “Last Hours” describes a science-based climate scenario where a tipping point to runaway climate change is triggered by massive releases of frozen methane. Methane, a powerful greenhouse gas, has already started to percolate into the open seas and atmosphere from methane hydrate deposits beneath melting arctic ice, from the warming northern-hemisphere tundra, and from worldwide continental-shelf undersea methane pools.

“Last Hours” is narrated by Thom Hartmann and directed by Leila Conners. Executive Producers are George DiCaprio and Earl Katz.


For more, also watch some of Thom Hartmann’s interviews.

High Methane Levels persist over Arctic Ocean

High methane levels are prominent over the Arctic Ocean, as illustrated by the image below, covering a period from October 3, 2013, 10:54 am to October 7, 2013, 11:53 pm. The fact that methane has not been present elsewhere in such high concentrations over this period indicates that the methane wasn't carried there by the wind from elsewhere. Also, methane typically appears to move along the same latitude, due to the Coriolis effect.


The image indicates a link between seismic activity and destabilization of methane that is held in sediments under the Arctic Ocean. Methane does show up prominently along the fault line that crosses the Arctic Ocean and extends into Siberia over the Laptev Sea.

The Diagram that IPCC failed to include in AR5

The diagram below shows global warming evolving into accelerated warming in the Arctic. Feedbacks such as albedo changes and methane release speed up this process, triggering abrupt climate change and finally extinction.

The Diagram the IPCC failed to include in AR5

This threatening situation calls for an Effective and Comprehensive Climate Plan, such as depicted by the green lines of action in the image below and as further described at the ClimatePlan blog. For more background, see related posts further below.




Related posts

- Just do NOT tell them the monster exists
http://arctic-news.blogspot.com/2013/10/just-do-not-tell-them-the-monster-exists.html

- Methane Release caused by Earthquakes
http://arctic-news.blogspot.com/2013/09/methane-release-caused-by-earthquakes.html

- Climate Plan
http://climateplan.blogspot.com