Monday, March 13, 2017

Methane Erupting From Arctic Ocean Seafloor

Seafloor methane often missed in measurements

Large amounts of methane are erupting from the seafloor of the Arctic Ocean. These methane eruptions are often missed by measuring stations, because these stations are located on land, while measurements are typically taken at low altitude, thus missing the methane that rises in plumes from the Arctic Ocean. By the time the methane reaches the coast, it has typically risen to higher altitudes, thus not showing up in low-altitude measurements taken at stations on land.

The image below shows the highest mean global methane levels on March 10 over the years from 2013 through 2017, for selected altitudes corresponding to 945 mb (close to sea level) to 74 mb.


The table below shows the altitude equivalents in feet (ft), meter (m) and millibar (mb).
57,016 ft44,690 ft36,850 ft30,570 ft25,544 ft19,820 ft14,385 ft 8,368 ft1,916 ft
17,378 m13,621 m11,232 m 9,318 m 7,786 m 6,041 m 4,384 m 2,551 m 584 m
 74 mb 147 mb 218 mb 293 mb 367 mb 469 mb 586 mb 742 mb 945 mb

The signature of seafloor methane

Above image shows that, over the years, methane levels have risen strongly high in the Troposphere, up into the Stratosphere. This looks like the signature of methane that originated from the seafloor of the Arctic Ocean. The image below further explains why.


The Tropopause separates the Troposphere from the Stratosphere. The Troposphere ends at a height of some 9 km (5.6 mi; 30,000 ft) at the poles, and at a height of some 17 km (11 mi; 56,000 ft) at the Equator.

As said, methane is erupting from the seafloor of the Arctic Ocean concentrated in plumes, unlike methane from wetlands and agriculture that is typically emitted over a wide area. Since seafloor methane is rising in plumes, it hardly shows up on satellite images at lower altitude either, as the methane is very concentrated inside the area of the plume, while little or no increase in methane levels is taking place outside the plume. Since the plume will cover less than half the area of one pixel, such a plume doesn't show up well at low altitudes on satellite images,

Methane over the Arctic typically does show up on satellite images at altitudes between 4.4 km and 6 km (14,400 ft and 19,800 ft). Seafloor methane will show up better at these higher altitudes where it spreads out over larger areas. At even higher altitudes, methane will then follow the Tropopause, i.e. the methane will rise in altitude while moving closer to the equator.

NOAA image

In conclusion, methane originating from the seafloor of the Arctic Ocean can strongly contribute to high methane levels that show up over the Equator at higher altitudes, but this methane can be misinterpreted for methane originating from tropical wetlands.

Methane levels as high as 2846 ppb
[ click on images to enlarge ]

On March 14, 2017, methane levels were as high as 2846 ppb, as illustrated by the image on the right. While the origin of these high levels looks hard to determine from this image, the high levels showing up over the East Siberian Arctic Shelf (ESAS) later that day (image underneath) give an ominous warning that destabilization of methane hydrates is taking place.

The images also show that high methane levels are showing up at many other places, e.g. over Antarctica where hydrate destabilization also appears to be taking place, which could also be the cause of noctilucent clouds as discussed in earlier posts (see links at end of this post).

Why is methane erupting from the Arctic Ocean?

Why are increasingly large quantities of methane erupting from the seafloor of the Arctic Ocean? The main driver is warming of the Arctic Ocean that is destabilizing once-permanently-frozen sediments that contain huge amounts of methane in the form of hydrates and free gas.

Ocean heat is increasingly entering the Arctic Ocean from the Atlantic Ocean, as illustrated by the images below. Self-reinforcing feedbacks, in particular sea ice decline, further speed up warming of the Arctic Ocean.

[ from earlier post ]

[ from earlier post ]
Self-reinforcing feedback loops

[ click on images to enlarge ]
Meanwhile, the next El Niño event has already started, at a time when sea surface temperature anomalies over the Pacific Ocean are very high as illustrated by the image on the right showing sea surface temperature anomalies east of South America as high as 5.3°C or 9.5°F (compared to 1981-2011) on February 28, 2017.

Greater contrast between sea surface temperatures and temperatures on land has contributed to flooding in California and South America.

Importantly, more water vapor in the atmosphere results in more warming, since water vapor is a potent greenhouse gas.

[ click on images to enlarge ]
Above images shows ECMWF (European Centre for Medium-Range Weather Forecasts) plumes with strong positive anomalies in all three El Niño regions (on the right).

In other words, temperatures in 2017 look set to be very high, which spells bad news for the Arctic where temperature anomalies are already several times higher than in the rest of the world.

Arctic sea ice looks set to take a steep fall, as illustrated by the image below.


The danger is that further self-reinforcing feedback loops such as albedo decline and methane releases will accelerate warming and, in combination with further warming elements, cause a temperature rise as high as 10°C or 18°F by the year 2026, as described at the extinction page.

The situation is dire and calls for comprehensive and effective action as described in the Climate Plan.


Links

• Climate Plan
http://arctic-news.blogspot.com/p/climateplan.html

• Extinction
http://arctic-news.blogspot.com/p/extinction.html

• Warning of mass extinction of species, including humans, within one decade
http://arctic-news.blogspot.com/2017/02/warning-of-mass-extinction-of-species-including-humans-within-one-decade.html

• Low sea ice extent contributes to high methane levels at both poles
http://arctic-news.blogspot.com/2017/03/low-sea-ice-extent-contributes-to-high-methane-levels-at-both-poles.html

• Noctilucent clouds indicate more methane in upper atmosphere
http://arctic-news.blogspot.com/2012/09/noctilucent-clouds-indicate-more-methane-in-upper-atmosphere.html

• Noctilucent clouds: further confirmation of large methane releases
http://methane-hydrates.blogspot.com/2013/12/noctilucent-clouds-further-confirmation-of-large-methane-releases.html



Saturday, March 4, 2017

Low sea ice extent contributes to high methane levels at both poles

[ click on images to enlarge ]
On March 2, 2017, Antarctic sea ice extent was at a record low since satellite readings started.

As the image on the right shows, sea ice extent in 2017 (light blue) around Antarctica has been more than 1 million km² lower than the 1981-2010 median.

At the same time, Arctic sea ice extent was at a record low for the time of the year since 1979.

As the image underneath on the right shows, Arctic sea ice extent in 2017 has also been more than than 1 million km² lower than the 1981-2010 median.

[ click on images to enlarge ]
For about half a year now, global sea ice extent has been more than 2 million km² lower than it used to be, not too long ago, as illustrated by the image below, by Wipneus.

This means that a lot of sunlight that was previously reflected back into space, has been absorbed instead by Earth, contributing to global warming, especially at the poles.

Greater warming at the poles has also caused more extreme weather, resulting in stronger winds and waves and in wild weather swings, further accelerating the decline of the sea ice.

The combination of rising ocean heat and stronger winds looks set to devastate the sea ice around Antarctica. Ocean heat is increasing particularly in the top layer (see image on the right).

Warming water is increasingly reaching the coast of Antarctica. The image below illustrates how much sea ice melt has occurred close to the coast of Antarctic over the past few months, while much sea ice has drifted away from the coast due to strong currents and wind.


As said, less sea ice means that a lot of sunlight is no longer reflected back into space, but is instead further warming up the poles. As a result, methane levels can be very high at both poles. The combination image below shows methane levels as high as 2560 ppb on March 1, 2017. The image in the panel on the left shows high methane levels over Antarctica in an area with much grey, indicating that it was hard to get a good reading there. On the image in the panel on the right, high methane levels do show up clearly in that area.

[ click on images to enlarge ]
As discussed before, methane hydrates can be present both on Greenland and on Antarctica underneath thick layers of snow and ice. Due to global warming, wild weather swings are now common at the poles, as illustrated by the image below. This can cause sequences of rapid and extreme expansion, compacting and fracturing of snow and ice, resulting in destabilization of methane hydrates contained in the permafrost.


The image below shows methane levels as high as 2562 ppb, with solid magenta-colored areas showing up over the Laptev Sea on March 4, 2017.

The image below shows that sea surface temperatures in the Arctic Ocean were as high as 12.7°C or 54.9°F on March 3, 2017 (at the location marked by the green circle), i.e. 12°C or 21.6°F warmer than in 1981-2011.


Below is the same image, but in a different projection and showing sea surface temperatures, rather than anomalies. In 1981-2011, the temperature of the water at a spot near Svalbard (green circle) was 0.7°C (33.3°F.). On March 3, 2017, it was 12°C (21.6°F) warmer on that spot.


The danger is that self-reinforcing feedback loops such as albedo decline and methane releases will further accelerate warming and will, in combination with further warming elements, cause a temperature rise as high as 10°C or 18°F by the year 2026, as described at the extinction page.

The situation is dire and calls for comprehensive and effective action as described in the Climate Plan.


Links

• Climate Plan
http://arctic-news.blogspot.com/p/climateplan.html

• Extinction
http://arctic-news.blogspot.com/p/extinction.html

• Methane hydrates
http://methane-hydrates.blogspot.com/2013/04/methane-hydrates.html

• Earthquakes in the Arctic Ocean
http://arctic-news.blogspot.com/2014/04/earthquakes-in-the-arctic-ocean.html


Saturday, February 25, 2017

Accelerating growth in CO₂ levels in the atmosphere

CO₂ Growth

In 2016, CO₂ levels in the atmosphere grew by 3.36 ppm (parts per million), a new record since 1959 and much higher than the previous record set in 2015.


Worryingly, above graph has a trendline added pointing at a growth rate in CO₂ levels of 6 ppm per year by 2026.

Growth in levels of CO₂ in the atmosphere is accelerating, despite reports that - for the third year in a row - carbon dioxide emissions from fossil fuels and industry (including cement production) had barely grown, as illustrated by the Global Carbon Project image below.

Why is growth in CO₂ levels in the atmosphere accelerating?

So, what makes growth in CO₂ levels in the atmosphere accelerate? As discussed in a previous post, growth in CO₂ levels in the atmosphere is accelerating due to:
  • Deforestation and Soil Degradation:
    Agricultural practices such as depleting groundwater and aquifers, plowing, mono-cultures and cutting and burning of trees to raise livestock can significantly reduce the carbon content of soils, along with soil moisture and nutrients levels.
  • Climate change and extreme weather events:
    The recent jump in global temperature appears to have severely damaged soils and vegetation. Soil carbon loss and enhanced decomposition of vegetation appear to have occurred both because of the temperature rise and the resulting extreme weather events such as heatwaves, drought, dust-storms and wildfires, and storms, hail, lightning, flooding and the associated erosion, turning parts of what was once a huge land sink into sources of CO₂ emissions.
    Moreover, extreme weather events can also lead to emissions other than CO₂ emissions, such as soot, nitrous oxide, methane and carbon monoxide, which can in turn cause a rise in the levels of ground-level ozone, thus further weakening vegetation and making plants even more vulnerable to pests and infestations.
  • Oceans may also be taking up less CO₂ than before:
    Oceans have absorbed some 40% of CO₂ emissions since the start of the industrial era. Up until recently, oceans still took up some 26% of carbon dioxide emitted by people annually. As discussed earlier, oceans are getting warmer, and warm water holds less oxygen than cold water. Furthermore, as the water warms, it tends to form a layer at the surface that does not mix well with cooler, nutrient-rich water below, depriving phytoplankton of some of the nutrients needed in order for phytoplankton to grow. Less phytoplankton in the oceans means that oceans become less able to take up carbon dioxide from the atmosphere. A study by Boyce et al. found a decrease of about 1% per year of phytoplankton in oceans globally. Sergei Petrovskii, co-author of a 2015 study, found that a rise in the water temperature of the world’s oceans of about 6°C could stop oxygen production by phytoplankton by disrupting the process of photosynthesis, adding that “About two-thirds of the planet’s total atmospheric oxygen is produced by ocean phytoplankton – and therefore cessation would result in the depletion of atmospheric oxygen on a global scale. This would likely result in the mass mortality of animals and humans.”
Sensitivity

Meanwhile, research including a 2014 study by Franks et al. concludes that the IPCC was too low in its estimates for the upcoming temperature rise locked in for current CO₂ levels. A study by Friedrich et al. updates IPCC estimates for sensitivity to CO₂ rise, concluding that temperatures could rise by as much as 7.36°C by 2100 as a result of rising CO₂ levels.

When also taking further elements than CO₂ more fully into account, we could face an even larger temperature rise, i.e. a rise of 10°C (or 18°F) by 2026 (compared to pre-industrial), as further described at the extinction page that specifies the different elements of such a rise, including a 0.5°C rise due to CO₂ emissions from 2016 to 2026. The CO₂ growth discussed in this post appears to be in line with such a rise and in line with the associated loss of carbon sinks and rising vulnerability of carbon pools.

The situation looks particularly threatening in the Arctic where many of the most vulnerable carbon pools are located, where temperatures are rising fastest and where CO₂ levels have recently risen rapidly (see image below with CO₂ readings at Barrow, Alaska).
[ click on images to enlarge ] 
Also note the recent rise in methane readings at Barrow (image below).
[ click on images to enlarge ] 
Action is needed!

The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.


Links

• Climate Plan
http://arctic-news.blogspot.com/p/climateplan.html

• Extinction
http://arctic-news.blogspot.com/p/extinction.html

• Monthly CO₂ not under 400 ppm in 2016
http://arctic-news.blogspot.com/2016/11/monthly-co-not-under-400-ppm-in-2016.html

• Oxygenating the Arctic
http://arctic-news.blogspot.com/p/oxygenating-arctic.html

• How much warming have humans caused?
http://arctic-news.blogspot.com/2016/05/how-much-warming-have-humans-caused.html

• Warning of mass extinction of species, including humans, within one decade
http://arctic-news.blogspot.com/2017/02/warning-of-mass-extinction-of-species-including-humans-within-one-decade.html

• Global phytoplankton decline over the past century, by Daniel G. Boyce, Marlon R. Lewis & Boris Worm
http://www.nature.com/nature/journal/v466/n7306/abs/nature09268.html

• Mathematical Modelling of Plankton–Oxygen Dynamics Under the Climate Change, by Yadigar Sekerci and Sergei Petrovskii
https://link.springer.com/article/10.1007%2Fs11538-015-0126-0

• Global warming disaster could suffocate life on planet Earth, research shows
http://www2.le.ac.uk/offices/press/press-releases/2015/december/global-warming-disaster-could-suffocate-life-on-planet-earth-research-shows


Wednesday, February 15, 2017

More heat on the way


Above image shows temperature anomalies over the Pacific Ocean on February 12, 2017. Note the 19.2°C (34.5 °F) anomaly off the coast of Japan, at the location marked by the green circle.

In 2016, the annually-averaged temperature for ocean surfaces around the world was 0.75°C (1.35°F) higher than the 20th century average, higher than the previous record of 2015, NOAA reports. The global annual land surface temperature for 2016 was 1.43°C (2.57°F) above the 20th century average, surpassing the previous record of 2015 by 0.11°C (0.19°F). Note that NOAA uses the the 20th century average as a baseline, for more on different baselines, see this earlier post.

There is more heat on the way, as illustrated by the image below.


As above image shows, the El Niño-Southern Oscillation (ENSO) temporarily raises (El Niño) or suppresses (La Niña) global temperatures. Generally, the stronger the event (El Niño or La Niña), the greater its impact on the average global temperature around that time. Note that one value for 2016 literally went off the chart.


As above image shows (at the end of the graph on the right), we've barely had a bit of a La Niña in 2017 and we're already facing another El Niño event.

[ click on images to enlarge ]

Above images shows ECMWF (European Centre for Medium-Range Weather Forecasts) plumes with strong positive anomalies in all three El Niño regions (on the right).

In other words, temperatures in 2017 look set to be very high, which spells bad news for the Arctic where temperature anomalies are already several times higher than in the rest of the world, as illustrated by the image below.

As the image below shows, Antarctic sea ice extent was at a record low for the time of the year on February 11, 2017.


The situation looks particularly grim for the Arctic sea ice. As the image below shows, Arctic sea ice extent on February 11, 2017, was also at a record low for the time of the year. In fact, it had fallen to 13,895,00 km² that day, raising the question whether perhaps the maximum for the year 2017 had already been reached.


Low global sea ice extent means that less sunlight is reflected back into space by the ice and that more heat is instead absorbed by the ocean, adding to the predicament the world is in. The situation in the Arctic is crucial, as huge amounts of methane, contained in sediments under the Arctic Ocean, could be released if warming continues, potentially triggering mass extinction of species, including humans, within one decade.

The situation is dire and calls for comprehensive and effective action as described in the Climate Plan.



Links


• Climate Plan
http://arctic-news.blogspot.com/p/climateplan.html

• Extinction
http://arctic-news.blogspot.com/p/extinction.html

• How much warming have humans caused?
http://arctic-news.blogspot.com/2016/05/how-much-warming-have-humans-caused.html

• Warning of mass extinction of species, including humans, within one decade
http://arctic-news.blogspot.com/2017/02/warning-of-mass-extinction-of-species-including-humans-within-one-decade.html




Wednesday, February 8, 2017

Warning of mass extinction of species, including humans, within one decade


[ click on images to enlarge ]
On February 10, 2017, 18:00 UTC it is forecast to be 0.1°C or 32.1°F at the North Pole, i.e. above the temperature at which water freezes. The temperature at the North Pole is forecast to be 30°C or 54°F warmer than 1979-2000, on Feb 10, 2017, 18:00 UTC, as shown on the Climate Reanalyzer image on the right.

This high temperature is expected as a result of strong winds blowing warm air from the North Atlantic into the Arctic.

The forecast below, run on February 4, 2017, shows that winds as fast as 157 km/h or 98 mph were expected to hit the North Atlantic on February 6, 2017, 06:00 UTC, producing waves as high as 16.34 m or 53.6 ft.


A later forecast shows waves as high as 17.18 m or 54.6 ft, as illustrated by the image below.


While the actual wave height and wind speed may not turn out to be as extreme as such forecasts, the images do illustrate the horrific amounts of energy contained in these storms.

Stronger storms go hand in hand with warmer oceans. The image below shows that on February 4, 2017, at a spot off the coast of Japan marked by green circle, the ocean was 19.1°C or 34.4°F warmer than 1981-2011.


As discussed in an earlier post, the decreasing difference in temperature between the Equator and the North Pole causes changes to the jet stream, in turn causing warmer air and warmer water to get pushed from the North Atlantic into the Arctic.

The image below shows that on February 9, 2017, the water at a spot near Svalbard (marked by the green circle) was 13°C or 55.3°F, i.e. 12.1°C or 21.7°F warmer than 1981-2011.

[ click on images to enlarge ]
Warmer water flowing into the Arctic Ocean in turn increases the strength of feedbacks that are accelerating warming in the Arctic. One of these feedbacks is methane that is getting released from the seafloor of the Arctic Ocean. Update: The image below shows that methane levels on February 13, 2017, pm, were as high as 2727 ppb, 1½ times the global mean at the time.

[ click on image to enlarge, right image added for reference to show location of continents ] 
What caused such a high level? High methane levels (magenta color) over Baffin Bay are an indication of a lot of methane getting released north of Greenland and subsequently getting pushed along the exit current through Nares Strait (see map below). This analysis is supported by the images below, showing high methane levels north of Greenland on the morning of February the 14th (left) and the 15th (right).



The image below shows methane levels as high as 2569 ppb on February 17, 2017. This is an indication of ocean heat further destabilizing permafrost at the seafloor of the Laptev Sea, resulting in high methane concentrations where it is rising in plumes over the Laptev Sea (at 87 mb, left panel) and is spreading over a larger area (at slightly lower concentrations) at higher altitude (74 mb, right panel).


This illustrates how increased inflow of warm water from the North Atlantic into the Arctic Ocean can cause methane to erupt from the seafloor of the Arctic Ocean. Methane releases from the seafloor of the Arctic Ocean have the potential to rapidly and strongly accelerate warming in the Arctic and speed up further feedbacks, raising global temperature with catastrophic consequences in a matter of years. Altogether, these feedbacks and further warming elements could trigger a huge abrupt rise in global temperature making that extinction of many species, including humans, could be less than one decade away.

Youtube video by RT America

Without action, we are facing extinction at unprecedented scale. In many respects, we are already in the sixth mass extinction of Earth's history. Up to 96% of all marine species and 70% of terrestrial vertebrate species became extinct when temperatures rose by 8°C (14°F) during the Permian-Triassic extinction, or the Great Dying, 252 million years ago.

During the Palaeocene–Eocene Thermal Maximum (PETM), which occurred 55 million years ago, global temperatures rose as rapidly as by 5°C in ~13 years, according to a study by Wright et al. A recent study by researchers led by Zebee concludes that the present anthropogenic carbon release rate is unprecedented during the past 66 million years. Back in history, the highest carbon release rates of the past 66 million years occurred during the PETM. Yet, the maximum sustained PETM carbon release rate was less than 1.1 Pg C per year, the study by Zebee et al. found. By contrast, a recent annual carbon release rate from anthropogenic sources was ~10 Pg C (2014). The study by Zebee et al. therefore concludes that future ecosystem disruptions are likely to exceed the - by comparison - relatively limited extinctions observed at the PETM.

An earlier study by researchers led by De Vos had already concluded that current extinction rates are 1,000 times higher than natural background rates of extinction and future rates are likely to be 10,000 times higher.

from the post 2016 well above 1.5°C
As above image shows, a number of warming elements adds up to a potential warming of 10°C (18°F) from pre-industrial by the year 2026, i.e. within about nine years from now, as discussed in more detail at the extinction page.


Above image shows how a 10°C (18°F) temperature rise from preindustrial could be completed within a decade.

https://sites.google.com/
site/samcarana/climateplan
The situation is dire and calls for comprehensive and effective action, as discussed in the Climate Plan.


Links

• Climate Plan
http://arctic-news.blogspot.com/p/climateplan.html

• Arctic Ocean Feedbacks
http://arctic-news.blogspot.com/2017/01/arctic-ocean-feedbacks.html

• Extinction
http://arctic-news.blogspot.com/p/extinction.html

• How much warming have humans caused?
http://arctic-news.blogspot.com/2016/05/how-much-warming-have-humans-caused.html

• Estimating the normal background rate of species extinction, De Vos et al. (2015)
https://www.ncbi.nlm.nih.gov/pubmed/25159086

• Anthropogenic carbon release rate unprecedented during the past 66 million years, by Zebee et al. (2016)
http://www.nature.com/ngeo/journal/v9/n4/full/ngeo2681.html

• Evidence for a rapid release of carbon at the Paleocene-Eocene thermal maximum, Wright et al. (2013)
http://www.pnas.org/content/110/40/15908.full?sid=58b79a3f-8a05-485b-8051-481809c87076

• RT America Youtube video
https://www.youtube.com/watch?v=OSnrDRU6_2g

• RT America Facebook video
https://www.facebook.com/RTAmerica/videos/10154168391051366



Friday, January 27, 2017

Arctic Ocean Feedbacks


The world is warming rapidly, and the Arctic is warming much more rapidly than the rest of the world. In December 2016, the temperature anomaly from latitude 83°N to the North Pole was 8 times as high as the global anomaly. Above forecast for February 6, 2017, shows that temperatures over parts of the Arctic Ocean will be as much as 30°C or 54°F higher than they were in 1979-2000. How can it be so much warmer in a place where, at this time of year, little or no sunlight is shining? The Arctic Ocean is warming particularly rapidly due to a multitude of feedbacks, some of which are illustrated on the image below.


As the Arctic is warming more rapidly than the rest of the world, the temperature difference between the Arctic and the northern latitudes decreases, which makes the jet stream wavier. Jennifer Francis has written extensively about jet stream changes as a result of rapid warming in the Arctic. In the video below, Peter Sinclair interviews Jennifer Francis on these changes.


The changes to the jet stream make it easier for warm air from the south to enter the Arctic and for cold air to move out of the Arctic deep down into North America and Eurasia. At the same time, this also increases the temperature difference between the continents and the oceans, which is quite significant given the rapid warming of oceans across the globe. The result of the greater temperature difference between oceans and continents is that stronger winds are now flowing over the oceans along the jet stream tracks.

Stronger winds come with more evaporation and rain, which accumulates as freshwater at the surface of the North Atlantic and the North Pacific. The freshwater acts as a seal, as a lid on the ocean, making that less heat gets transferred from underneath the freshwater lid to the atmosphere. This makes that more heat can travel underneath the sea surface through the North Atlantic and reach the Arctic Ocean.


On January 28, 2017, sea surface temperature anomalies as high as 18.4°C (or 33.1°F) were showing up off the coast of Japan.


The situation is illustrated by above images, showing areas over the North Atlantic and the North Pacific (blue) where the sea surface was colder than it was in 1981-2011. Over these colder areas, winds are stronger due to the changes to the jet stream. On January 28, 2017, temperature anomalies were as high as 18.4°C (or 33.1°F) off the coast of Japan, while temperature anomalies were as high as 10.9°C (or 19.5°F) near Svalbard in the Arctic on January 27, 2017.

The image on the right shows sea surface temperature anomalies from 1971-2000.

The video below shows precipitation over the Arctic, run on January 27, 2017, and valid up to February 4, 2017.


Beaufort Gyre and Transpolar Drift
Changes to wind patterns can also affect sea currents in the Arctic Ocean such as the Beaufort Gyre and the Transpolar Drift. In the video below, at around 7:00, Paul Beckwith warns that further loss of sea ice will make these sea currents change direction, which in turn will draw more warm seawater from the North Atlantic into the Arctic Ocean.

As more ocean heat enters the Arctic Ocean and as sea ice retreats, more heat and water vapor will rise from the Arctic Ocean into the atmosphere over the Arctic. Increased water vapor will make it harder for heat to escape into space, i.e. more heat will remain trapped in the atmosphere and this will add to global warming.


The changes to the jet stream and the associated changes discussed above all lead to further warming of the Arctic Ocean, next to the warming caused by other feedbacks such as loss of albedo and loss of ice as a heat buffer. Together, sea ice loss and these associated feedbacks could cause global temperatures to rise by 1.6°C by 2026.

There are further feedbacks affecting the Arctic, as described at this page. One of the most dangerous feedbacks is methane escaping from the seafloor of the Arctic Ocean. As the temperature of the Arctic Ocean keeps rising, it seems inevitable that more and more methane will rise from its seafloor and enter the atmosphere, at first strongly warming up the atmosphere over the Arctic Ocean itself - thus causing further methane eruptions - and eventually warming up the atmosphere across the globe.

Above image paints a dire warning. The image shows that methane levels were as high as 2562 ppb on January 28, 2017. The image further shows high methane levels off the coast of Siberia and also where water from Nares Strait enters Baffin Bay.

Feedbacks and further elements of a potential temperature rise by 2026 of more than 10°C above prehistoric levels are further described at the extinction page.

The situation is dire and calls for comprehensive and effective action as described in the Climate Plan.


Links

• Climate Plan
http://arctic-news.blogspot.com/p/climateplan.html

• Feedbacks
http://arctic-news.blogspot.com/p/feedbacks.html

• Extinction
http://arctic-news.blogspot.com/p/extinction.html

• 2016 well above 1.5°C
http://arctic-news.blogspot.com/2017/01/2016-well-above-1.5c.html

• Accelerating Warming of the Arctic Ocean
http://arctic-news.blogspot.com/2016/12/accelerating-warming-of-the-arctic-ocean.html