Thursday, December 17, 2015

Paris Agreement

At the Paris Agreement, nations committed to strengthen the global response to the threat of climate change by holding the increase in the global average temperature to well below 2°C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5°C above pre-industrial levels.


How much have temperatures risen already? As illustrated by above image, NASA data show that during the three-month period from September through November 2015, it was ~1°C warmer than it was in 1951-1980 (i.e the baseline).

A polynomial trend based on the data from 1880 to 2015 for these three months indicates that a temperature rise of 1.5°C compared to the baseline will be reached in the year 2024.

Let's go over the calculations. The trendline shows it was ~0.3°C colder in 1900 compared to the baseline. Together with the current ~1°C rise, that implies that since 1900 there's been a rise of 1.3°C compared to the baseline. This makes that another rise of 0.2°C by 2024, as pointed at by the trendline, would result in a joint rise in 2024 of 1.5°C compared to the baseline.


The situation is even more worse than this. The Paris Agreement seeks to avoid a temperature increase of 1.5°C above pre-industrial levels. When we include temperature rises from pre-industrial levels to the year 1900, it becomes evident that we have already surpassed a rise of 1.5°C since pre-industrial levels. This is illustrated by above image, earlier added at How much time is there left to act? (see notes there) and by the graph below, from a recent post by Michael Mann, who adds that ~0.3°C greenhouse warming had already taken place by the year 1900. 
~0.3C greenhouse warming had already taken place by 1900, and ~0.2C warming by 1870
Let's add things up again. A rise of ~0.3°C before 1900, a further rise of 0.3°C from 1900 to the baseline (1951-1980) and a further rise of ~1°C from the baseline to date, together that adds up to a rise of ~1.6°C from pre-industrial levels.

In other words, we have already surpassed a rise of 1.5°C from pre-industrial levels by 0.1°C.

The trendline indicates that a further rise of 0.5°C will take place by the year 2030, i.e. that without comprehensive and effective action, it will be 2°C warmer than pre-industrial levels before the year 2030.

Full wrath of emissions yet to come

The full wrath of global warming is yet to come and the situation is even more threatening than pictured above, for the following reasons:
  1. Half of global warming has until now been masked by aerosols, particularly sulfates that are emitted when some of the dirtiest fossil fuels are burnt, such as coal and bunker oil. As we make the necessary shift to clean energy, the masking effect that comes with those emissions will disappear. 
  2. As Ricke and Caldeira point out, the carbon dioxide that is released now will only reach its peak impact a decade from now. In other words, we are yet to experience the full wrath of the carbon dioxide emitted over the past decade. 
  3. The biggest threat comes from temperature peaks. People in some parts of the world will be hit  harder, especially during summer peaks, as discussed in the next section of this post. As temperatures rise, the intensity of such peaks will increase.
    The image on the right illustrates this with a forecast for December 25, 2015, showing extreme weather for North America, with temperatures as low as 30.6°F or -0.8°C in California and as high as 71.5°F or 22°C in North Carolina. 
  4. Feedbacks such as rapid albedo changes in the Arctic and large amounts of methane abruptly released from the Arctic Ocean seafloor could dramatically accelerate the temperature rise. Furthermore, water vapor will increase by 7% for every 1°C warming. Water vapor is one of the strongest greenhouse gases, so increasing water vapor will further contribute to a non-linear temperature rise. The resulting temperature rises threaten to be non-linear, as discussed in the final section of this post.  
Situation even worse for some

Such temperature rises will hit some people more than others. For people living on the Northern Hemisphere, the outlook is worse than for people on the Southern Hemisphere.

NOAA data show that the November global land and ocean temperature anomaly was 0.97°C, while the 3-month global land and ocean temperature anomaly was 0.96°C. The 12-month anomaly on November 2015 on land on the Northern Hemisphere (where most people live) was 1.39°C, as shown on the image below, while the trendline shows that for people living on the Northern Hemisphere, a 1.5°C rise compared to 1910-2000 could be reached as early as in 2017.


Similarly, the outlook is worse for people living in regions that are already now experiencing high temperatures during the summer peaks. As said, as temperatures rise, the intensity of such peaks will increase.

Feedbacks in the Arctic

The image below, from an earlier post, depicts the impact of feedbacks that are accelerating warming in the Arctic, based on NASA data up to November 2013, and their threat to cause runaway global warming. As the image shows, temperatures in the Arctic are rising faster than elsewhere in the world, but global warming threatens to catch up as feedbacks start to kick in more. The situation obviously has deteriorated further since this image was created in November 2013.
[ click on image at original post to enlarge ]
Above image, from an earlier post, depicts the impact of feedbacks that are accelerating warming in the Arctic, based on NASA data up to November 2013. The image shows that temperatures in the Arctic are rising faster than elsewhere in the world. Global warming threatens to catch up as feedbacks start to kick in more, triggering runaway global warming. The situation obviously has deteriorated further since this image was created in November 2013.

The image below shows sea surface temperature anomalies on the Northern Hemisphere in November.


The image below gives an indication of the high temperatures of the water beneath the sea surface. Anomalies as high as 10.3°C or 18.5°F were recorded off the east coast of North America (green circle on the left panel of the image below) on December 11, 2015, while on December 20, 2015, temperatures as high as 10.7°C or 51.3°F were recorded near Svalbard (green circle on the right panel of the image below), an anomaly of 9.3°C or 16.7°F.


This warm water is carried by the Gulf Stream into the Arctic Ocean, threatening to unleash huge amounts of methane from its seafloor. The image below illustrates the danger, showing huge amounts of methane over the Arctic Ocean on December 10, 2015.


Methane is released over the Arctic Ocean in large amounts, and this methane is moving toward the equator as it reaches high altitudes. The image below illustrates how methane is accumulating at higher altitudes.


Above image shows that methane is especially prominent at higher altitudes recently, having pushed up methane levels by an estimate average of 9 ppb or some 0.5%. Annual emissions from hydrates were estimated to amount to 99 Tg annually in a 2014 post (image below).





An additional 0.5% of methane represents an amount of some 25 Tg of methane. This comes on top of the 99 Tg of methane estimated in 2014 to be released from hydrates annually. 

The situation is dire and calls for comprehensive and effective action as described at the Climate Plan.


Links

• How Close Are We to 'Dangerous' Planetary Warming? By Michael Mann, December 24, 2015
http://www.huffingtonpost.com/michael-e-mann/how-close-are-we-to-dangerous-planetary-warming_b_8841534.html

• Maximum warming occurs about one decade after a carbon dioxide emission, by Katharine L Ricke and Ken Caldeira (2014)
http://iopscience.iop.org/1748-9326/9/12/124002/article

• How much time is there left to act?
http://arctic-news.blogspot.com/p/how-much-time-is-there-left-to-act.html

• Feedbacks in the Arctic
https://arctic-news.blogspot.com/p/feedbacks.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html



During the three-month period from September through November 2015, it was 1°C warmer than it was in 1951-1980,...
Posted by Sam Carana on Wednesday, December 16, 2015

Tuesday, December 8, 2015

Strong winds and High Waves hit Arctic Ocean


Strong winds and high waves are hitting the Arctic Ocean from both the Atlantic Ocean and the Pacific Ocean.

Above image shows waves as high as 12.36 m or 40.5 ft near Greenland on December 8, 2015.

The image on the right shows cyclonic winds with speeds as high as 142 km/h or 88 mph near Greenland on December 8, 2015.

The image further down on the right shows that waves as high as 14.04 m or 46.1 ft are forecast to hit the Aleutian Islands on December 13, 2015. Strong winds and high waves are forecast to subsequently keep moving in the direction of the Arctic Ocean.

The image below shows strong winds and high waves that are heading for Arctic Ocean, with waves as high as 17.18 m or 56.4 ft forecast to be moving toward the Arctic Ocean on December 13, 2015.

As warming continues, this situation can be expected to get worse, with extreme weather events hitting the Arctic Ocean with ever greater intensity.


The video below, created with Climate Reanalyzer images, shows strong winds over the period from December 5 to 15, 2015. The video illustrates how cyclonic winds are hitting the Arctic Ocean both from the Atlantic Ocean and the Pacific Ocean.


Such winds and waves can move a lot of warm water into the Arctic Ocean. There currently is only a very thin layer of sea ice present in the Bering Strait, which is prone to be broken up by strong waves. Moreover, warm water may move underneath the sea ice and cause warm water to mix down all the way to the seafloor, where it can destabilize sediments containing huge amounts of methane in the form of free gas and hydrates.

Furthermore, strong winds can dramatically speed up the currents that are moving sea ice out of the Arctic Ocean into the Atlantic Ocean. The Naval Research Laboratory animation below shows ice speed and drift, illustrating how strong winds are pushing huge amounts of sea ice out of the Arctic Ocean along the edge of Greenland into the Atlantic Ocean.


The Naval Research Laboratory animation below illustrates that the thicker sea ice has hardly grown recently, while large amounts of thick sea ice also get pushed out of the Arctic Ocean along the edge of Greenland into the Atlantic Ocean.


[ click on image to enlarge ]
The image on the right shows that, on December 11, 2015, sea surface temperature anomalies off the east coast of North America were as high as 18.1°F or 10.0°C compared to the daily average during years 1981-2011.

At the same time, the lid over the North Atlantic is expanding, due to heavy melting of glaciers and due to the large amounts of sea ice that are getting pushed out of the Arctic Ocean by strong winds. Expansion of the freshwater lid over the North Atlantic is cooling the sea surface of North Atlantic and is making the atmosphere over the North Atlantic cooler than it would be without this lid, as it makes that less heat gets transferred from ocean to atmosphere, as discussed in earlier posts such as this one.

The result is a widening difference in atmospheric temperature between the area off the east coast of North America and the North Atlantic. This widening difference causes stronger winds to flow to the North Atlantic, in turn causing more sea ice to be moved out the the Arctic Ocean and further speeding up this feedback (#28 at the feedbacks page).


The end result is that, due to this loss of sea ice occurring now, the sea ice will be in a very bad shape when the melting season starts again next year. Furthermore, this expanding lid on the North Atlantic will prevent heat transfer from ocean to atmosphere, resulting in warmer water arriving in the Arctic Ocean below the sea surface.

The situation is dire and calls for comprehensive and effective action as described in the Climate Plan.



Waves as high as 12.36 m or 40.5 ft near Greenland on December 8, 2015. From the post 'Strong winds and High Waves hit...
Posted by Sam Carana on Tuesday, December 8, 2015

Friday, December 4, 2015

Ocean Heat Depth

Ocean heat at the equator


On November 24, 2015, equatorial waters at ≈100 m (328 ft) depth at 110-135°W were over 6°C (10.8°F) warmer than average in 1981-2000, as illustrated by above image. The animation below shows equatorial ocean heat over the past few months, illustrating that temperature anomalies greater than 6°C (10.8°F) occurred throughout this period at depths greater than 100 m (328 ft).

The danger of ocean heat destablizing clathrates in the Arctic

The danger is that ever warmer water will reach the seafloor of the Arctic Ocean and destabilize methane that is held there in sediments the form of free gas and hydrates.

So, how comparable is the situation at the equator with the situation in the Arctic? How much heating of the Arctic Ocean has taken place over the past few years?

The image on the right, produced with NOAA data, shows mean coastal sea surface temperatures of over 10°C (50°F) in some areas in the Arctic on August 22, 2007.

In shallow waters, heat can more easily reach the bottom of the sea. In 2007, strong polynya activity caused more summertime open water in the Laptev Sea, in turn causing more vertical mixing of the water column during storms in late 2007, according to this study, and bottom water temperatures on the mid-shelf increased by more than 3°C (5.4°F) compared to the long-term mean.

This study finds that drastic sea ice shrinkage causes increase in storm activities and deepening of the wind-wave-mixing layer down to depth ~50 m (164 ft) that enhance methane release from the water column to the atmosphere. Indeed, the danger is that heat will warm up sediments under the sea, containing methane in hydrates and as free gas, causing large amounts of this methane to escape rather abruptly into the atmosphere.

The image below, replotted by Leonid Yurganov from a study by Chepurin et al, shows sea water temperature at different depths in the Barents Sea, as described in an earlier post.


The image below is from a study published in Nature on November 24, 2013, showing water temperatures measurements taken in the Laptev Sea from 1999-2012.

Water temperatures in Laptev Sea. Red triangles: summer. Blue triangles: winter. Green squares: historic data.
From Shakhova et al., (2013) doi:10.1038/ngeo2007
Before drawing conclusions, let's examine some peculiarities of the Arctic Ocean more closely, specifically some special conditions in the Arctic that could lead to greater warming than elsewhere and feedbacks that could accelerate warming even more.

Amount of methane ready for release

Sediments underneath the Arctic Ocean hold vast amounts of methane. Just one part of the Arctic Ocean alone, the East Siberian Arctic Shelf (ESAS, rectangle on map below, from the methane page), holds up to 1700 Gt of methane. A sudden release of just 3% of this amount could add over 50 Gt of methane to the atmosphere, and experts consider such an amount to be ready for release at any time (see above image).



Total methane burden in the atmosphere now is 5 Gt. The 3 Gt that has been added since the 1750s accounts for almost half of the (net) total global warming caused by people. The amount of carbon stored in hydrates globally was in 1992 estimated to be 10,000 Gt (USGS), while a more recent estimate gives a figure of 63,400 Gt (Klauda & Sandler, 2005). The ESAS alone holds up to 1700 Gt of methane in the form of methane hydrates and free gas contained in sediments, of which 50 Gt is ready for abrupt release at any time.



Imagine what kind of devastation an extra 50 Gt of methane could cause. Imagine the warming that will take place if the methane in the atmosphere was suddenly multiplied by 11.

Whiteman et al. recently calculated that such an event would cause $60 trillion in damage. By comparison, the size of the world economy in 2012 was about $70 trillion.

Shallow waters in the Arctic Ocean
Shallow waters and little hydroxyl

The danger is particularly high in the shallow seas that are so prominent in the Arctic Ocean, as illustrated by the light blue areas on the image on the right, from an earlier post.

Much of the waters in the Arctic Ocean are less than 50 m deep. Being shallow makes waters prone to warm up quickly during summer temperature peaks, allowing heat to penetrate the seabed.

This can destabilize hydrates and methane rising through shallow waters will then also enter the atmosphere more quickly, as it rises abruptly and in plumes.

Elsewhere in the world, releases from hydrates underneath the seafloor will largely be oxidized by methanotroph bacteria in the water and where methane does enter the atmosphere, it will quickly be oxidized by hydroxyl. In shallow waters, however, methane released from the seabed will quickly pass through the water column.

Large abrupt releases will also quickly deplete the oxygen in the water, making it harder for bacteria to break down the methane.

Very little hydroxyl is present in the atmosphere over the poles, as illustrated by the image on the right, showing global hydroxyl levels, from an earlier post.

In case of a large abrupt methane release from the Arctic Ocean, the little hydroxyl that is present in the atmosphere over the Arctic will therefore be quickly depleted, and the methane will hang around for much longer locally than elsewhere on Earth.

Shallow waters make the Arctic Ocean more prone to methane releases, while low hydroxyl levels make that methane that enters the atmosphere in the Arctic will contribute significantly to local warming and threaten to trigger further methane releases.

High levels of insolation in summer in the Arctic

Furthermore, the amount of solar radiation received by the Arctic at the June Solstice is higher than anywhere else on Earth, as illustrated by the image below, showing insolation on the Northern Hemisphere by month and latitude, in Watt per square meter, from an earlier post.

Warm water enters Arctic Ocean from Atlantic and Pacific Oceans

What further makes the situation in the Arctic particularly dangerous is that waters are not merely warmed up from the top down by sunlight that is especially strong over the Arctic Ocean in summer on the Northern Hemisphere, but also by warm water that flows into the Arctic Ocean from rivers and by warm water that enters the Arctic Ocean through the Bering Strait and through the North Atlantic Ocean. The latter danger is illustrated by the image below, from an earlier post.


Feedbacks

Furthermore, there are feedbacks that can rapidly accelerate warming in the Arctic, such as albedo losses due to loss of sea ice and snow cover on land, and changes to the jet stream resulting in more extreme weather. These feedbacks, described in more details at this page, are depicted in the image below.


Methane


Above image shows that methane levels on December 3, 2015, were as high as 2445 parts per billion (ppb) at 469 millibars, which corresponds to an altitude of 19,810 feet or 6,041 m.

The solid magenta-colored areas (levels over 1950 ppb) that show up over a large part of the Arctic Ocean indicate very strong methane releases.

Note there are many grey areas on above image. These are areas where no measurements could be taken, which is likely due to the strength of winds, rain, clouds and the jet stream, as also illustrated by the more recent (December 5, 2015) images on the right.

The polar jet stream on the Northern Hemisphere shows great strength, with speeds as high as 243 mph or 391 km/h (over a location over japan marked by green circle) on December 5, 2015.

So, high methane levels may well have been present in these grey areas, but didn't show up due to the weather conditions of the moment.

Furthermore, the white geometric areas are due the way the satellite takes measurements, resulting in areas that are not covered.

Finally, it should be noted that much of the methane will have been broken down in the water, before entering the atmosphere, so what shows up in the atmosphere over the Arctic is only part of the total amount of methane that is released from the seafloor.

In conclusion, the high methane levels showing up over the Arctic indicate strong methane releases from the seafloor due to warm waters destabilizing sediments that contain huge amounts of methane in the form of free gas and hydrates.

Climate Plan

As global warming continues, the risk increases that greater ocean heat will reach the Arctic Ocean and will cause methane to be released in large quantities from the Arctic Ocean seafloor. The 2015 El Niño has shown that a huge amounts of ocean heat can accumulate at a depth greater than 100 m (328 ft). Conditions in the Arctic and feedbacks make that methane threatens to be released there abruptly and in large quantities as warming continues.

The situation is dire and calls for comprehensive and effective action as described at the Climate Plan



On November 24, 2015, equatorial waters at ≈100 m (328 ft) depth at 110-135°W were over 6°C (10.8°F) warmer than average...
Posted by Sam Carana on Friday, December 4, 2015

Monday, November 23, 2015

Arctic Ocean Shows New Record Low Sea Ice

by Albert Kallio


Both the sea ice thickness and sea ice area have fallen to new record lows for this time of the year (22.11.2015), even surpassing all of the worst previous years.

From Naval Research Laboratory image - view animation
Immense thrust of fast moving sea ice is pushing through at the full width of the Fram Strait between Norway and Greenland. This amounts to huge transport of latent coldness out of the Arctic Ocean to North Atlantic, while the constantly forming new sea ice (as temperatures are below 0°C) is generating heat to keep the surface air temperatures higher across the Arctic Ocean. Thus, heat is constantly being added to the Arctic Ocean while heat is taken away from the North Atlantic Ocean.


The normal sea ice area for this time of year is 9,625,000 km2, whereas the sea ice covers currently just 8,415,890 km2,, which makes that 1,209,120 km2 sea ice is missing from the normal (22.11) sea ice area.



The combination image below shows the jet stream (November 23, 2015, left panel) and surface wind (November 24, 2015, right panel).


Jet stream is wavy and strong, showing speeds as high as 219 mph or 352 km/h (at location marked by the green circle). Right panel shows cyclonic winds between Norway and Greenland speeding up movement of sea ice into the North Atlantic.

Forecasts indicate that conditions could continue. The 5-day forecast on the right shows strong winds in the North Atlantic. Note also the cyclonic winds outside the Bering Strait.

Temperatures over the Arctic are forecast to remain much higher than they used to be, with anomalies at the far end of the scale over a large part of the Arctic Ocean showing up on the 5-day temperature anomaly forecast below.




[ further updates will follow ]

Saturday, November 21, 2015

Rapid Transition to a Clean World

100% clean and renewable wind, water, and solar (WWS)
all-sector energy roadmaps for 139 countries of the world


[ click here for explanatory video of above image ]
Above image is from an excellent study by Jacobson et al., showing that it is technically feasible and economically attractive to shift to clean energy facilities between now and 2050. This will create net jobs worldwide. It will avoid millions of air-pollution mortalities and avoid trillions of dollars in pollution and global warming damage. It will stabilize energy prices and reduce energy poverty. It will make countries energy independent and reduce international conflict over energy. It will reduce risks of large-scale system disruptions by significantly decentralizing power production.



Given that there are so many benefits and there are no technical and economic barriers to complete a 100% shift by the year 2050 (and 80% by 2030), why not make an even faster transition?

Sam Carana suggests that feebates, especially when implemented locally, can best facilitate the necessary shift. Moreover, when energy feebates are implemented jointly with feebates in further areas, greenhouse gas emissions could be cut by 80% by 2020, while soils, atmosphere and oceans could be restored to their pre-industrial status over the course of the century.

[ the above emission cuts and feebates images were used in a meanwhile dated 2011 post ]
To achieve the most effective and rapid shift, Sam Carana recommends implementing two types of feebates, i.e. energy feebates and further feebates such as fees on sales of livestock products while using the revenues to fund rebates on soil supplements containing biochar.


Sam Carana adds that further lines of action will be needed to prevent Earth from overheating, warning that comprehensive and effective action is needed as described in the Climate Plan.

The image below shows that a shift to 100% clean (WWS) energy by 2050 (80% by 2030) could reduce CO2 to ~350 ppmv by 2100.

[ from Jacobson et al. 2015 ]
Energy feebates are the most effective way to speed up the shift to clean energy. Further feebates could make additional cuts in greenhouse gases emissions, while also removing carbon from the atmosphere and oceans, allowing us to aim for bringing down carbon dioxide levels in the atmosphere to 280 ppmv by the year 2100.

Links

- How Renewable Energy Could Make Climate Treaties Moot (2015)

- 100% Wind, Water, and Solar (WWS) All-Sector Energy Roadmaps for Countries and States

- The Solutions Project - 100% Renewable Energy
thesolutionsproject.org

- Feebates
https://arctic-news.blogspot.com/p/feebates.html

- Climate Plan



Monday, November 9, 2015

Ocean Heat

Sea Surface Temperatures

Sea surface temperatures were as high as 15.8°C or 60.4°F near Svalbard on November 7, 2015, a 13.7°C or 24.7°F anomaly. Let this sink in for a moment. The water used to be close to freezing point near Svalbard around this time of year, and the water now is warmer by as much as 13.7°C or 24.7°F.

[ click on image to enlarge ]
Above image further shows that sea surface temperature anomalies as high as 6.7°C or 12.1°F were recorded on November 7, 2015, off the coast of North America, while anomalies as high as 6°C or 10.9°F were recorded in the Bering Strait.

NOAA analysis shows that the global sea surface in September 2015 was the warmest on record, at 0.81°C (1.46°F) above the 20th century average of 16.2°C (61.1°F). On the Northern Hemisphere, the anomaly was 1.07°C (1.93°F).

[ click on image to enlarge ]

How did temperatures get so high near Svalbard? The answer is that ocean currents are moving warm water from the Atlantic Ocean into the Arctic Ocean. The ocean is warmer underneath the sea surface and at that location near Svalbard warm water from below the surface emerges at the surface.

Ocean Heat

The oceans are warming up rapidly, especially the waters below the sea surface. Of all the excess heat resulting from people's emissions, 93.4% goes into oceans. Accordingly, the temperature of oceans has risen substantially over the years and - without action - the situation only looks set to get worse.

NOAA's ocean heat content figures for 0-2000 m are very worrying, as illustrated by the image below.


The image below was created with data for January through to March, while adding non-linear trendlines for ocean heat at depths of 0-700 m and 0-2000 m. For growth of ocean heat content for 0-700 m, a polynomial trend is added, while for growth of ocean heat content for 0-2000 m an exponential trend is added.

[ click on images to enlarge ]
The image below shows a polynomial trend based on all available quarterly data for ocean heat content from 0 to 2000 m. The trendline shows even faster growth.


The danger is that, as ocean heat continues to grow, ocean currents will keep carrying ever warmer water from the Atlantic and Pacific Oceans into the Arctic Ocean.

Merely watching temperatures at the surface of the ocean may underestimate the warming that is taking place below the sea surface. At the sea surface, evaporation takes place that cools the water. Furthermore, melting of sea ice and glaciers will make that a layer of cold freshwater spreads at the surface, preventing much transfer of heat from the ocean to the atmosphere, as discussed at this earlier post. The blue-colored areas on the Northern Hemisphere on the top image are partly the result of this meltwater. There is another reason why these areas are relatively cool, i.e. sulfates, as further discussed in the section below.

Aerosols

Particulates, in particular sulfate, can provide short-term cooling of the sea surface. Large amounts of sulfate are emitted from industrial areas in the east of North America and in East Asia. On the Northern Hemisphere, the Coriolis effect makes that such emissions will typically reach areas over the nearby ocean to the east of such industrial areas, resulting in the sea surface there being cooled substantially, until the particulates have fallen out of the sky. Since the sulfate is emitted on an ongoing basis, the cooling effect continues without much interruption.

[ click on image to enlarge ]
This sulfate has a cooling effect on areas of the sea surface where ocean currents are moving warm water toward the Arctic Ocean. Because the sea surface gets colder, there is less evaporation, and thus less heat transfer from the ocean to the atmosphere during the time it takes for the water to reach the Arctic Ocean. As a result, water below the sea surface remains warmer as it moves toward the Arctic Ocean.


Similarly, as illustrated by above image, sulfur dioxide emitted in industrial areas in North America and East Asia can extend over the oceans, cooling the surface water of currents that are moving water toward the Arctic Ocean.

Methane

The image below shows that atmospheric methane levels in 2014 were 1833 parts per billion (WMO data) or 254% the pre-industrial level. WMO data are for 1984-2014 and are marked in red, while IPCC data (AR5) are for the years 1755-2011 and are marked in blue.


The image below shows the rise of methane levels from 1984 created with World Metereological Organization (WMO) data. The square marks a high mean 2015 level, from NOAA's MetOp-2 satellite images, and it is added for comparison, so it does not influence the trendline, yet it does illustrate the direction of rise of methane levels and the threat that global mean methane levels will double well before the year 2040.


The image below illustrates the danger that large amounts of methane will erupt from the Arctic Ocean, particularly in East Siberian Arctic Shelf, where the sea is quite shallow, so much of the methane can reach the atmosphere without being broken down by microbes on the way up through the water column.


The video below shows how methane concentrations start to rise close to sea level, and how concentrations strengthen at higher altitudes, and to eventually get lower at even higher altitudes.



The Threat

Ocean heat threatens to increasingly reach the seafloor of the Arctic Ocean and unleash huge methane eruptions from destabilizing clathrates. Such large methane eruptions will then warm the atmosphere at first in hotspots over the Arctic and eventually around the globe, while also causing huge temperature swings and extreme weather events, contributing to increasing depletion of fresh water and food supply, as further illustrated by the image below, from an earlier post.

[ click on image at original post to enlarge ]

The image below gives an indication of the ocean heat that is pushed by the Gulf Stream toward the Arctic Ocean. Note that this image shows the situation on November 15, 2015. Water off the east coast of North America is even warmer at the peak of the Northern Hemisphere summer and it is this water that is now arriving in the Arctic Ocean.


Below is a radio version of this post, roughly as read by Debba Kale Earnshaw at this episode and the next episode of extinctionradio.org



Malcolm Light comments:
To a geologist-oceanographer, the increasing rate of heat gain in the deep water seems obvious. Massive quantities of heat are generated in the earth's interior by radioactivity and find their way to the surface in rising convection systems to erupt along mid-ocean ridges as basaltic lava flows, pushing the plates apart. Under normal circumstances, prior to the arrival of civilized man, the plates cooled as they expanded by passing their heat into the oceans, which then was radiated into space.

Now, with the fast evolving atmospheric greenhouse Arctic methane global warming veil. the heat is simply being reflected back into the oceans and onto the land. Therefore, just like a pressure cooker, the Earth's interior heat is becoming trapped more and more and of course the end result will be a final blow-out. The more than 400 thousand years of ice core data show that we can expect a massive atmospheric methane peak caused by destabilization of the Arctic subsea methane hydrates very soon (8 to 16 years away) and it will produce a Permian style extinction event with a temperature increase of some 8 to 10 degrees C.


Climate Plan

The situation is dire and calls for comprehensive and effective action, as discussed at the Climate Plan.

Sea surface temperatures were as high as 15.8°C or 60.4°F near Svalbard on November 7, 2015, a 13.7°C or 24.7°F anomaly....
Posted by Sam Carana on Monday, November 9, 2015