Showing posts with label fire. Show all posts
Showing posts with label fire. Show all posts

Monday, August 12, 2013

More on Wildfires


Previous posts have highlighted the huge amounts of carbon dioxide, methane and soot being emitted as a result of wildfires. Apart from this, there are further important pollutants to consider in regard to their potential to contribute to warming, especially at high latitudes.

The image below, dated August 7, 2013, and kindly supplied by Leonid Yurganov, shows high levels of carbon monoxide as a result of wildfires in Siberia, reaching high up into the Arctic all the way to Greenland. 

[ click on image to enlarge ]
Formation of tropospheric ozone mostly occurs when nitrogen oxides (NOx), carbon monoxide (CO) and volatile organic compounds (VOCs) react in the atmosphere in the presence of sunlight. NOx, CO, and VOCs are therefore called ozone precursors. Apart from a health hazard, tropospheric ozone is an important greenhouse gas. Furthermore, carbon monoxide emissions contribute to hydroxyl depletion, thus extending the lifetime of methane.

While there appears to be little or no carbon dioxide from wildfires over North America on the above August 7 image, there are many recent wildfires raging over the North American continent, as illustrated by the August 12 map below, from Wunderground

[ click on image to enlarge ]
This point is illustrated even better on the image below [added later, ed.] showing a composite image with carbon monoxide over July 3-13, 2013. Carbon monoxide resulting from wildfires in Canada is seen crossing the Atlantic Ocean, due to the Coriolis effect, as well as reaching Greenland in large amounts.

[ click on image to enlarge ]


Related

- Wildfires even more damaging
http://arctic-news.blogspot.com/2013/07/wildfires-even-more-damaging.html

- The Threat of Wildfires in the North
http://arctic-news.blogspot.com/2013/06/the-threat-of-wildfires-in-the-north.html

- Wildfires in Canada affect the Arctic
http://arctic-news.blogspot.com/2013/07/wildfires-in-canada-affect-the-arctic.html

Saturday, July 20, 2013

Heat, Fires and Methane

Here are two more images looking at links between high temperatures, fires and methane.



[ click on image to enlarge ]

In conclusion, rising temperatures increase the risk of fire and of methane releases. Let's act on global warming, preferably with a comprehensive and effective plan as at http://climateplan.blogspot.com

Friday, September 14, 2012

Russia: 74 million acres burned through August 2012

NASA image, acquired September 11, 2012

From NASA Earth Observatory
http://earthobservatory.nasa.gov/IOTD/view.php?id=79161

The summer of 2012 has proven to be the most severe wildfire season Russia has faced in a decade. Unlike 2010, when severe fires raged in western Russia, most of the fires in 2012 have burned through taiga in remote parts of eastern and central Siberia.

On September 11, 2012, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite captured this image of fires burning in Tomsk, a region of south central Siberia where severe wildfires have burned throughout the summer. Thick smoke billowed from numerous wildfires near the Ob River and mixed with haze and clouds that arrived from the southwest. Red outlines indicate hot spots where MODIS detected the unusually warm surface temperatures associated with fires.

More than 17,000 wildfires had burned more than 30 million hectares (74 million acres) through August 2012, according to researchers at the Sukachev Institute of Forest in the Russian Academy of Sciences. In comparison, 20 million hectares burned last year, which was roughly the average between 2000 and 2008, according to an analysis of MODIS data published in 2010.

Another way to gauge the severity of a wildfire season is to consider the smoke emissions. Fires emit a range of gases and particles into the atmosphere that can be detected by ground-based, aircraft, and satellite instruments. The two most common emissions are carbon dioxide and water vapor; however, incomplete combustion also generates carbon monoxide, an odorless and poisonous gas. In fact, fires are the source of about half of all carbon monoxide in the atmosphere.

Though ground and aircraft sensors provide the most accurate measurements of carbon monoxide for a localized area, satellites offer the best way to monitor wildfire emissions over broad regions, particularly in remote areas where there are fewer ground-based instruments. Christine Wiedinmyer, a scientist at the National Center for Atmospheric Research, has developed a model that ingests MODIS observations of fires and combines them with other information about vegetation (such as the percentage of tree cover and the type of forest) to calculate the quantity of emissions.

In September 2012, Wiedinmyer used her model to calculate Russian fire emissions for every year dating back to 2002. She found that the amount of carbon monoxide produced in 2012 was significantly more than what was produced in 2010 and the second most in a decade. Through August 31, the model showed that Russian wildfires had released an estimated 48 teragrams of carbon monoxide since the beginning of 2012. By comparison, the model estimated fires yielded just 22 teragrams of carbon monoxide in all of 2010.

Only one year—2003—had higher overall emissions. In that year, when severe fires burned in eastern Russia, wildfires produced an estimated 72 teragrams of carbon monoxide.

References
- Wiedinmyer, C. (2011). The Fire Inventory from NCAR (FINN): a High Resolution Global Model to Estimate the Emissions from Open Burning. Geoscience Model Development.
- Vivhar, A. (2010, July 13). Wildfires in Russia in 2008-2008: Estimates of Burn Areas Using Satellite MODIS MCD45. Remote Sensing Letters.
- Langmann, B. (2009, July 13). Vegetation Fire Emissions and Their Impact on Air Pollution and Climate. Atmospheric Environment.

Further Reading
- Russian Government. (2012, August 6). Dmitry Medvedev on a Working Visit to the Tomsk Region Holds a Meeting on the Situation in the Constituent Entities of the Russian Federation Suffering from Abnormally High Temperatures in 2012.Accessed September 12, 2012.
- Russian Government. (2012, August 6). Dmitry Medvedev Holds a Meeting With Tomsk Region Governor Sergei Zhvachkin. Accessed September 12, 2012.
- Ranson, J. (2012, July). Siberia 2012: A Slow and Smoky Arrival. Notes from the Field.

NASA image courtesy Jeff Schmaltz, LANCE MODIS Rapid Response Team, Goddard Space Flight Center. Caption by Adam Voiland, with information from Christine Wiedinmyer, Jon Ranson, and Vyacheslav Kharuk. Instrument: Aqua - MODIS

Tuesday, August 28, 2012

Diagram of Doom



Above diagram was part of a poster displayed at the 2011 AGU meeting in San Francisco by the Arctic Methane Emergency Group (AMEG). It was accompanied by the following text: In the Arctic, three problems are compounding one another: emissions causing global warming, sea ice loss causing accelerated warming, and methane releases further accelerating Arctic warming, with the danger of triggering runaway global warming.

The diagram pictures three kinds of warming and their main causes:
  1. Emissions by people causing global warming, with temperatures rising around the globe, including the Arctic.
  2. Soot, dust and volatile organic compounds settling down on snow and ice, causing albedo change. More heat is absorbed, rather than reflected as was previously the case. This causes accelerated warming in the Arctic.
  3. Accelerated warming in the Arctic threatening to weaken methane stores in the Arctic with the danger that methane releases will trigger runaway global warming.

The diagram also pictures two feedback effects that make things even worse:
  • Albedo feedback: Accelerated warming in the Arctic speeds up sea ice loss, further accelerating albedo change.
  • Methane feedback: Methane releases in the Arctic further add to the acceleration of warming in the Arctic, further contributing to weaken Arctic methane stores and increasing the danger that methane releases will trigger runaway global warming.

Albedo change in the Arctic comprises a number of elements, as depicted in the image below, from the 2004 report Impacts of a Warming Arctic - Arctic Climate Impact Assessmentby the International Arctic Science Committee.  


As described in various posts at this blog over time, there are further points that should be taken into account. Regarding sea ice loss, it's clear that where sea ice retreats, more open water appears, with the result that less sunlight is reflected back into space. Accelerated warming will also affect the integrity of the remaining sea ice, as well as of the snow and ice cover on land, including glaciers. This further adds to the albedo effect, causing less sunlight to be reflected back into space. Similarly, further feedbacks could be added or described in more detail.

Accordingly, ten feedbacks can be identified, and described as follows:
  1. Albedo feedback: Accelerated warming in the Arctic speeds up the decline of ice and snow cover, further accelerating albedo change. 
  2. Methane feedback: Methane releases in the Arctic further add to the acceleration of warming in the Arctic, further contributing to weaken Arctic methane stores and increasing the danger that methane releases will trigger runaway global warming. 
  3. Currents feedback: Sea ice loss can cause vertical sea currents to weaken, reducing the cooling effect they had on the seabed. This can thus further cause sediments to warm up that can contain huge amounts of methane in the form of free gas and hydrates. 
  4. Storms feedback: Increased frequency and intensity of storms can cause substantially more vertical mixing of the sea water column, causing more warming of the seabed, thus further contributing to the warming of sediments, as above. 
  5. Storms feedback: Accelerated warming in the Arctic can result in more storms, causing mixing of cold Arctic air with warmer air from outside the Arctic. The net result is a warmer Arctic. 
  6. Storms feedback: More open waters can result in more storms that can push the ice across the Arctic Ocean, and possibly all the way out of the Arctic Ocean. 
  7. Storms feedback: Storms also cause more waves that break up the sea ice. Smaller pieces of ice melt quicker than large pieces. A large flat and solid layer of ice is also less susceptible to wind than many lighter and smaller pieces of ice that will stand out above the water and capture the wind like the sails of yachts. 
  8. Storms feedback: Storms cause waters to become more wavy. Calm waters can reflect much sunlight back into space, acting as a mirror, especially when the sun shines under a low angle. Wavy waters, on the other hand, absorb more sunlight. 
  9. Fires feedback: More extreme weather comes with heatwaves and storms. Thus, this is in part another storms feedback. The combination of storms and fires can be deadly. Heatwaves can spark fires that, when fueled up by storms, turn into firestorms affecting huge areas and causing huge amounts of emissions. Storms can whip up particles that when deposited on ice, snow or the bare soil, can cause more sunlight to be absorbed. 
  10. Open doors feedback: Accelerated warming in the Arctic causes the polar vortex and jet stream to weaken, causing more extreme weather and making it easier for warm air to enter the Arctic.

These ten feedback are depicted in the diagram below. 


Saturday, June 30, 2012

Earth on Fire


Two people have died in the wildfire in Colorado Springs, 347 homes have been destroyed and more than 35,000 people have been forced to evacuate their homes, in the most destructive wildfire in Colorado history, reports Reuters. The destruction surpassed the 257 homes destroyed recently by a large blaze north of Denver.
According the Wikipedia, the 2012 Colorado wildfires have now claimed 5 fatalities, over 600 homes have been destroyed and at least 202,425 acres have burned (i.e. 316.3 square miles or 819.2 square kilometers).
Below, a photo of the smoke cloud at Colorado Springs from the local Waldo Canyon fire, taken on June 26, 2012, by U.S. Air Force/Mike Kaplan.


An AP news update at USAtoday includes:
• Idaho: A fast-moving 1,000-acre wildfire in eastern Idaho that destroyed 66 homes and 29 outbuildings was expected to be contained Saturday. Some 1,000 residents were evacuated.
• Utah: More than 50 houses were destroyed.
• Montana: Authorities in eastern Montana ordered the evacuation of several communities Saturday as the Ash Creek Complex fires, which has burned more than 70 homes this week, consumed another 72 square miles. The blaze grew to 244 square miles overnight.
• Wyoming: A wind-driven wildfire in a sparsely populated area of southeastern Wyoming exploded from eight square miles to nearly 58 square miles in a single day, and an unknown number of structures have burned. About 200 structures were considered threatened.
NASA has released a map, an edited version of which is below, showing the intensity and scope of the heat wave in the western United States, with temperature anomalies reaching 12 degrees Celsius in the period of June 17 to 24, 2012. Colorado experienced the brunt of the heat wave and had eight large wildfires burning on June 28, 2012. Wyoming and Utah—other states that have seen unusually hot weather—together had nine wildfires burning.

NASA adds that this heat wave, like all extreme weather events, has its direct cause in a complex set of atmospheric conditions that produce short-term weather. However, weather occurs within the broader context of the climate, and there’s a high level of agreement among scientists that global warming has made it more likely that heat waves of this magnitude will occur.
The image on the right, edited from another NASA image, depicts the relative concentration of aerosols in the skies above the continental United States on June 26, 2012.
As the image below shows, the heat wave is moving east, with temperatures reaching extremely high values over much of the United States. The image, edited from weather.gov, shows temperature predictions in both Celsius and Fahrenheit.

The image below, edited from NOAA, shows that temperatures are predicted to reach peaks on the East Coast of over 115 degrees Fahrenheit on Sunday, July 1st, 2012.

The United States isn't the only place witnessing extreme temperatures. Fires are raging in Russia, while I recently described the danger of abrupt local warming in the Arctic.
The NASA Global Fire Map below shows fires detected by satellite from June 9 to June 18, 2012.

The image below, from the Climate Emergency Institute, shows that most of the largest climate feedbacks take place at higher latitudes on the Northern Hemisphere. 


Friday, June 22, 2012

Fires are raging again across Russia

NASA satellite image, acquired April 24, 2012 
Back in April, thousands of hectares were burning when NASA captured above image of fires in a rural area north of Omsk, a city in south central Russia near the Kazakhstan border, according to the NASA report accompanying the image.

In May 6, 2012, the Voice of Russia reported some 11000 hectares (about 42.4 square miles) of forests in Siberia to be on fire.

Lena River, Siberia - Wikipedia
Earlier this month, eight Russian paratroopers died fighting a massive forest fire in southern Siberia, reports UPI.

Russia has now declared a state of emergency in several eastern regions, due to hundreds of wildfires, reports NASA.

Smoke from fires burning in Siberia can travel across the Pacific Ocean and into North America. A NASA analysis of satellite images shows that aerosols from fires took six days to reach America's shores. In certain cases they saw smoke that actually circles the globe, describes NASA.

These fires are causing a lot of emissions, including soot that can be deposited on the ice in the Arctic, resulting in more sunlight to be absorbed which will speed up the melt.

Furthermore, high temperatures in Siberia will warm up the water in rivers, causing warm water to flow into the Arctic, as illustrated by above Wikipedia image highlighting the Lena River and the August 3, 2010, satellite image below, showing warm river water heat up the Laptev Sea (degrees Celsius).



The image below was edited from a report by NOAA’s National Climatic Data Center, describing that the globally-averaged temperature for May 2012 marked the second warmest May since record keeping began in 1880.

NOAA image, temperature anomalies for May 2012
The image below was edited from a recent NASA report describing a total of 198 fires burning across Russia. As the inset shows, the fires on the main image are part of an area where further fires are raging.

NASA satellite image, acquired June 18, 2012
Below are two maps from the NOAA Climate Prediction Center, showing temperature anomalies in Southern Russia for the week from June 10th to 16th, 2012, of over 7 degrees Celsius (12.6 degrees Fahrenheit), with temperatures in areas around the Caspian Sea reaching over 40 degrees Celsius (104 degrees Fahrenheit).

Perhaps even more worrying than high temperatures in Southern Russia are high temperature anomalies in Northern Siberia, some of which were in the 16-18 degrees Celsius range for the week from June 10-16th, 2012 (see NOAA image below).
Satellite image June 15, 2012 from DMI - http://ocean.dmi.dk/arctic/satellite/index.uk.php

Source: mapsofworld.com via Sam on Pinterest