Showing posts with label tipping point. Show all posts
Showing posts with label tipping point. Show all posts

Thursday, August 22, 2024

Carbon dioxide growing rapidly

The image below shows NOAA monthly mean concentration of carbon dioxide (CO₂) recorded at Mauna Loa, Hawaii, from 2020 through July 2024. The inset shows that CO₂ was 425.55 parts per million (ppm) in July 2024, an increase of 3.72 ppm from July 2023, when CO₂ was 421.83 ppm. This 3.72 ppm growth is higher than the 3.36 ppm annual growth in 2023, the highest annual growth on record. 

The image below shows the same data, with a trend added based on August 2009 through July 2024 data.


The above trend points at 430 ppm CO₂ getting crossed in February 2025, which would constitute a jump of 10 ppm in two years time (from 420 ppm in February 2023 to 430 ppm in February 2025). Despite numerous warnings and despite politicians' pledges to act decisively, the concentration of CO₂ in the atmosphere is growing rapidly.

If this trend continues, 1200 ppm CO₂ could be crossed in early 2035, as illustrated by the image below.  

In other words, the clouds tipping point could get crossed in early 2035 due to rising CO₂ alone. 

There has been some debate as to when the clouds tipping point would get crossed. The above image points at carbon dioxide in the atmosphere crossing 1200 ppm in 2035. Someone argued that, when calculating the carbon dioxide equivalent (CO₂e) for different gases, counting should start from the year 1750, implying that the clouds tipping point would not be at 1200 ppm CO₂ but would instead be reached by an increase of 1200 ppm above the CO₂ concentration in the year 1750, which was 278 ppm. Adding 1200 ppm to 278 ppm makes 1478 ppm. The image below illustrates that, if the trend would continue, this higher value of 1478 ppm could be crossed in 2036. 


[ from earlier post ]
Rising emissions could originate from many sources, the more so as more sinks turn into sources.
[ from earlier post ]

The clouds tipping point is at 1200 ppm CO₂e (carbon dioxide equivalent), so it could be crossed even earlier when also taking into account more methane, nitrous oxide, etc. The above image, from an earlier post, warns that a trend (added to NOAA globally averaged marine surface monthly mean methane data from April 2018 to November 2022) points at 6000 ppb methane in 2027. The image further warns that this could cause the clouds tipping point to get crossed due to methane alone, and illustrates this by comparing 6000 ppb methane with 1200 ppm CO₂e while using a Global Warming Potential (GWP) of 200.

Not all equivalents are equal

There are several ways to measure the impact of methane. In the above image, methane parts are taken as equivalent to carbon dioxide parts, while using a GWP for methane of 200. Not all equivalents are equal, so here's another way to compare CO₂'s and methane's impact. 

The image on the right, by Eric Fisk, shows contributions to 2010–2019 warming relative to 1850–1900 in °C. The whiskers show likely ranges, indicating that methane's impact may rival, if not exceed carbon dioxide's impact, and there are reasons why this may be the case.
[ from FAQ ]

Methane concentrations have risen strongly since 2010-2019.

Methane's immediate GWP may exceed 200, much higher than the values that are often used when applying horizons of 20 years or 100 years. 

Methane's lifetime extends as more methane is released, due to hydroxyl depletion, as illustrated by the graph on the right, based on data by Isaksen et al. (2011).

Indirect effects include more stratospheric water vapor and tropospheric ozone. Carbon dioxide is produced when methane is broken down. Methane's lifetime also extends as more water vapor enters the atmosphere, as temperatures rise.

The study by Isaksen et al. calculates that a scenario of 7 times current methane (image below, medium light colors) over 50 years would correspond with a radiative forcing of 3.6 W m⁻². 

[ from FAQ ]

At the time of the study, little was known about the clouds tipping point, let alone that it could be crossed due to methane alone at concentrations much lower than 7 times the methane in 2011. Even when using a lower value for methane's impact, there is a growing potential for the amount of methane in the atmosphere to increase dramatically, as a result of methane releases from permafrost, as temperatures keep rising, which would strongly contribute to cause the Clouds Tipping Point to get crossed. This increases the urgency to take climate action. The images below illustrate the danger. 


The above image, adapted from Copernicus, shows a methane forecast for August 22, 2024 03 UTC (run 00 UTC). Note that the scale goes up to 10 ppm or 10,000 parts per billion (ppb). 


The above image shows that high methane concentrations (around 2400 ppb) were recently recorded at the observatory in Utqiagvik (Barrow), Alaska.

As discussed in an earlier post, peak daily average methane is approaching 2000 ppb at Mauna Loa, Hawaii. Local peaks can be much higher, as illustrated by the image on the right that shows that a methane peak of 2739 ppb was recorded at 399 mb by the NOAA 20 satellite on August 22, 2024 AM. 

Methane levels are particularly high at latitudes higher than 60°N, where they can often exceed 2000 ppb, even at relatively low altitudes. 

The next image on the right shows methane as recorded by the NOAA 20 satellite on August 13, 2024 AM at 1000 mb, which corresponds with the lowest altitude available. 

The next image on the right shows methane on August 23, 2024 AM at 840 mb, where the NOAA 20 satellite recorded levels as high as 2418 ppb. 

When using a GWP of 200 for methane, a concentration of 2000 ppb may correspond with 400 ppm CO₂e, as discussed above. Together with a daily peak CO₂ concentration of 430 ppm, this would add up to a joint CO₂e peak of 830 ppm, i.e. only 370 ppm away from the clouds tipping point at 1200 ppm CO₂e. This 370 ppm CO₂e could be added almost instantly by a burst of seafloor methane less than the size of the methane that is currently in the atmosphere (about 5 Gt). 

There is plenty of potential for such an abrupt release, given the rising ocean heat and the vast amounts of carbon and methane contained in vulnerable sediments at the seafloor of the Arctic Ocean, as discussed above and in earlier posts such as this one, and at the threat page.


[ image from the Extinction page ]
There are further emissions and developments such as tipping points and feedbacks that should be taken into account. The above image, from an earlier post, illustrates the mechanism how multiple feedbacks can accelerate the temperature rise of the atmosphere.

Several feedbacks can also constitute tipping points. Decline of Arctic sea ice comes with loss of albedo and loss of the Latent Heat Buffer, and the joint loss can abruptly and dramatically increase temperatures in the Arctic Ocean.

Further increase of heat in the Arctic Ocean can in turn cause the Seafloor Methane Tipping Point to get crossed, resulting in destabilization of methane hydrates contained in sediments at the seafloor of the Arctic Ocean, as discussed in many earlier posts such as this one.

Self-amplifying feedbacks and crossing of tipping points, as well as further developments (such a as loss of the aerosol masking effect and sunspots reaching a peak) could all contribute to cause a temperature rise from pre-industrial of over 10°C, in the process causing the clouds tipping point to get crossed that can push up the temperature rise by a further 8°C.

Altogether, the temperature rise may exceed 18°C from pre-industrial by 2026, as illustrated by the image on the right.

Climate Emergency Declaration

The situation is dire and the precautionary principle calls for rapid, comprehensive and effective action to reduce the damage and to improve the situation, as described in this 2022 post, where needed in combination with a Climate Emergency Declaration, as discussed at this group.



Links

• NOAA - Global Monitoring Laboratory - Carbon Cycle Gases, trends in CO2
https://gml.noaa.gov/ccgg/trends

• NOAA - Global Monitoring Laboratory - Carbon Cycle Gases, Mauna Loa, Hawaii, U.S.
https://gml.noaa.gov/dv/iadv/graph.php?code=MLO&program=ccgg&type=ts

• Copernicus - methane forecasts
https://atmosphere.copernicus.eu/charts/packages/cams/products/methane-forecasts

• The Clouds Feedback and the Clouds Tipping Point
https://arctic-news.blogspot.com/p/clouds-feedback.html

• Albedo
https://arctic-news.blogspot.com/p/albedo.html

• Feedbacks in the Arctic
https://arctic-news.blogspot.com/p/feedbacks.html

• Jet Stream
https://arctic-news.blogspot.com/p/jet-stream.html

• Latent Heat
https://arctic-news.blogspot.com/p/latent-heat.html

• Cold freshwater lid on North Atlantic
https://arctic-news.blogspot.com/p/cold-freshwater-lid-on-north-atlantic.html

• Sunspots
https://arctic-news.blogspot.com/p/sunspots.html

• Pre-industrial
https://arctic-news.blogspot.com/p/pre-industrial.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Transforming Society
https://arctic-news.blogspot.com/2022/10/transforming-society.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Climate Emergency Declaration
https://arctic-news.blogspot.com/p/climate-emergency-declaration.html





Friday, May 3, 2024

Is CMIP6 SSP585 the worst-case scenario?

The image below, adapted from Climate Reanalyzer, shows the temperature in the year 2100, in a CMIP6 SSP585 scenario. The image shows how much the temperature will have risen in 2100, at 2 meters above the surface and compared to the period 1979-2000. 


The image below shows a progressive temperature rise reaching 4.589°C in 2100 compared to the same period, i.e. 1979-2000 and in a CMIP6 SSP585 scenario.


The 1979-2000 period is relatively recent. The temperature has been rising for longer than that. The image below shows a progressive temperature rise reaching 4.91°C by 2100 in a CMIP6 SSP585 scenario when instead using a 1901-2000 period as a base.

The 1901-2000 period is also relatively recent, much later than pre-industrial. When using a pre-industrial base, the temperature rise will be well over 5°C.

As illustrated by the top image, the temperature rise over land will be much higher than over oceans, which makes the situation even more dire, given that most people live on land and could face a rise of  8°C by 2100 in a CMIP6 SSP585 scenario.

In a CMIP6 SSP585 scenario, temperatures are projected to keep rising strongly beyond 2100, as illustrated by the image below, from a 2016 paper by Brian O'Neill et al.


In the study by Brian O'Neill et al., CO₂ emissions keep rising until 2100, to then fall gradually to current levels, while the CO₂ concentration in the atmosphere keep rising, to remain at levels beyond 2000 ppm and result in a temperature rise of 8°C by 2300 in a CMIP6 SSP585 scenario.

Is CMIP6 SSP585 the worst-case scenario?

To check whether CMIP6 SSP585 is indeed the worst-case scenario, one can look at how fast CO₂ is rising. According to the IEA, global energy-related CO₂ emissions grew in 2023, reaching a new record high of 37.4 Gt (or 10.098 GtC). The image below, from a recent post, confirms the recent acceleration in CO₂ concentrations, while showing the potential for CO₂ concentration to cross 1200 ppm before the year 2060.


In other words, CO₂ may well be rising even faster than anticipated in a CMIP6 SSP585 scenario, while this scenario doesn't take into account the potential for CO₂e concentrations to cross 1200 ppm much earlier than 2100 (inset), e.g. before 2060 as illustrated by the red trend in the main image. Furthermore, CMIP6 SSP585 doesn't take into account that, in addition to the temperature rise resulting from high greenhouse gas concentrations, crossing the clouds tipping point at 1200 ppm in itself would push up temperatures by a further 8°C.

Indeed, the clouds tipping point could be crossed even earlier when also taking into account methane, nitrous oxide and further greenhouse gases, while there are additional developments such as organic carbon and inorganic carbon release from soils that could further raise both CO₂ concentrations and temperatures. The Extinction page and posts such as this one and this one warn about the potential for a temperature rise of well over 18°C unfolding as early as 2026. 
In conclusion, the temperature looks set to be rising higher and faster at accelerating rate, dwarfing anything seen in previous extinction events, as illustrated by the image below, from an earlier post.


"Now I am become Death, the destroyer of worlds."




The above image is a screenshot from the video (further above) in which physicist J. Robert Oppenheimer reflects on the first test of the atomic bomb. His haunting words mark the moment when science met conscience.

Similarly, climate change is a destroyer of worlds with unfathomable consequences, yet politicians refuse to heed the warnings, in an unprecedented breach of moral values, neglect of the precautionary principle, betrayal of trust and violation of the duty of care.

As a result, the IPCC persists with downplaying the potential for dangerous developments in efforts to hide the need for the most effective climate action. The IPCC keeps pointing at less effective policies such as support for BECCS and biofuel, while continuing to make it look as if there was a carbon budget to divide among polluters, as if polluters could continue to pollute for decades to come, as discussed in earlier posts such as this one.

Meanwhile, a 2018 study (by Strona & Bradshaw) indicates that most life on Earth will disappear with a 5°C rise. Humans, who depend for their survival on many other species, will likely go extinct with a 3°C rise, as illustrated by the image below, from an earlier post.


Climate Emergency Declaration

The situation is dire and the precautionary principle calls for rapid, comprehensive and effective action to reduce the damage and to improve the situation, as described in this 2022 post, where needed in combination with a Climate Emergency Declaration, as discussed at this group.



Links

• Climate Reanalyzer
https://climatereanalyzer.org

• The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6 - by Brian O'Neill et al. (2016)

• International Energy Agency (IEA) - CO2 Emissions in 2023 report
https://www.iea.org/reports/co2-emissions-in-2023

• September 2023, highest anomaly on record?
https://arctic-news.blogspot.com/2023/09/september-2023-highest-anomaly-on-record.html

• CO2 keeps accelerating
https://arctic-news.blogspot.com/2024/04/co2-keeps-accelerating.html

• Feedbacks in the Arctic
https://arctic-news.blogspot.com/p/feedbacks.html

• Pre-industrial
https://arctic-news.blogspot.com/p/pre-industrial.html

• Clouds Feedback and the Clouds Tipping Point
https://arctic-news.blogspot.com/p/clouds-feedback.html

• The Threat
https://arctic-news.blogspot.com/p/threat.html

• Amplifying feedback loop between drought, soil desiccation cracking, and greenhouse gas emissions - by Farshid Vahedifard et al. 






Friday, September 15, 2023

Seafloor methane tipping point reached

The bold black line at the top of the image below, adapted from Climate Reanalyzer, shows extremely high sea surface temperatures up to September 13, 2023, much higher than in any previous year on record.

The image below, created with NASA data, shows why these extremely high sea surface temperatures are so worrying. The image shows monthly mean global surface temperature anomalies (open ocean) vs 1901-1930. The ochre trend, based on January 1900-August 2023 data, indicates the latent heat tipping point was crossed in 2021 and the seafloor methane tipping point could be crossed in 2033. The red trend, based on August 2008-August 2023 data and better reflecting variables such as El Niño, indicates that the seafloor methane tipping point could be crossed late 2023. Data show the seafloor methane tipping point was reached in August 2023.

The latent heat tipping point is estimated to correspond with a sea surface temperature anomaly of 1°C above the long term average, 1901-1930 on the above image, as discussed in earlier posts such as this one.

Sea ice constitutes a latent heat buffer, consuming incoming heat as it melts. While the ice is melting, all energy (at 334 J/g) goes into changing ice into water and the temperature remains at 0°C (273.15K or 32 °F). Once all ice has turned into water, all subsequent energy goes into heating up the water, and will do so at 4.18 J/g for every 1°C the temperature of the water rises. 

Once Arctic sea ice has become very thin, ocean heat that was previously consumed by melting the sea ice, no longer gets consumed by melting of the sea ice, and further incoming heat instead gets absorbed by the Arctic Ocean, rapidly pushing up the temperature of the water of the Arctic Ocean. 

The latent heat tipping point has meanwhile been crossed. Loss of this buffer is linked to the seafloor methane tipping point, i.e. the point where additional heat reaches the seafloor and destabilizes hydrates contained in sediments at the seafloor. This tipping point comes with multiple self-reinforcing feedback loops, such as explosive growth in methane volume setting off further destabilization, rapid rise of Arctic temperatures, loss of permafrost and loss of albedo, and release of further greenhouse gases.

Crossing of the seafloor methane tipping point will occur later than crossing of the latent heat tipping point, i.e. the seafloor methane tipping point corresponds with a higher ocean temperature anomaly, estimated to correspond with a sea surface temperature anomaly of 1.35°C above the long term average.

The current situation is particularly precarious in the Arctic, as the North Atlantic Ocean is very hot and the Gulf Stream keeps pushing hot water toward the Arctic Ocean, while Arctic sea ice has become very thin and the latent heat tipping point has been crossed.

As the temperature of the Arctic Ocean keeps rising, more heat can reach sediments located at the seafloor, since much of the Arctic Ocean is very shallow and sediments at the seafloor of the Arctic Ocean can contain vast amounts of methane.

The danger is that additional heat will destabilize hydrates in these sediments, leading to explosive eruptions of methane, as its volume increases 160 to 180-fold when leaving the hydrates, and resulting in huge eruptions of methane both from the destabilizing hydrates and from methane that is present in the form of free gas underneath the hydrates.

[ from earlier post, click on images to enlarge ]

The above image, from an earlier post, illustrates that warnings have been given before about the danger of these two tipping points getting crossed in the Arctic. In the above image, the trends are based on annual sea surface temperature data for the Northern Hemisphere. The seafloor methane tipping point is estimated to correspond with ocean temperature anomalies reaching 1.35°C above the long term average.

The image below further illustrates the high sea surface temperatures in and around the Arctic Ocean, with the red to yellow colors indicating temperature anomalies above the 1981-2011 average, and the green circle marking a sea surface temperature anomaly near the North Pole of 0.4°C on September 13, 2023.  


The image below illustrates how incoming ocean heat that previously was consumed in the process of melting of the sea ice, is now causing the water of the Arctic Ocean to heat up, with more heat reaching the seafloor of the Arctic Ocean, which has seas that in many places are very shallow.

[ Latent heat loss, feedback #14 on the Feedbacks page ]
Further adding to the danger is that destabilization of methane hydrates can cause huge amounts of methane to erupt with great force from the seafloor in the form of plumes. Consequently, little of the methane can be broken down in the water by microbes, while there is very little hydroxyl in the atmosphere over the Arctic Ocean to break down the methane that enters the atmosphere.


[ click on images to enlarge ]
Ominously, very high methane levels continue to be recorded at Barrow, Alaska, as illustrated by the above NOAA image.

The MetOp satellite image on the right shows methane levels, with the magenta color indicating the highest methane levels recorded at surface level (1000 mb), on September 15, 2023 am.

The N20 satellite image underneath shows methane levels at an altitude corresponding with 487 mb on September 10, 2023 am. The magenta color again indicates the highest methane levels recorded at the time.

Note the high levels over the Beaufort Sea and elsewhere over the Arctic Ocean, as well as high levels recorded over oceans in the Southern Hemisphere.

Climate Emergency Declaration

A catastrophe of unimaginable proportions is unfolding. Life is disappearing from Earth and runaway heating could destroy all life on Earth. At 5°C heating, most life on Earth will have disappeared. When looking only at near-term human extinction, 3°C will likely suffice.

The situation is dire and is getting more dire every day, which calls for a Climate Emergency Declaration and implementation of comprehensive and effective action, as described in the Climate Plan with an update at Transforming Society.


Links

• Climate Reanalyzer - daily sea surface temperature
https://climatereanalyzer.org/clim/sst_daily

• NASA - GISS Surface Temperature Analysis

• Record high North Atlantic sea surface temperature




Tuesday, August 15, 2023

Two Tipping Points

The image below, adapted from Climate Reanalyzer, shows that the World Sea Surface Temperature (60°South - 60°North) was at a record high of 21.1°C or 69.98°F for the third day in a row on August 23, 2023. As the image also shows, sea surface temperatures over the past few months have been much higher for the time of year than in any other year on record. 

The image below shows why this recent sea surface temperature rise is so worrying. The image below is based on NASA data for monthly mean global surface temperature anomalies (open ocean) vs 1901-1930. The ochre trend, based on January 1900-July 2023 data, indicates that the latent heat tipping point was crossed in 2021 and the seafloor methane tipping point may be crossed by the end of 2033. Both trends extend into the future for 15 years, but the red trend is based on July 2008-July 2023 data and better reflects El Niño and other variables, and this red trend indicates that the latent heat tipping point was crossed in 2023 and the seafloor methane tipping point may be crossed later this year.

[ click on images to enlarge ]

Sea ice constitutes a latent heat buffer, consuming incoming heat as it melts. While the ice is melting, all energy (at 334 J/g) goes into changing ice into water and the temperature remains at 0°C (273.15K or 32 °F). Once all ice has turned into water, all subsequent energy goes into heating up the water, and will do so at 4.18 J/g for every 1°C the temperature of the water rises. 

[ sea ice thickness, from earlier post ]
Loss of this buffer is linked to subsequent destabilization of methane hydrates. So, there are two tipping points that are linked, and the latent heat tipping point gets crossed in the Arctic before the seafloor methane tipping point gets reached.

The situation is particularly precarious in the Arctic, as the North Atlantic Ocean is very hot and the Gulf Stream keeps pushing hot water toward the Arctic Ocean, while Arctic sea ice has become very thin. The image on the right, from Uni of Bremen, shows that on July 25, 2023, there was virtually no Arctic sea ice left that was more than 30 cm thick. 

The latent heat tipping point is the point where Arctic sea ice loss is such that further incoming ocean heat that was previously consumed as Arctic sea ice melted, instead gets absorbed by the Arctic Ocean. 

[ sea surface temperature anomaly ]
The image on the right, adapted from nullschool.net, shows that on August 2, 2023, most of the Arctic Ocean was showing surface temperatures above the daily average during 1981-2011, indicating that the latent heat tipping point was reached. The latent heat tipping point is estimated to correspond with an ocean temperature anomaly of 1°C above the long term average, 1901-1930 on the above image.

The image underneath, also from nullschool.net, shows the situation on August 20, 2023, when temperatures at the North Pole had been above zero for more than a day and temperatures were forecast to go below zero only twice briefly afterwards, for the period up to August 24, 2023 19:00 UTC (which is as far as the forecast went at the time. 

[ surface temperature ]
This is a further indication that the latent heat tipping point has been reached and that no more heat can be consumed by sea ice melting.

How much sea ice is left? What does the sea ice look like, near the North Pole? Satellite images can give a good impression, but clouds can obscure the view. A clearer view can be obtained by comparing images over several days. 

An animation can reveal how much, or rather how little sea ice is left, and to what extent water of the Arctic Ocean is visible. 

[ Satellite view, click on images to enlarge ]
The animation on the right is made with four NASA Worldview images, showing the situation on August 11, 15, 16 and 19, 2023. 

The second tipping point, the seafloor methane tipping point, occurs as more heat reaches the seafloor where it destabilizes hydrates contained in sediments at the seafloor.

This tipping point comes with multiple self-reinforcing feedback loops, such as explosive growth in methane volume setting off further destabilization, rapid rise of Arctic temperatures, loss of permafrost and loss of albedo, and release of further greenhouse gases.

Crossing of the seafloor methane tipping point will occur later than crossing of the latent heat tipping point, so the seafloor methane tipping point is estimated to correspond with a higher ocean temperature anomaly.

The current situation is particularly precarious in the Arctic, as the North Atlantic Ocean is very hot and the Gulf Stream keeps pushing hot water toward the Arctic Ocean, while Arctic sea ice has become very thin (image right) and the latent heat tipping point has been crossed.

As the temperature of the Arctic Ocean keeps rising, more heat can reach sediments located at the seafloor, since much of the Arctic Ocean is very shallow and sediments at the seafloor of the Arctic Ocean can contain vast amounts of methane.

The danger is that further heat will destabilize hydrates in these sediments, leading to explosive eruptions of methane, as its volume increases 160 to 180-fold when leaving the hydrates, and resulting in huge eruptions of methane both from the destabilizing hydrates and from methane that is present in the form of free gas underneath the hydrates.

[ from earlier post, click on images to enlarge ]

The above image, from an earlier post, illustrates that warnings have been given before about the danger of these two tipping points getting crossed in the Arctic. In the above image, the trends are based on annual sea surface temperature data for the Northern Hemisphere. The seafloor methane tipping point is estimated to get crossed when the ocean temperature anomaly on the Northern Hemisphere goes beyond 1.35°C above its long term average.

The Argo Float 7900549 compilation image below illustrates that the highest water temperatures in the Arctic Ocean can occur at a depth of approximately 100 meters. The image shows temperatures as high as 5°C at that altitude.


Stronger winds along the path of the Gulf Stream can at times speed up sea currents that travel underneath the surface. As a result, huge amounts of hot, salty water can travel from the Atlantic Ocean into the Arctic Ocean, abruptly pushing up temperatures and salinity levels at the bottom of the Arctic Ocean, which in many places is very shallow.


The above image shows details of Argo float 9701007, further illustrating the danger that heat can reach the seafloor. North of Norway, where the water is less than 400 m deep, temperatures higher than 5°C show up throughout the vertical water column, up to August 10, 2023, when temperatures above 11°C were recorded close to the sea surface. The colored inset also shows that greater mixing down of heat occurred from October to December 2022, as the sea ice started to return and seal off the surface, preventing heat transfer from ocean to atmosphere, as also discussed at FAQ #11.

Below is another image adapted from Climate Reanalyzer, showing that the sea surface temperature of the North Atlantic Ocean has for months been much higher for the time of year than it was in previous years on record. Eight causes behind this have been discussed in an earlier post. The image below shows the situation on August 28, 2023, with the North Atlantic sea surface temperature reaching a record high of 25.34°C or 77.61°F. 


The image below, adapted from NOAA, shows how the Gulf Stream is pushing ocean heat toward the Arctic Ocean, while sea surface temperatures show up as high as 33.6°C or 92.48°F on August 17, 2023. 


[ 2022 animation ]
Studies, some of them dating back more than two decades, show that over the shallow East Siberian Arctic Shelf (ESAS) winds at times can mix the water column from the top to the bottom. A 2005 study of the ESAS led by Igor Semiletov recorded water temperatures at the seafloor, in September 2000, of 4.7°C at 20m depth at one location and 2.11°C at 41m depth at another location, with salinity levels of 29.7‰ and of 31.7‰, respectively.

A deformed Jet Stream, in combination with a cyclone, could similarly result in strong winds abruptly pushing a huge amount of heat through the Bering Strait into the Arctic Ocean. 

The animation on the right shows how remnants of Typhoon Merbok were forecast to enter the Arctic Ocean through the Bering Strait from September 17 to 19, 2022.

The image below, adapted from Climate Reanalyzer, shows that the (2-meter) air temperature in the Arctic was 3.79°C on August 25, 2023, a record high for the time of year and 2.08°C higher than the 1979-2011 mean for that day.


The image below illustrates how incoming ocean heat that previously was consumed in the process of melting of the sea ice, is now causing the water of the Arctic Ocean to heat up, with more heat reaching the seafloor of the Arctic Ocean, which has seas that in many places are very shallow.

[ Latent heat loss, feedback #14 on the Feedbacks page ]
Further adding to the danger is that destabilization of methane hydrates can cause huge amounts of methane to erupt with great force in the form of plumes. Consequently, little of the methane can be broken down in the water by microbes, while there is very little hydroxyl in the atmosphere over the Arctic Ocean to break down the methane that enters the atmosphere.

Ominously, some very high methane levels were recorded recently at Barrow, Alaska, as illustrated by the NOAA images below.

The most recent monthly methane average recorded at Barrow, Alaska, is above 2080 parts per billion.

In the video below, Guy McPherson describes the dire situation.


Climate Emergency Declaration

A catastrophe of unimaginable proportions is unfolding. Life is disappearing from Earth and runaway heating could destroy all life. At 5°C heating, most life on Earth will have disappeared. When looking only at near-term human extinction, 3°C will likely suffice.

The situation is dire and is getting more dire every day, which calls for a Climate Emergency Declaration and implementation of comprehensive and effective action, as described in the Climate Plan with an update at Transforming Society.


Links

• Climate Reanalyzer - daily sea surface temperature
https://climatereanalyzer.org/clim/sst_daily

• Climate Reanalyzer - daily 2-meter air temperature
https://climatereanalyzer.org/clim/t2_daily

• NASA - GISS Surface Temperature Analysis
https://earth.nullschool.net

• NOAA - Barrow Atmospheric Baseline Observatory, United States
https://gml.noaa.gov/dv/iadv/graph.php?code=BRW&program=ccgg&type=ts

• Argo Float
https://fleetmonitoring.euro-argo.eu

• Remnants of Typhoon Merbok forecast to enter the Arctic Ocean through the Bering Strait from September 17 to 19, 2022.
Discussed at https://www.facebook.com/SamCarana/posts/10166948876390161, from:
https://arctic-news.blogspot.com/p/cold-freshwater-lid-on-north-atlantic.html

• The East Siberian Sea as a transition zone between Pacific-derived waters and Arctic shelf waters - by Igor Semiletov et al. (2005)
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2005GL022490

• Sea surface temperature at record high
https://arctic-news.blogspot.com/2023/03/sea-surface-temperature-at-record-high.html

• Record high North Atlantic sea surface temperature