NASA just released temperature data for February 2017. Should we be worried? Yes, there are many reasons to be very worried.
Let's go back in time. This is from a post written ten years ago: We may suddenly face a future in which many if not most people will have little or no access to food, water, medicines, electricity and shelter, while diseases go rampant and gangs and warlords loot and devastate the few livable areas left. Human beings as a species will face the risk of total extinction, particularly if many species of animals and plants that humans depend on will disappear. The post continues: Many people are still in denial about the severity of the problem of global warming, the accumulation of dangers and their progression.
Indeed, even today many people will still deny that such events could strike suddenly, e.g. within a few years time. Many people use linear trends to predict the future many years from now. As an example, the straight blue line on the graph below is a linear trend based on NASA 1880-current meteorological stations data. The problem is that linear trends, especially when based on data that go back many years, can make people overlook important recent changes such as the temperature rise that has taken place over the past few years, the decline of glaciers and sea ice and the recent increases in concentrations of carbon dioxide in the atmosphere.
[ click on image to enlarge ]
An alternative approach is to use recent data, e.g., from the year 2012, and then calculate a polynomial trend that extends a few years into the future. Taking such an approach can result in a polynomial trend (red curved line) that is contained in the NASA Land+Ocean data from January 2012 to February 2017. This trend shows the potential for a 10°C (18°F) rise four years from now, and this should act as a powerful warning.
The appropriateness of linear versus non-linear trends was also discussed earlier at the Controversy page.
In addition to looking at trends that are contained in such data, it makes sense to analyse the different elements contributing to such a rise. Such elements are discussed in more detail at the extinction page, which confirms the potential for a 10°C temperature rise within years, i.e. by the year 2026.
The situation is dire and calls for comprehensive and effective action as described in the Climate Plan.
On February 10, 2017, 18:00 UTC it is forecast to be 0.1°C or 32.1°F at the North Pole, i.e. above the temperature at which water freezes. The temperature at the North Pole is forecast to be 30°C or 54°F warmer than 1979-2000, on Feb 10, 2017, 18:00 UTC, as shown on the Climate Reanalyzer image on the right.
This high temperature is expected as a result of strong winds blowing warm air from the North Atlantic into the Arctic.
The forecast below, run on February 4, 2017, shows that winds as fast as 157 km/h or 98 mph were expected to hit the North Atlantic on February 6, 2017, 06:00 UTC, producing waves as high as 16.34 m or 53.6 ft.
A later forecast shows waves as high as 17.18 m or 54.6 ft, as illustrated by the image below.
While the actual wave height and wind speed may not turn out to be as extreme as such forecasts, the images do illustrate the horrific amounts of energy contained in these storms.
Stronger storms go hand in hand with warmer oceans. The image below shows that on February 4, 2017, at a spot off the coast of Japan marked by green circle, the ocean was 19.1°C or 34.4°F warmer than 1981-2011.
As discussed in an earlier post, the decreasing difference in temperature between the Equator and the North Pole causes changes to the jet stream, in turn causing warmer air and warmer water to get pushed from the North Atlantic into the Arctic.
The image below shows that on February 9, 2017, the water at a spot near Svalbard (marked by the green circle) was 13°C or 55.3°F, i.e. 12.1°C or 21.7°F warmer than 1981-2011.
[ click on images to enlarge ]
Warmer water flowing into the Arctic Ocean in turn increases the strength of feedbacks that are accelerating warming in the Arctic. One of these feedbacks is methane that is getting released from the seafloor of the Arctic Ocean. Update: The image below shows that methane levels on February 13, 2017, pm, were as high as 2727 ppb, 1½ times the global mean at the time.
[ click on image to enlarge, right image added for reference to show location of continents ]
What caused such a high level? High methane levels (magenta color) over Baffin Bay are an indication of a lot of methane getting released north of Greenland and subsequently getting pushed along the exit current through Nares Strait (see map below). This analysis is supported by the images below, showing high methane levels north of Greenland on the morning of February the 14th (left) and the 15th (right).
The image below shows methane levels as high as 2569 ppb on February 17, 2017. This is an indication of ocean heat further destabilizing permafrost at the seafloor of the Laptev Sea, resulting in high methane concentrations where it is rising in plumes over the Laptev Sea (at 87 mb, left panel) and is spreading over a larger area (at slightly lower concentrations) at higher altitude (74 mb, right panel).
This illustrates how increased inflow of warm water from the North Atlantic into the Arctic Ocean can cause methane to erupt from the seafloor of the Arctic Ocean. Methane releases from the seafloor of the Arctic Ocean have the potential to rapidly and strongly accelerate warming in the Arctic and speed up further feedbacks, raising global temperature with catastrophic consequences in a matter of years. Altogether, these feedbacks and further warming elements could trigger a huge abrupt rise in global temperature making that extinction of many species, including humans, could be less than one decade away.
Without action, we are facing extinction at unprecedented scale. In many respects, we are already in the sixth mass extinction of Earth's history. Up to 96% of all marine species and 70% of terrestrial vertebrate species became extinct when temperatures rose by 8°C (14°F) during the Permian-Triassic extinction, or the Great Dying, 252 million years ago.
During the Palaeocene–Eocene Thermal Maximum (PETM), which occurred 55 million years ago, global temperatures rose as rapidly as by 5°C in ~13 years, according to a study by Wright et al. A recent study by researchers led by Zebee concludes that the present anthropogenic carbon release rate is unprecedented during the past 66 million years. Back in history, the highest carbon release rates of the past 66 million years occurred during the PETM. Yet, the maximum sustained PETM carbon release rate was less than 1.1 Pg C per year, the study by Zebee et al. found. By contrast, a recent annual carbon release rate from anthropogenic sources was ~10 Pg C (2014). The study by Zebee et al. therefore concludes that future ecosystem disruptions are likely to exceed the - by comparison - relatively limited extinctions observed at the PETM.
An earlier study by researchers led by De Vos had already concluded that current extinction rates are 1,000 times higher than natural background rates of extinction and future rates are likely to be 10,000 times higher.
As above image shows, a number of warming elements adds up to a potential warming of 10°C (18°F) from pre-industrial by the year 2026, i.e. within about nine years from now, as discussed in more detail at the extinction page.
Above image shows how a 10°C (18°F) temperature rise from preindustrial could be completed within a decade.