Showing posts with label gases. Show all posts
Showing posts with label gases. Show all posts

Sunday, October 20, 2013

Methane presence over Arctic Ocean continues


The image on the right, created with IPCC data, shows that methane levels have risen even stronger than levels of two other greenhouse gases, i.e. carbon doxide (CO2) and nitrous oxide (N2O).

Methane levels have risen strongly over the past few years, especially over the Arctic.

Previous posts at this blog have illustrated that, from early October 2013, high methane readings have shown up persistently over the depths of the Arctic Ocean.

The persistence of these readings indicates that this methane wasn't blown there from elsewhere. Furthermore, the presence of methane appears to line up closely with the fault line that crosses the Arctic Ocean and extends into Siberia and further into the Sea of Okhotsk.

The latest data show a continuation of this worrying methane presence over the Arctic Ocean.


On October 18, 2013, readings of up to 2426 ppb were recorded. As the above image shows, high peak readings have occurred over the past few months. Currently, however, high readings can be more clearly attributed to methane venting from the depths of the Arctic Ocean. On the image below, methane shows up very prominently over the Arctic Ocean.



For more background, see posts below.

Related

- The Unfolding Methane Catastrophe
http://arctic-news.blogspot.com/2013/10/unfolding-methane-catastrophe.html

- Methane hydrates
http://methane-hydrates.blogspot.com/2013/04/methane-hydrates.html

- Myths about methane hydrates
http://methane-hydrates.blogspot.com/p/myths.html



Tuesday, October 8, 2013

Abrupt Climate Change

What is Abrupt Climate Change?

Abrupt climate change is defined by the IPCC as a large-scale change in the climate system that takes place over a few decades or less, persists (or is anticipated to persist) for at least a few decades, and causes substantial disruptions in human and natural systems.

Examples of components susceptible to such abrupt change are clathrate methane release, tropical and boreal forest dieback, disappearance of summer sea ice in the Arctic Ocean, long-term drought and monsoonal circulation.

Deposits of methane clathrates below the sea floor are susceptible to destabilization via ocean warming.

Anthropogenic warming will very likely lead to enhanced methane emissions from both terrestrial and oceanic clathrates.

Above extracted from:
- Intergovenmental Panel on Climate Change (IPCC), AR5 Workgroup 1, Technical Summary

New Finding Shows Climate Change Can Happen in a Geological Instant

The Paleocene/Eocene thermal maximum (PETM) is a climate shift that occurred 55 million years ago.

James Wright, Rutgers University Research News -
Morgan Schaller, James Wright, and the core sample
that helped them understand what happened
– and how fast it happened – 55 million years ago.
In a new paper in the Proceedings of the National Academy of Sciences, Morgan Schaller and James Wright present their finding that climate change can and did happen abruptly, or in geological terms, instantaneously.

Following a doubling in carbon dioxide levels, the surface of the ocean turned acidic over a period of weeks or months and global temperatures rose by 5 degrees centigrade – all in the space of about 13 years.

“We’ve shown unequivocally what happens when CO2 increases dramatically – as it is now, and as it did 55 million years ago,” James Wright said.

The film below goes into more detail regarding the current situation.

New Film: Last Hours

The film “Last Hours” describes a science-based climate scenario where a tipping point to runaway climate change is triggered by massive releases of frozen methane. Methane, a powerful greenhouse gas, has already started to percolate into the open seas and atmosphere from methane hydrate deposits beneath melting arctic ice, from the warming northern-hemisphere tundra, and from worldwide continental-shelf undersea methane pools.

“Last Hours” is narrated by Thom Hartmann and directed by Leila Conners. Executive Producers are George DiCaprio and Earl Katz.


For more, also watch some of Thom Hartmann’s interviews.

High Methane Levels persist over Arctic Ocean

High methane levels are prominent over the Arctic Ocean, as illustrated by the image below, covering a period from October 3, 2013, 10:54 am to October 7, 2013, 11:53 pm. The fact that methane has not been present elsewhere in such high concentrations over this period indicates that the methane wasn't carried there by the wind from elsewhere. Also, methane typically appears to move along the same latitude, due to the Coriolis effect.


The image indicates a link between seismic activity and destabilization of methane that is held in sediments under the Arctic Ocean. Methane does show up prominently along the fault line that crosses the Arctic Ocean and extends into Siberia over the Laptev Sea.

The Diagram that IPCC failed to include in AR5

The diagram below shows global warming evolving into accelerated warming in the Arctic. Feedbacks such as albedo changes and methane release speed up this process, triggering abrupt climate change and finally extinction.

The Diagram the IPCC failed to include in AR5

This threatening situation calls for an Effective and Comprehensive Climate Plan, such as depicted by the green lines of action in the image below and as further described at the ClimatePlan blog. For more background, see related posts further below.




Related posts

- Just do NOT tell them the monster exists
http://arctic-news.blogspot.com/2013/10/just-do-not-tell-them-the-monster-exists.html

- Methane Release caused by Earthquakes
http://arctic-news.blogspot.com/2013/09/methane-release-caused-by-earthquakes.html

- Climate Plan
http://climateplan.blogspot.com



Thursday, May 2, 2013

No Planet B


By Andrew Glikson
Earth and paleo-climate science, Australian National University
IPCC Reviewer

The global CO2cide 400 ppm milestone

Figure 1. Mouna Loa Month ending May 1, 2013, from:  http://keelingcurve.ucsd.edu/


Figure 2. CO2 levels over the past 800,000,000 years, from:  http://keelingcurve.ucsd.edu/

Figure 3. Mouna Loa CO2 level 29 April, 2013 keelingcurve.ucsd.edu/ 
On the 29 April, 2013, NOAA recorded a CO2 level of 399.50 ppm, while some readings in April 2013 exceeded 400 ppm (Figures 1, 2 and 3, from: http://keelingcurve.ucsd.edu/), signifying a return to atmosphere conditions of the Pliocene (5.2 – 2.6 million years ago).

This followed a rise from 394.45 ppm to 397.34 ppm (March 2012 – 2013) at a rate of 2.89 ppm per year, unprecedented in the recorded geological history of the last 65 million years (Figure 4).

Pliocene temperatures - about 2 – 3 degrees C warmer than pre-industrial temperatures, resulted in an intense hydrological cycle, ensuing in extensive rain forests, lush savannas (now occupied by deserts), small ice caps and sea levels about 25 meters higher than at present (Figure 5).

Figure 4. CO2 rise rates vs Temperature rise rates for the Cainozoic (65 Ma to the present). 

Figure 5. The Pliocene Earth compared to the modern Earth 
http://www.giss.nasa.gov/research/features/199704_pliocene/page2.html
Note (1) the lower albedo in the Pliocene poles signifying the smaller
size of the ice caps and (2) the high albedo of 
the modern Sahara and
Gobi deserts signifying the a larger extent of Holocene deserts.
Life abounded during the Pliocene. However, regular river flow conditions such as allowed cultivation and along river valleys since about 7000 years ago, and temperate Mediterraneantype climates allowing extensive farming, could hardly exist under the intense hydrological cycle and heat wave conditions of the Pliocene.

Gradual to intermittent advents of Pleistocene ice ages over the last 2 million years allowed many species to adapt to changing conditions. Abrupt warming events, such as the DansgaardOeschger cycles, occurred during glacial periods (Figure 4). Extreme shifts in state of the climate exceed the rate to which many species can adapt.

The basic laws of atmospheric physics and chemistry and the behavior of past atmospheres indicate changes in the level of atmospheric greenhouse gases constitute a key parameter determining the current trend of the terrestrial climate. Concomitant rates of SO2 release, mainly from coal burning, have regulated changes in temperature.

Increases in SO2 release about 1950 and 2001 are responsible for slow-down of temperature rise (Figure 6).

Figure 6. Comparison of the rate of warming and variations in SO2 levels.
Temperature from 
GISS/NASA (http://data.giss.nasa.gov/gistemp/); SO2 levels after
http://www.atmos-chemphys.net/11/1101/2011/acp-11-1101-2011.html.
          Note the overlap between slow-down of overall 
temperature rise rates and increase in SO2 emissions
(http://www.atmos-chem-phys.net/11/1101/2011/acp-11-1101-2011.html) around 1950 and 2001. 
The current CO2 ppm/year rise rate of ~3 ppm/year surpasses any recorded since the last 65 million years of Earth history. High CO2 and temperature rises occurred about ~55 Ma ago. At that stage release of methane drove a CO2 rise of near-1800 ppm and a temperature rise of about 5 degrees C over 10,000 years, namely a rate of 0.18 ppm/year and 0.0005 degrees C/year (Zachos et al. 2008; http://www.nature.com/nature/journal/v451/n7176/full/nature06588.html).

The K-T asteroid impact of 65 Ma-ago resulted in a rise of more than 2000 ppm CO2 within about 10,000 years, namely ~0.2 ppm /year. This triggered a temperature rise of about 7.5 degrees C, namely 0.00075 degrees C per year (Beerling et al. 2002 http://www.pnas.org/content/99/12/7836.full) (Figure 4). Calculations by these authors suggest a release of approximately 4500 billion tons of carbon from impacted carbonates and shale, ignited bushfires and ocean warming.

The consequences of the current rise in greenhouse gases is manifested by enhancement of the hydrological cycle, with ensuing floods and of heat waves (http://www.ipcc-wg2.gov/SREX/ ; http://www.aph.gov.au/Parliamentary_Business/Committees/Senate_Committees?url=ec_ctte/extreme_weather/index.htm).

Open-ended combustion of known fossil fuel reserves (Figure 7) would lead to atmospheric CO2 levels of ~800 to 1000 ppm CO2, high degree to total melting of the polar ice caps, sea level rise on the scale of tens of meters and disruption of the biosphere on a scale analogous to recorded mass extinctions (http://www.astrobio.net/interview/2553/under-a-green-sky).

Figure 7. CO2 emissions by fossil fuels (1 ppm CO2 ~ 2.12 GtC). 
Alternative estimates of reserves and potentially recoverable resources are from EIA (2011) and GAC (2011).
We are 
headed toward 800 to 1,000+ ppm, which represents the near-certain destruction of modern civilization
as we know it -- as the recent scientific literature makes chillingly clear. 

(http://thinkprogress.org/climate/2012/01/28/413955/james-hansen-on-cowards/). 
Carbon emissions may be self-limiting. It is likely that, before atmospheric CO2 reach 500 ppm, disruption of fossil fuel-combusting systems by extreme weather events would result in reduction of emissions. On the other hand the extent to which amplifying feedback processes (methane release from permafrost and Arctic sediments, bushfires, warming oceans) would continue to add greenhouse gases to the atmosphere is uncertain.

Preoccupied with short-term economic forecast, daily A$ exchange rates, share market fluctuations and, sports results, with some exceptions (http://www.theage.com.au/national/greenhouse-gases-in-new-danger-zone-20130428-2imjm.html) the accelerating rate of atmospheric CO2 seems to hardly rate a mention on the pages of the global media.

There are few signs the extreme danger the terrestrial biosphere and the oceans are driving the global community to undertake the urgent large-scale measures required to attempt to arrest current trends.

In Australia the language has changed, from “the greatest moral issue of our generation” (http://www.youtube.com/watch?v=CqZvpRjGtGM) to hit-pocket controversy over a “carbon tax”, a meningless 5 percent reduction in local emissions which overlook the export of hundreds of million tons of coal, ending up in the same atmosphere.

There is no evidence the recent IPA celebration (http://www.crikey.com.au/2013/04/05/abbottbolt-rinehart-fawn-in-the-ipa-court-of-king-murdoch/), attended by the likely next prime minister, the world’s media moguls and mining magnates, as well as an archbishop, was concerned with the future of the Earth’s climate.

In professor Hans Joachim Schellnhuber’s words stated in Doha “overriding everything else the 1st Law of Humanity: Don’t kill your children!” (http://www.pik-potsdam.de/news/inshort/files/Schellnhuber-keynote-COP18-state-dinner-Doha.pdf).

There is no planet B.

Wednesday, May 2, 2012

Record levels of greenhouse gases in the Arctic

Carbon dioxide levels are at an all time high. The image below, with hourly averages, shows recent measurements that are well over 396 ppm. Formal figure for the week started April 22, 2012, is 396.61 ppm at Mauna Loa, Hawaii.


The image below shows the atmospheric increase of CO2 over 280 ppm in weekly averages of CO2 observed at Mauna Loa. The preindustrial value of 280 ppm is close to the average of CO2 between 1000 and 1800 in an ice core from Law Dome, Antarctica. For comparison with pre-industrial times the Mauna Loa weekly data have been first deseasonalized by subtracting the observed average seasonal cycle, and then subtracting 280 ppm.



The image below shows the results for carbon dioxide global monthly averages for the period 1979-2010. The axis on the left shows the radiative forcing in Watts per square meter, relative to 1750, due to carbon dioxide alone since 1979.



The situation is even worse in the Arctic, where carbon dioxide levels can reach values over 400 ppm, as illustrated by the image below showing carbon dioxide measurements at Barrow, Alaska.



Apart from carbon dioxide, there are further forcers such as methane. The image below shows methane levels at Mauna Loa, Hawaii.


Methane levels are again higher in the Arctic, as illustrated by the image below showing methane levels at Barrow, Alaska, of well over 1900 ppb.
Figures for methane on above image are monthly averages, showing recent levels well over 1900 ppb. The situation looks even more worrying when looking at hourly averages, showing measurements of up to 2500 ppb.


The fact that such high levels occur is alarming. The danger is that radiative forcing will be extremely high in summer in the Arctic, due to high levels of greenhouse gases and other emissions, which will speed up the loss of sea ice, resulting in even further warming that increases the danger that large amounts of methane will be released from hydrates and from free gas in sediments under the water.  This danger is further increased by the many feedbacks, as depicted in the Diagram of Doom.

For a more detailed description of the many feedbacks, see the Diagram of Doom.