Showing posts with label Jennifer Francis. Show all posts
Showing posts with label Jennifer Francis. Show all posts

Sunday, January 7, 2024

2024 looks to be worse than 2023


The year 2024 looks to be worse than the year 2023. The above chart shows sea surface temperatures that were extremely high in 2023 followed by a steep rise in 2024, crossing 21°C in early January 2024.

The chart below illustrates this further, showing the daily sea surface temperature anomaly using 1 Sep. 1981 to 31 Dec. 2023 data versus the 1982-2011 mean for latitudes between 60°S and 60°N.

The importance of sea surface temperatures

Slowing down of the Atlantic meridional overturning circulation (AMOC) results in less ocean heat reaching the Arctic Ocean and, instead, a huge amount of ocean heat has been accumulating in the North Atlantic in 2023.

Much of the heat in the North Atlantic could soon be pushed abruptly into the Arctic Ocean, as storms can temporarily speed up currents strongly, carrying huge amounts of ocean heat with them into the Arctic Ocean.


The mechanism behind this has been described often in earlier posts and this page. Meltwater and rain can cause a freshwater lid to form and grow at the surface of the North Atlantic and this, in combination with greater stratification as ocean temperatures rise (above image), can enable more ocean heat to increasingly travel underneath this lid from the North Atlantic into the Arctic Ocean, and especially so at times when Jet Stream changes are causing storms that speed up ocean currents along this path.


The danger is illustrated by the above image, showing a forecast for January 11, 2024, with the Jet Stream moving almost vertically over the North Atlantic to the north. The image below shows heat over the North Atlantic, with temperatures reaching as high as 10.5°C or 50.8°F over Greenland (at the green circle) at 1000 hPa on January 10, 2024, 07:00 UTC.


The image below shows 2 meter temperature anomalies on January 11, 2024. 


Very high sea surface temperature anomalies can occur in the path of the Gulf Stream, as illustrated by the image below showing high sea surface temperatures on January 3, 2024, as high as 11.7°C (21°F) at the green circle, over the counterpart of the Gulf Stream in the Pacific, off the coast of Japan. 


Earlier posts have warned about this, such as this post and this video, almost seven years ago. This could cause events during which much ocean heat moves abruptly into the Arctic Ocean, resulting in seafloor methane releases, overwhelming of the latent heat buffer and causing sea ice loss (and thus albedo loss), as well as loss of lower clouds (thus causing further albedo loss), while open oceans are also less efficient than sea ice when it comes to emitting in the far-infrared region of the spectrum and while an ice-free Arctic Ocean will also release more ocean heat into the atmosphere.


Arctic sea ice volume is very low for the time of year, as illustrated by the above image.

A large part of the thicker sea ice is located off Greenland's East Coast, as illustrated by the above image. Much of the sea ice will therefore rapidly disappear as the water heats up in 2024.


The above image, adapted from tropicaltidbits.com, shows a forecast for October 2024 of the 2-meter temperature anomaly in degrees Celsius, based on 1984-2009 model climatology. The anomalies are forecast to be very high for the Arctic Ocean.

In the video below, Jennifer Francis is interviewed by Nick Breeze. 



The importance of daily air temperatures, Northern Hemisphere


[ from the Extinction page ]
The situation is dire. The Northern Hemisphere is getting hit hardest by high temperatures, as illustrated by the above image. 

The Northern Hemisphere is home to some 90% of the world population of more than 8 billion people, with much of them living in South-East Asia.

As more people become aware of the dire situation, widespread panic may set in.

People may stop showing up for work, resulting in a rapid loss of the aerosol masking effect, as industries that now co-emit cooling aerosols (such as sulfates) grind to a halt.

Many people may start to collect and burn more wood, resulting in an increase in emissions that speed up the temperature rise.

As temperatures rise, more fires could also break out in forests, peatlands and urban areas including landfills and waste dumps, further contributing to emissions that speed up the temperature rise.

The image on the right illustrates how fast a huge temperature could unfold.

As a somewhat sobering footnote, humans will likely go extinct with a 3°C rise and most life on Earth will disappear with a 5°C rise, as discussed in an earlier post.


Climate Emergency Declaration

The situation is dire and the precautionary principle calls for rapid, comprehensive and effective action to reduce the damage and to improve the situation, as described in this 2022 post, where needed in combination with a Climate Emergency Declaration, as discussed at this group.



Links
• Climate Reanalyzer 
https://climatereanalyzer.org

• Nullschool

• Danish Meteorological Institute - Arctic sea ice volume and thickness
https://ocean.dmi.dk/arctic/icethickness/thk.uk.php

• New Record Ocean Temperatures and Related Climate Indicators in 2023 - by Lijing Checg et al. (2024)

• Cold freshwater lid on North Atlantic
https://arctic-news.blogspot.com/p/cold-freshwater-lid-on-north-atlantic.html

• Extinction







Saturday, August 12, 2023

Return of the Blob?


The Blob is a large mass of water with relatively high heat content, floating at the surface and underneath the surface of the North Pacific Ocean. The Blob did appear several times before, including in 2016, which was a strong El Niño year. The above image shows high sea surface temperature anomalies in the North Pacific on August 10, 2023, raising the question of whether this constitutes a return of the Blob.

As temperatures rise, the Arctic is heating more rapidly than the rest of the world. The narrowing temperature difference between the Arctic and the Tropics is weakening the speed at which the jet stream circumnavigates Earth and this is making the jet stream more wavy.

In a 2012 study, Jennifer Francis et al. warned that this makes atmospheric blocking events in the Northern Hemisphere more likely, aggravating extreme weather events related to stagnant weather conditions, such as droughts, flooding and heatwaves. The Blob appears to be the marine version of a heatwave on land.

The image below shows that, on August 12, 2023, sea surface temperatures were as much as 7°C or 12.6°F higher than 1981-2011 in the Pacific Ocean (at the green circle, follow the arrow). A strongly deformed Jet Stream shows many circular wind patterns, prolonging, intensifying and increasing the occurrence of extreme weather events such as accumulation of heat during heatwaves. 


Is the Kuroshio Current slowing down?

The Kuroshio Current is an ocean current that carries heat along its path in the North Pacific, similar to the Gulf Stream in the North Atlantic Ocean. Is the Kuroshio Current slowing down as temperatures rise and is such slowing down causing hot water to accumulate in the western part of the North Pacific, leading to a return of a new Blob moving across the North Pacific toward the coast of North America?

The North Atlantic has been experiencing record high sea surface temperatures recently. A return of the Blob increases the danger of more heat reaching sediments at the seafloor of the Arctic Ocean.

[ 2022 animation ]
The animation on the right shows how remnants of Typhoon Merbok were forecast to enter the Arctic Ocean through the Bering Strait from September 17 to 19, 2022.

Studies, some of them dating back more than two decades, show that over the shallow East Siberian Arctic Shelf (ESAS) winds at times can mix the water column from the top to the bottom. A 2005 study of the ESAS led by Igor Semiletov recorded water temperatures at the seafloor, in September 2000, of 4.7°C at 20m depth at one location and 2.11°C at 41m depth at another location, with salinity levels of 29.7‰ and of 31.7‰, respectively.

A deformed Jet Stream, in combination with a cyclone, could result in strong winds abruptly pushing a huge amount of heat through the Bering Strait into the Arctic Ocean. This could cause methane hydrates to destabilize and huge amounts of methane to erupt from the seafloor and enter the atmosphere.

Conclusion

The situation is dire and is getting more dire every day, which calls for a Climate Emergency Declaration and implementation of comprehensive and effective action, as described in the Climate Plan with an update at Transforming Society.


Links

• The Blob

• Evidence Linking Arctic Amplification to Extreme Weather in Mid-Latitudes, by Jennifer Francis et al. (2012)
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2012GL051000 

• The Kuroshio current
https://en.wikipedia.org/wiki/Kuroshio_Current

• Record high North Atlantic sea surface temperature

• Remnants of Typhoon Merbok forecast to enter the Arctic Ocean through the Bering Strait from September 17 to 19, 2022.

• The East Siberian Sea as a transition zone between Pacific-derived waters and Arctic shelf waters - by Igor Semiletov et al. (2005)
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2005GL022490

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Transforming Society
https://arctic-news.blogspot.com/2022/10/transforming-society.html

• Climate Emergency Declaration
https://arctic-news.blogspot.com/p/climate-emergency-declaration.html



Monday, May 4, 2020

Very High Greenhouse Gas Levels

Carbon Dioxide

On June 1, 2020, NOAA recorded a daily average carbon dioxide (CO₂) level of 418.32 ppm at Mauna Loa, Hawaii.

The image below shows hourly average CO₂ levels approaching 419 ppm at Mauna Loa on May 1, 2020.
The image below shows hourly (red circles) and daily (yellow circles) averaged CO₂ values at Mauna Loa, Hawaii over 31 days, up to May 31, 2020, with some recent hourly averages showing up with values exceeding 419 ppm.
The image below shows hourly (red circles) and daily (yellow circles) averaged CO₂ values at Mauna Loa, Hawaii over 31 days, through June 1, 2020, when a daily average of 418.32 ppm was recorded.


By comparison, the highest daily average CO₂ level recorded by NOAA in 2019 at Mauna Loa was 415.64 ppm, as discussed in an earlier post. The image below shows how CO₂ growth has increased over the decades.

As illustrated by the image below, the daily average CO₂ on June 1, 2019, was 414.14 ppm and the daily average CO₂ on June 1, 2020, was 418.32 ppm, i.e. 4.18 ppm higher. The average in May 2019 was 414.65 ppm and the average in May 2020 was 417.07 ppm, i.e. 2.42 ppm higher. Since the annual maximum is typically reached in May, this high reading for June 1, 2020, could indicate that, while CO₂ emissions by people were suppressed in April and May 2020 due to the COVID-19 lockdowns, growth of CO₂ levels in the atmosphere continues to speed up now as restrictions are relaxed.


Even more significant than the daily averages could be the hourly averages. The daily average CO₂ level recorded by scripps.ucsd.edu at Mauna Loa, Hawaii, was 418.04 ppm on May 25, 2020. On May 24, 2020, one hourly average exceeded 420 ppm, at which time emissions by people had raised CO₂ levels by some 160 ppm compared to the situation thousands of years ago, and by even more if levels had continued to follow a natural trend, as illustrated by the image and inset below.


A rise of 100 ppm CO₂ has historically corresponded with a global temperature rise of some 10°C or 18°F, when looking at CO₂ levels and temperatures over the past 420,000 years, as illustrated by the image below.


Concentrations of carbon dioxide, methane (CH₄) and nitrous oxide (N₂O) in 2018 surged by higher amounts than during the past decade, according to a 2019 WMO news release and as illustrated by the image on the right, from an earlier post, which shows that CH₄, CO₂ and N₂O levels in the atmosphere in 2018 were, respectively, 259%, 147% and 123% of their pre-industrial (before 1750) levels.

So, methane levels have been rising much faster than CO₂ since 1750 and there is much potential for an even faster rise in methane levels due to seafloor hydrate releases.

Furthermore, as industrial activity declines in the wake of COVID-19, loss of aerosol masking alone could trigger a rapid rise, as discussed by Guy McPherson in recent papers here and here.

Given this, the 160 ppm rise in CO₂ could lead to a global temperature rise of 18°C or 32.4°F from 1750, and such a rise could unfold soon, as oceans and ice take up ever less heat and further feedbacks kick in, as also discussed in earlier post such as this one and this one.

Levels for methane and nitrous oxide were very high in May 2020, as further discussed below.

Methane

MetOp-1 recorded peak methane levels of 2917 ppb at 469 mb on the afternoon of May 22, 2020.


MetOp-1 recorded mean methane levels of 1896 ppb at 336 mb on the morning of May 22, 2020.


MetOp-2 recorded peak methane levels of 1918 ppb at 586 mb on the afternoon of May 24, 2020.


Nitrous Oxide

N20 recorded peak nitrous oxide levels of 366 ppb at 840 mb on the morning of May 21, 2020.


N20 recorded somewhat lower peak nitrous oxide levels of 346.9 ppb at 487.2 mb on the afternoon of May 23, 2020, but look at how much of Antarctica is covered by the magenta color, reflecting levels at the top end of the scale.


Rising greenhouse gas levels are damaging the ozone layer

Nitrous oxide is both a potent greenhouse gas and an ozone depleting substance that is thus directly damaging the ozone layer.

Additionally, rising greenhouse gas levels are indirectly damaging the ozone layer in three ways:

Firstly, rising greenhouse gas levels are making water vapor enter the stratosphere. Higher sea surface temperatures along the path of the Gulf Stream fuel hurricanes traveling north along North America's east coast. More heat also translates into more wind; stronger hurricanes are getting stronger over the years.

Rising levels of greenhouse gases strengthen winds and increase water vapor in the atmosphere. Temperatures are rising faster in the Arctic than in the rest of the world, as illustrated by the image below, and this is changing the Jet Stream.

[ click on images to enlarge ]
Jennifer Francis has long pointed out that, as temperatures at the North Pole are rising faster than at the Equator, the Jet Stream is becoming wavier and can get stuck in a 'blocking pattern' for days, increasing the duration and intensity of extreme weather events. This can result in stronger storms moving more water vapor inland over the U.S., as discussed in earlier posts such as this one. Such storms can cause large amounts of water vapor to rise high up in the sky. Water vapor that enters the stratosphere can damage the ozone layer.

Secondly, as plumes above the anvils of severe storms bring water vapor up into the stratosphere, this also contributes to the formation of cirrus clouds that trap a lot of heat that would otherwise be radiated away, from Earth into space.

Thirdly, higher temperatures and stronger winds increase the intensity of droughts. Heatwaves combined with strong winds, dry soil and dry vegetation can make forest fires produce smoke that can enter the stratosphere and stay there for along time.

Recent examples of extreme weather events are described below, i.e. a huge storm and a heatwave in the Arctic.

Super Typhoon Amphan hits India and Bangladesh

Also in May 2020, super typhoon Amphan hit India and Bangladesh, with high waves and heavy rainfall. Waves as high as 14.2 m or 46.6 ft were forecast (at the green circle) for May 20, 2020, 06:00 UTC as Amphan approached Bangladesh.

"Once once-in-a-century, now once-in-a-decade", comments Sam Carana on this and other events.


The sea surface temperature image below shows that, on May 17, 2020, ocean temperatures were as high as 32.9°C or 91.1°F.


The combination image below shows high sea surface temperatures on May 15, 2020, 12:00 UTC, in the left panel.


Anomalies in the Indian Ocean were as high as 3.4°C or 6.0°F, in the Arctic Ocean as high as 1°C or 1.8°F and in the Pacific Ocean as high as 5.1°C or 9.1°F. Anomalies are from daily average during years 1981-2011.

The right panel of the combination image shows how these high ocean temperatures cause circular wind patterns. Wind speed was as high as 255 km/h or 159 mph in the Indian Ocean, at the location of super typhoon Amphan, on May 18, 2020, 06:00 UTC, while instantaneous wind power density was as high as 177.2 kW/m².

The combination image below shows the temporary cooling impact of Amphan.


The bottom panel shows that on May 18, 2020 09:00 UTC, the temperature at a location in India was 42.6°C or 108.6°F, as Amphan was approaching from the South.

The middle panel shows that, two days later, at the same location and at same time of day, the temperature had fallen to 23.4°C or 74°F as Amphan hit the area.

The cooling is only temporary. The top panel shows that a temperature of 47.9°C or 118.1°F is forecast for that location, same time of day, for May 26, 2020.

Siberian Heatwave

A heatwave hit Siberia in May 2020.


Above image shows that temperature anomalies were forecast to be at the high end of the scale over Siberia on May 22, 2020, 06:00 UTC, i.e. 30°C or 54°F higher than 1979-2000. At the same time, cold temperatures are forecast for much of eastern Europe.

What enables such a strong heatwave to develop is that the Jet Stream is getting more wavy as the temperature difference between the North Pole and the Equator is narrowing, causing both hot air to move up into the Arctic (red arrow) and cold air to descend out of the Arctic (blue arrow).

The Siberian heatwave threatens to trigger forest fires that can cause large amounts of black carbon to settle on the snow and ice cover, speeding up its demise. Furthermore, the heatwave threatens rivers to heat up that carry large amounts of water into the Arctic Ocean. Finally, as discussed, more intense forest fires threaten to cause organic carbon compounds to enter the stratosphere.

Extinction mechanism

A recent study by John Marshall et al. found that the Devionian mass extinction event 360 million years ago, that killed much of the Earth's plant and freshwater aquatic life, was caused by a brief breakdown of the ozone layer. John Marshall says: "Current estimates suggest we will reach similar global temperatures to those of 360 million years ago, with the possibility that a similar collapse of the ozone layer could occur again, exposing surface and shallow sea life to deadly radiation. This would move us from the current state of climate change, to a climate emergency."

John refers to the work by James Anderson et al., who warn that CO₂ and CH₄ release from clathrates and permafrost could cause more water to get carried into the stratosphere. John further describes the 'Extinction mechanism': "High summer temperatures over continental areas can increase the transport of water vapour high into the atmosphere. This water vapour carries with it organic carbon compounds that include chlorine, which are produced naturally by a wide variety of plants, algae and fungi. Once these compounds are near the ozone layer, they release the chlorine and this breaks down ozone molecules. This produces a positive feedback loop because a collapsing terrestrial ecosystem will release a flush of nutrients into the oceans, which can cause a rapid increase in algae."

Arctic sea ice volume

As Guy McPherson points out, COVID-19 alone could trigger an abrupt huge temperature rise.

Furthermore, loss of Arctic sea ice could cause a rapid temperature rise.

Ominously, Arctic sea ice volume has been at record low since the start of 2020, while 2019 volume was at a record low from October, making that volume has now been at record low for almost 8 months straight.

The situation is dire and calls for immediate, comprehensive and effective action as described in the Climate Plan.


Links

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Climate Plan (June 1, 2019 version)
https://arctic-news.blogspot.com/2019/06/climate-plan.html

• The Keeling Curve - Scripps Institution of Oceanography at UC San Diego
https://scripps.ucsd.edu/programs/keelingcurve

• 417.93 parts per million (ppm) CO2 in air 24-May-2020
https://twitter.com/Keeling_curve/status/1264955470655025152

• Greenhouse Gas Levels Keep Accelerating
https://arctic-news.blogspot.com/2019/05/greenhouse-gas-levels-keep-accelerating.html

• Will COVID-19 Trigger Extinction of All Life on Earth? - by Guy McPherson
https://opastonline.com/wp-content/uploads/2020/04/will-covid-19-trigger-extinction-of-all-life-on-earth-eesrr-20-.pdf

• Earth is in the Midst of Abrupt, Irreversible Climate Change - by Guy McPherson
https://www.onlinescientificresearch.com/articles/earth-is-in-the-midst-of-abrupt-irreversible-climate-change.pdf

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Most Important Message Ever
https://arctic-news.blogspot.com/2019/07/most-important-message-ever.html

• Methane
https://arctic-news.blogspot.com/p/methane.html

• Study shows erosion of ozone layer responsible for mass extinction event
https://www.eurekalert.org/pub_releases/2020-05/uos-sse052620.php

• UV-B radiation was the Devonian-Carboniferous boundary terrestrial extinction kill mechanism - by John Marshall et al.
https://advances.sciencemag.org/content/6/22/eaba0768

• Prehistoric climate change damaged the ozone layer and led to a mass extinction - by John Marshall
https://theconversation.com/prehistoric-climate-change-damaged-the-ozone-layer-and-led-to-a-mass-extinction-139519

• UV Dosage Levels in Summer: Increased Risk of Ozone Loss from Convectively Injected Water Vapor - by James Anderson et al.
https://science.sciencemag.org/content/337/6096/835

• Care for the Ozone Layer
https://arctic-news.blogspot.com/2019/01/care-for-the-ozone-layer.html

• Why stronger winds over the North Atlantic are so dangerous
https://arctic-news.blogspot.com/2020/02/why-stronger-winds-over-north-atlantic-are-so-dangerous.html

• A Global Temperature Rise Of More than Ten Degrees Celsius By 2026?
https://arctic-news.blogspot.com/2016/07/a-global-temperature-rise-of-more-than-ten-degrees-celsius-by-2026.html

• Forces behind Superstorm Sandy
https://arctic-news.blogspot.com/2012/11/forces-behind-superstorm-sandy.html

• April 2020 temperatures very high
https://arctic-news.blogspot.com/2020/05/april-2020-temperatures-very-high.html

• Could Humans Go Extinct Within Years?
https://arctic-news.blogspot.com/2020/01/could-humans-go-extinct-within-years.html

• Arctic Ocean November 2019
https://arctic-news.blogspot.com/2019/11/arctic-ocean-november-2019.html






Friday, February 1, 2019

How frigid polar vortex blasts are connected to global warming

by Jennifer Francis, Rutgers University

File 20190128 39344 1rjndrb.jpg?ixlib=rb 1.1
Bundled up against the cold in downtown Chicago, Sunday, Jan. 27, 2019.
AP Photo/Nam Y. Huh

A record-breaking cold wave is sending literal shivers down the spines of millions of Americans. Temperatures across the upper Midwest are forecast to fall an astonishing 50 degrees Fahrenheit (28 degrees Celsius) below normal this week – as low as 35 degrees below zero. Pile a gusty wind on top, and the air will feel like -60 F.



Predicted near-surface air temperatures (F) for Wednesday morning, Jan. 30, 2019. Forecast by NOAA’s Global Forecast System model. Pivotal Weather, CC BY-ND
This cold is nothing to sneeze at. The National Weather Service is warning of brutal, life-threatening conditions. Frostbite will strike fast on any exposed skin. At the same time, the North Pole is facing a heat wave with temperatures approaching the freezing point – about 25 degrees Fahrenheit (14 C) above normal.




Predicted near-surface air temperature differences (C) from normal, relative to 1981-2010.
Pivotal Weather, CC BY-ND
What is causing this topsy-turvy pattern? You guessed it: the polar vortex.

In the past several years, thanks to previous cold waves, the polar vortex has become entrenched in our everyday vocabulary and served as a butt of jokes for late-night TV hosts and politicians. But what is it really? Is it escaping from its usual Arctic haunts more often? And a question that looms large in my work: How does global warming fit into the story?



Jimmy Fallon examines the pros and cons of the polar vortex.

Rivers of air

Actually, there are two polar vortices in the Northern Hemisphere, stacked on top of each other. The lower one is usually and more accurately called the jet stream. It’s a meandering river of strong westerly winds around the Northern Hemisphere, about seven miles above Earth’s surface, near the height where jets fly.

The jet stream exists all year, and is responsible for creating and steering the high- and low-pressure systems that bring us our day-to-day weather: storms and blue skies, warm and cold spells. Way above the jet stream, around 30 miles above the Earth, is the stratospheric polar vortex. This river of wind also rings the North Pole, but only forms during winter, and is usually fairly circular.



Dark arrows indicate rotation of the polar vortex in the Arctic; light arrows indicate the location of the polar jet stream when meanders form and cold, Arctic air dips down to mid-latitudes. L.S. Gardiner/UCAR, CC BY-ND
Both of these wind features exist because of the large temperature difference between the cold Arctic and warmer areas farther south, known as the mid-latitudes. Uneven heating creates pressure differences, and air flows from high-pressure to low-pressure areas, creating winds. The spinning Earth then turns winds to the right in the northern hemisphere, creating these belts of westerlies.

Why cold air plunges south

Greenhouse gas emissions from human activities have warmed the globe by about 1.8 degrees Fahrenheit (1 C) over the past 50 years. However, the Arctic has warmed more than twice as much. Amplified Arctic warming is due mainly to dramatic melting of ice and snow in recent decades, which exposes darker ocean and land surfaces that absorb a lot more of the sun’s heat.

Because of rapid Arctic warming, the north/south temperature difference has diminished. This reduces pressure differences between the Arctic and mid-latitudes, weakening jet stream winds. And just as slow-moving rivers typically take a winding route, a slower-flowing jet stream tends to meander.

Large north/south undulations in the jet stream generate wave energy in the atmosphere. If they are wavy and persistent enough, the energy can travel upward and disrupt the stratospheric polar vortex. Sometimes this upper vortex becomes so distorted that it splits into two or more swirling eddies.

These “daughter” vortices tend to wander southward, bringing their very cold air with them and leaving behind a warmer-than-normal Arctic. One of these eddies will sit over North America this week, delivering bone-chilling temperatures to much of the nation.

Deep freezes in a warming world

Splits in the stratospheric polar vortex do happen naturally, but should we expect to see them more often thanks to climate change and rapid Arctic warming? It is possible that these cold intrusions could become a more regular winter story. This is a hot research topic and is by no means settled, but a handful of studies offer compelling evidence that the stratospheric polar vortex is changing, and that this trend can explain bouts of unusually cold winter weather.

Undoubtedly this new polar vortex attack will unleash fresh claims that global warming is a hoax. But this ridiculous notion can be quickly dispelled with a look at predicted temperature departures around the globe for early this week. The lobe of cold air over North America is far outweighed by areas elsewhere in the United States and worldwide that are warmer than normal.



Predicted daily mean, near-surface temperature (C) differences from normal (relative to 1979-2000) for Jan. 28-30, 2019. Data from NOAA’s Global Forecast System model.
Climate Reanalyzer, Climate Change Institute, University of Maine., CC BY-ND
Symptoms of a changing climate are not always obvious or easy to understand, but their causes and future behaviors are increasingly coming into focus. And it’s clear that at times, coping with global warming means arming ourselves with extra scarfs, mittens and long underwear.

Jennifer Francis, Visiting Professor, Rutgers University

This article is republished from The Conversation under a Creative Commons license. Read the original article.


Sunday, January 20, 2019

Care for the Ozone Layer


The stratosphere normally is cold and very dry. Global warming can increase water vapor in the stratosphere in a number of ways. Global warming causes the troposphere to warm and since warmer air holds more water vapor, the amount of water vapor in the troposphere is increasing. This can cause more water vapor to end up in the stratosphere as well, as described below.

Stratospheric Water Vapor over the Arctic

Around the time of the December Solstice, very little sunlight is reaching the Arctic and temperatures over land at higher latitudes can get very low. At the same time, global warming has made oceans warmer and this keeps air temperatures over water relatively warm in Winter. This can lead to a number of phenomena including sudden stratospheric warming and moistening of the stratosphere.

Sudden stratospheric warming is illustrated by the image on the right, showing temperatures in the stratosphere over Siberia as high as 12.7°C or 54.9°F on December 24, 2018, and temperatures as low as -84.8°C or -120.6°F over Greenland.

At the same time, relative humidity was as high as 100% in the stratosphere over the North Sea, as the second image on the right shows.

Moistening of the stratosphere was even more pronounced on December 24, 2016, as illustrated by the third image on the right.

Storms over the U.S.

Jennifer Francis has long pointed out that, as temperatures at the North Pole are rising faster than at the Equator, the Jet Stream is becoming wavier and can get stuck in a 'blocking pattern' for days, increasing the duration and intensity of extreme weather events.

This can result in stronger storms moving more water vapor inland over the U.S., and such storms can cause large amounts of water vapor to rise high up in the sky.

Water vapor reaching stratospheric altitudes causes loss of ozone, as James Anderson describes in a 2017 paper and discusses in the short 2016 video below.


Methane

Stratospheric water vapor can also result from methane oxidation in the stratosphere. Methane concentrations have risen strongly at higher altitudes over the years. Noctilucent clouds indicate that methane has led to water vapor in the upper atmosphere.

The danger is that, as the Arctic Ocean keeps warming, large eruptions of methane will occur from the seafloor. Ominously, high methane levels have recently shown up on satellite images over the Arctic at lower altitudes, indicating the methane is escaping from the sea.

The images below show methane levels recorded by the NPP satellite:
Jan. 6, 2019, with peak levels of 2513 ppb at 1000 mb, 2600 ppb at 840 mb and 2618 ppb at 695 mb;
Jan. 11, 2019, with peak levels of 2577 ppb at 1000 mb, 2744 ppb at 840 mb and 2912 ppb at 695 mb;
Jan. 15, 2019, with peak levels of 2524 ppb at 1000 mb, 2697 ppb at 840 mb and 2847 ppb at 695 mb.

















The images below show methane levels recorded by the MetOp satellites:
Jan. 15, 2019, with peak levels of 2177 ppb at 840 mb, 2342 ppb at 695 mb and 2541 ppb at 586 mb;
Jan. 16, 2019, with peak levels of 2219 ppb at 840 mb, 2299 ppb at 695 mb and 2475 ppb at 586 mb;
Jan. 19, 2019, with peak levels of 2201 ppb at 840 mb, 2489 ppb at 695 mb and 2813 ppb at 586 mb.
















 

The Importance of the Ozone Layer

Increases in stratospheric water vapor are bad news, as they speed up global warming and lead to loss of stratospheric ozone, as Drew Shindell pointed out back in 2001.

It has long been known that deterioration of the ozone shield increases ultraviolet-B irradiation, in turn causing skin cancer. Recent research suggest that, millions of years ago, it could also have led to loss of fertility and consequent extinction in plants and animals (see box right).

Nitrous oxide

As the left panel of the image below shows, growth in the levels of chlorofluorocarbons (CFCs) has slowed over the years, but their impact will continue for a long time, given their long atmospheric lifetime (55 years for CFC-11 and 140 years for CFC-12, CCl2F2).

Furthermore, as the right panel shows, the impact of nitrous oxide (N₂O) as an ozone depleting substance (ODS) has relatively grown, while N₂O levels also continue to increase in the atmosphere.

[ click on images to enlarge ]
Existential Threats

In conclusion, rising levels of emissions by people constitute existential threats in many ways. Rising temperatures cause heat stress and infertility, and there are domino effects. Furthermore, stratospheric ozone loss causes cancer and infertility.

Only once the ozone layer formed on Earth some 600 million years ago could multicellular life develop and survive. Further loss of stratospheric ozone could be the fastest path to extinction for humanity, making care for the ozone layer imperative.

As described in an earlier post, Earth is on the edge of runaway warming and in a moist-greenhouse scenario oceans evaporate into the stratosphere with loss of the ozone layer.

The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.


Links

• Climate and ozone response to increased stratospheric water vapor, by Drew Shindell (2001)
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/1999GL011197

• Stratospheric ozone over the United States in summer linked to observations of convection and temperature via chlorine and bromine catalysis, by James Anderson et al. (2017)
https://www.pnas.org/content/114/25/E4905

• Harvard Speaks on Climate Change: James Anderson (2016)
https://vimeo.com/185794598

• Climate Week: Climate Science Breakfast with James Anderson (April 9, 2015)
http://environment.harvard.edu/climate-week-climate-science-breakfast-james-anderson

• 10°C or 18°F warmer by 2021?
https://arctic-news.blogspot.com/2017/04/10c-or-18f-warmer-by-2021.html

• Noctilucent clouds indicate more methane in upper atmosphere
https://arctic-news.blogspot.com/2012/09/noctilucent-clouds-indicate-more-methane-in-upper-atmosphere.html

• Noctilucent clouds: further confirmation of large methane releases
https://methane-hydrates.blogspot.com/2013/12/noctilucent-clouds-further-confirmation-of-large-methane-releases.html

• It could be unbearably hot in many places within a few years time
https://arctic-news.blogspot.com/2016/07/it-could-be-unbearably-hot-in-many-places-within-a-few-years-time.html

• Climate change: effect on sperm could hold key to species extinction, by Kris Sales
https://theconversation.com/climate-change-effect-on-sperm-could-hold-key-to-species-extinction-107375

• Climate change: effect on sperm could hold key to species extinction
https://theconversation.com/climate-change-effect-on-sperm-could-hold-key-to-species-extinction-107375

• UV-B–induced forest sterility: Implications of ozone shield failure in Earth’s largest extinction, by Jeffrey Benca et al. (2018)
http://advances.sciencemag.org/content/4/2/e1700618

• Co-extinctions annihilate planetary life during extreme environmental change, by Giovanni Strona and Corey Bradshaw (2018)
https://www.nature.com/articles/s41598-018-35068-1

• NOAA's Annual Greenhouse Gas Index
https://www.esrl.noaa.gov/gmd/aggi

• NOAA Study Shows Nitrous Oxide Now Top Ozone-Depleting Emission
https://www.esrl.noaa.gov/news/2009/nitrous_oxide_top_ozone_depleting_gas.html

• Earth is on the edge of runaway warming
https://arctic-news.blogspot.com/2013/04/earth-is-on-the-edge-of-runaway-warming.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html