Showing posts with label risk. Show all posts
Showing posts with label risk. Show all posts

Tuesday, December 17, 2019

Extinction in 2020?


Above image depicts how humans could go extinct as early as 2020. The image was created with NASA LOTI 1880-Nov.2019 data, 0.78°C adjusted to reflect ocean air temperatures (as opposed to sea surface temperatures), to reflect higher polar temperature anomalies (as opposed to leaving out 'missing' data) and to reflect a 1750 baseline (as opposed to a 1951-1980 baseline), with two trends added. Blue: a long-term trend based on Jan.1880-Nov.2019 data. Red: a short-term trend, based on Jan.2009-Nov.2019 data, to illustrate El Niño/La Niña variability and how El Niño could be the catalyst to trigger huge methane releases from the Arctic Ocean.

How was above image created? Let's first look at the baseline. The NASA default baseline is 1951-1980. The added trend in the image below shows early 1900s data to be well below this 1951-1980 baseline. In this analysis, a 0.28°C adjustment was therefore used to reflect this, and to reflect a 1750 baseline, a further 0.3°C was used, adding up to a 0.58°C baseline adjustment.


Furthermore, the NASA Land+Ocean temperature index (LOTI) uses sea surface temperatures, but ocean air temperatures seem more appropriate, which adds a further 0.1°C adjustment. Also, when comparing current temperatures with preindustrial ones, it's hard to find data for the polar areas. Treating these data as 'missing' would leave important heating out of the picture. After all, the polar areas are heating up much faster than the rest of the world, and especially so in the Arctic region. Therefore, a further 0.1°C adjustment was used to reflect higher polar temperature anomalies, resulting in the above-mentioned 0.78°C adjustment.

Finally, the red trend illustrates El Niño/La Niña variability. As discussed in a recent post, an El Niño is forecast for 2020 and this could be the catalyst to trigger huge methane releases from the Arctic Ocean.

The image below shows El Niño/La Niña variability going back to 1950, added to the NOAA monthly temperature anomaly.



As said, the Arctic region is heating up much faster than the rest of the world. There are several reasons why this is the case. Decline of the sea ice makes that less sunlight gets reflected back into space and that more sunlight is reaching the Arctic Ocean. This also causes more water vapor and clouds to appear over the Arctic Ocean. Furthermore, Arctic sea ice has lost most of the thicker multi-year ice that used to extend meters below the surface, consuming huge amounts of ocean heat entering the Arctic Ocean along ocean currents from the North Atlantic and the North Pacific oceans.

[ created with NOAA Arctic Report Card 2019 image ]
Above-mentioned feedbacks (albedo changes and more water vapor and clouds) contribute to higher temperatures in the Arctic. Furthermore, as the temperature difference between the North Pole and the Equator narrows, the jet stream changes, which can lead to further Arctic heating, i.e. higher temperatures of the atmosphere over the Arctic Ocean and over land around the Arctic Ocean, which in turn causes higher temperatures of the water flowing into the Arctic Ocean from rivers.

Furthermore, jet stream changes can also cause additional heating of parts of the Pacific Ocean and the Atlantic Ocean.

[ click on images to enlarge ]
Above image shows that sea surface temperature anomalies off the East Coast of North America as high as 13.6°C or 24.4°F were recorded on December 18, 2019.

Ocean currents can bring huge amounts of heat into the Arctic Ocean, and this can be amplified due to cyclones speeding up the inflow of water from the Atlantic Ocean and the Pacific Ocean into the Arctic Ocean.


As above image shows, the temperature rise of the oceans on the Northern Hemisphere is accelerating. This constitutes a critical tipping point, i.e. there are indications that a rise of 1°C will result in most of the sea ice underneath the surface to disappear. This sea ice used to consume the inflow of warm, salty water from the Atlantic Ocean and the Pacific Ocean. So, while there may still be sea ice left at the surface, since low air temperatures will cause freezing of surface water, the latent heat buffer has gone.


As long as there is sea ice, this will keep absorbing heat as it melts, so the temperature will not rise at the sea surface. The amount of energy absorbed by melting ice is as much as it takes to heat an equivalent mass of water from zero to 80°C.

The danger is that, as Arctic Ocean heating accelerates further, hot water will reach sediments at the Arctic Ocean seafloor and trigger massive methane eruptions, resulting in a huge abrupt global temperature rise. As discussed in an earlier post, a 3°C will likely suffice to cause extinction of humans.


Earlier this year, an Extinction Alert was issued, followed by a Stronger Extinction Alert.

In a rapid heating scenario:
  1. a strong El Niño would contribute to
  2. early demise of the Arctic sea ice, i.e. latent heat tipping point +
  3. associated loss of sea ice albedo,
  4. destabilization of seafloor methane hydrates, causing eruption of vast amounts of methane that further speed up Arctic warming and cause
  5. terrestrial permafrost to melt as well, resulting in even more emissions,
  6. while the Jet Stream gets even more deformed, resulting in more extreme weather events
  7. causing forest fires, at first in Siberia and Canada and
  8. eventually also in the peat fields and tropical rain forests of the Amazon, in Africa and South-east Asia, resulting in
  9. rapid melting on the Himalayas, temporarily causing huge flooding,
  10. followed by drought, famine, heat waves and mass starvation, and
  11. collapse of the Greenland Ice Sheet.
[ from an earlier post ]

The precautionary principle calls for appropriate action when dangerous situations threaten to develop. How can we assess such danger? Risk is a combination of probability that something will eventuate and severity of the consequences. Regarding the risk, there is growing certainty that climate change is an existential threat, as discussed in a recent post. There's a third dimension, i.e. timescale. Imminence alone could make that a danger needs to be acted upon immediately, comprehensively and effectively. While questions may remain regarding probability, severity and timescale of the dangers associated with climate change, the precautionary principle should prevail and this should prompt for action, i.e. comprehensive and effective action to reduce damage is imperative and must be taken as soon as possible.

The image below gives a visual illustration of the danger.


Polynomial trendlines can point at imminent danger by showing that acceleration could eventuate in the near future, e.g. due to feedbacks. Polynomial trendlines can highlight such acceleration and thus warn about dangers that could otherwise be overlooked. This can make polynomial trendlines very valuable in climate change analysis. In the image below, the green linear trend and the blue polynomial trend are long-term trends (based on Jan.1880-Nov.2019 data), smoothing El Niño/La Niña variability, but the blue polynomial trend better highlights the recent temperature rise than the green linear trend does. The red short-term trend (based on Jan.2009-Nov.2019 data) has the highest R² (0.994) and highlights how El Niño could be the catalyst for huge methane eruptions from the Arctic Ocean, triggering a huge global temperature rise soon.


The image below, from an earlier post, explains the speed at which warming elements can strike, i.e. the rise could for a large part occur within years and in some cases within days and even immediately.


As the image below shows, peak methane levels as high as 2737 parts per billion (ppb) were recorded by the MetOp-2 satellite in the afternoon of December 20th, 2019, at 469 mb. Ominously, a large part of the atmosphere over the East Siberian Arctic Shelf (ESAS) is colored solid magenta, indicating methane levels above 1950 ppb.



The situation is dire and calls for immediate, comprehensive and effective action, as described in the Climate Plan.



Links

• NASA - GISS Surface Temperature Analysis (GISTEMP v4)
https://data.giss.nasa.gov/gistemp/maps/index_v4.html

• NOAA Northern Hemisphere ocean temperature anomalies through November 2019
https://www.ncdc.noaa.gov/cag/global/time-series/nhem/ocean/1/11/1880-2019

• NOAA - Monthly temperature anomalies versus El Niño
https://www.ncdc.noaa.gov/sotc/global/201911/supplemental/page-3

• 2020 El Nino could start 18°C temperature rise
https://arctic-news.blogspot.com/2019/11/2020-el-nino-could-start-18-degree-temperature-rise.html

• NOAA Arctic Report Card 2019
https://www.arctic.noaa.gov/Report-Card/Report-Card-2019

• Critical Tipping Point Crossed In July 2019
https://arctic-news.blogspot.com/2019/09/critical-tipping-point-crossed-in-july-2019.html

• Most Important Message Ever
https://arctic-news.blogspot.com/2019/07/most-important-message-ever.html

• Accelerating greenhouse gas levels
https://arctic-news.blogspot.com/2019/11/accelerating-greenhouse-gas-levels.html

• Debate and Controversy
https://arctic-news.blogspot.com/p/debate.html

• Extinction Alert
https://arctic-news.blogspot.com/2019/02/extinction-alert.html

• Stronger Extinction Alert
https://arctic-news.blogspot.com/2019/03/stronger-extinction-alert.html

• Abrupt Warming - How Much And How Fast?
http://arctic-news.blogspot.com/2017/05/abrupt-warming-how-much-and-how-fast.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html



Wednesday, September 4, 2013

Existential risks to our planetary life-support systems

By Andrew Glikson

Figure 1. The future of Earth’s living environment is a non-issue in the current
Australian election - NASA image: Earth rising over the Moon
“We’re simply talking about the very life support system of this planet.”– Hans Joachim Schellnhuber, chief climate advisor to the German Government
It is not news that we are over stretching our planetary support systems: we have known for some time. In a 2009 keynote paper in Nature titled “A safe operating space for humanity”, a group of 26 prominent scientists showed three of nine interlinked planetary boundaries – boundaries we must stay within to keep Earth safe – have already been overstepped (see figure 2. below).

Those boundaries include:
  • climate change
  • biodiversity loss
  • the biogeochemical cycles.

Kevin Trenberth, chief scientist of the National Center for Atmospheric Research in Boulder, Colorado, states:
“Some of the human-induced changes are occurring 100-times faster than they occur in nature … And this is one of the things that worries me more than climate change itself. It’s actually the rate of change that’s most worrying … Ecosystems are not prepared for this jolt … And neither are many human endeavours, built around assumptions about how hot it’s going to be, how much it’s going to rain on our croplands, and how high the seas will rise.”

Figure 2. Planetary boundaries - the colored star-like area represents the estimated current state and the corners of the red octagon circumscribed by the Earth are the estimated boundaries. Systems whose safe operating space could not yet be determined were left out. Image from: Wikipedia / A safe operating space for humanity, Rockström et al, 2009.

This observation is dramatically demonstrated by the current rise of atmospheric greenhouse gases: this is at an unprecedented rate of 2 to 3 parts per million per year (see figure 3. below). This renders our era – the Anthropocene – a major oxidation event.

Such a growth rate of atmospheric greenhouse gases is extremely rare in geological history. The only analogue is the excavation of billions of tons of carbon from carbonate and shale formation hit by asteroids, such as the K-T impact 65 million years ago and massive global volcanic eruptions.

The consequences for the biosphere – the sixth mass extinction of species – threatens to become a tragedy for human ideals and for nature.

What or who is responsible for the unfolding calamity?

As defined, the Anthropocene is a new geological era triggered by a species which has uniquely mastered ignition. We are using it to excavate and release hundreds of billions of tons of carbon accumulated in Earth’s crust over geological eras into atmosphere.

Once a species masters sources of energy larger by orders of magnitude than its own physiological process (for Homo Sapiens this has been fire, electricity and nuclear fission), the species can hardly be expected to have the wisdom and degree of responsibility to stop its inventions from getting out of control.

Figure 3. Estimates of fossil fuel resources and equivalent atmospheric CO2 levels, including (1) emissions to date;
(2) estimated reserves, and (3) recoverable resources (1 ppm CO2 ~ 2.12 GtC). 
Hansen, 2012, figure 1; http://www.columbia.edu/~jeh1/mailings/2012/20120127_CowardsPart1.pdf
Unique among all species, humans adopted fire and combustion as their source of energy and power over nature. Over the last two million years, camped around fires, watching the flames, human imagination has grown to inquire, perceive future possibilities, develop fears, the craving for immortality, and the concept of gods. Fire has imparted a mythological quality to the human mind.

Once a stable climate was established in the Holocene (about 10,000 years ago), allowing cultivation and production of surplus food, this craving for omnipotence and omniscience was expressed by the building of monuments to immortality, the pyramids, as well as endless wars acquiring loot for this purpose.

Spiritual pantheism by pre-historic people such as the Australian Aboriginals has been transformed into admiration of sky gods and monotheism, then into crass materialism and the space cult.

But space exploration has taught us no other planet exists in the solar system on which the conditions exist for advanced life of the type hosted by Earth.

Since the greenhouse effect and its underlying laws of physics and chemistry were decoded in the 19th century, the question has arisen: to what extent will societies and their leaders accept the implications of the science for human industry and human future? Will the scientific method itself and the enlightenment form the basis of future decisions?

In 21st century Australia, the answer has been a resounding “no”.

Government and corporate decisions on climate change are being influenced by misrepresentations of the evidence. What began some 20 years ago as demonstration of solid empirical evidence has deteriorated to media-controlled debate replete with misunderstandings of the basic laws of physics, paleo-climate science, climate science, biological and ecological principles.

Figure 4. Relations between CO2 rise rates and mean global temperature rise rates during warming periods,
including the Paleocene-Eocene Thermal Maximum, Oligocene, Miocene, late Pliocene, Eemian (glacial termination),
Dansgaard-Oeschger cycles, Medieval Warming Period, 1750-2012 and 1975-2012 periods.
A multitude of media outlets and hundreds of websites proliferate notions ignorant of peer-reviewed science. The lesson of numerous attempted debates with those who deny the reality of global warming, or attempt to attribute it to natural non-human factors, is that those entertaining these notions cannot be dissuaded by any amount of scientific evidence.

Climate change misconceptions include claims that:
  • temperature rise came before CO2 rise during the glacial terminations and that therefore the current rise of temperature is not the result of CO2 rise. However, the effects of CO2and temperature variations are intertwined. During the last ~400,000 years glacial eras were terminated by periods of intense solar activity, affecting decreased CO2 solubility in warming water and thereby a rise in CO2 levels of the atmosphere. By contrast climate developments since the 18th century, when there was negligible or no rise in solar energy hitting the earth, were triggered by the anthropogenic greenhouse effect of the release of 560 billion tonnes of carbon, consistent with the basic laws of physics.
  • global warming is a recovery from the Little Ice Age. However, the Little Ice Age was caused when sunspot activity nearly ceased between 1650 and 1700, depressing global temperatures by 0.2-0.3C relative to preceding periods. By contrast, global warming from about 1975 has tracked toward more than 1.5C over the continents relative to pre-industrial temperatures.
  • cosmic rays flux affects warming. However, a dominant solar effect on the climate since 1970 is ruled out by measurements of solar radiation. The incidence of cosmic rays, which oscillate reciprocally with the 11 years sunspot cycle, has been shown to have minor effects on cloud nucleation and has not varied significantly since the mid-20th century.
  • carbon dioxide is emitted mainly from volcanoes. However, according to the United States Geological Survey (2012), sub-aerial and sub-marine volcanism emits approximately 150–260 million tons of CO2 a year. Anthropogenic emissions total about 35 billion tons CO2 a year.
Meanwhile, the unthinkable consequences of 4 degrees Celsius and higher temperature rise on the terrestrial atmosphere-ocean system have already begun. We are seeing a series of extreme weather events, reflecting the rise in energy/temperature of the atmosphere-ocean system – the “new normal”.

Andrew Glikson
Does responsibility lie with vested interests and fossil fuel lobbies promoting carbon saturation of the atmosphere? Does it lie with media barons and their mouthpieces hijacking the information systems of democracies, or with cowardly political “leaders” – presiding over extensive demise of future generations? Or does responsibility lie with all of us, with the species?

Deceived by pseudoscientific misconceptions, Homo “sapiens” continues to march toward a cliff, taking much of nature with it.

Earlier published at The Conversation.