Showing posts with label Russia. Show all posts
Showing posts with label Russia. Show all posts

Wednesday, December 21, 2016

Lake Baikal

The amount of methane stored in the form of hydrates at the bottom of Lake Baikal in Siberia is an estimated 1 trillion m³, which translates into 424 trillion kg of methane, or 424 Gt of methane. By comparison, the amount of methane in the atmosphere is about 5 Gt.


Aral Sea
Methane hydrates remain stable under a combination of sufficiently low temperatures and sufficiently high pressure. The temperature of the water at the bottom of the lake is about 3.5°C. This means that a large amount of water needs to remain present in the lake at any time, in order to keep the methane hydrates stable.

Lake Baikal is the world's deepest lake. Due to its depth, Lake Baikal is also the largest freshwater lake by volume in the world, containing roughly 20% of the world's unfrozen surface fresh water. Lake Baikal has 23,615.39 km³ (5,700 cu mi) of fresh water and a maximum depth of 1,642 m (5,387 ft).

If the water level in Lake Baikal were to fall, the pressure on the methane hydrates would decrease, resulting in huge methane eruptions, dwarfing the amount of methane currently in the atmosphere.

What are the chances that water levels in Lake Baikal will fall in future? The above animation shows the fate of the Aral Sea, further to the west in Asia (also on the map at top). The Aral Sea virtually disappeared over the course of the last few decades. Some people point at climate change as the cause. More people point at irrigation by farmers.
Yenisei River

Lake Baikal could go the same way. Climate change may well reduce the flow of the rivers that now feed Lake Baikal from Mongolia (image right). Furthermore, climate change may well reduce crop yields worldwide as well as the availability of fresh water, increasing temptations to use the water of Lake Baikal for irrigation.

Further decline of Arctic sea ice is likely to push up temperatures across Russia. The image below shows that temperatures as high as 36.6°C or 97.8°F were forecast for June 13, 2016, over the Yenisei River in Siberia that ends in the Arctic Ocean.
[ click on images to enlarge or go to original post ]
Even higher temperatures were recorded in 2015 at a location in Siberia well within the Arctic Circle.

Demands for water could increase even more dramatically due to wildfires and the need to fight such fires. The image below shows that on June 23, 2016, wildfires north of Lake Baikal caused emissions as high as 22,953 ppb CO and 549 ppm CO₂ at the location marked by the green circle.

[ click on images to enlarge or go to original post ]
The situation is dire and calls for comprehensive and effective action, as described at the Climate Plan.


Links

 Climate Plan
http://arctic-news.blogspot.com/p/climateplan.html

 Gone: endemic Baikal sponge has died completely in several areas of the vast lake
http://siberiantimes.com/ecology/casestudy/features/f0278-gone-endemic-baikal-sponge-has-died-completely-in-several-areas-of-the-vast-lake/

 Volume to weight conversion
http://www.aqua-calc.com/calculate/volume-to-weight

 Lake Baikal, Wikipedia
https://en.wikipedia.org/wiki/Lake_Baikal

 Aral Sea, Wikipedia
https://en.wikipedia.org/wiki/Aral_Sea

 Climate Feedbacks Start To Kick In More
http://arctic-news.blogspot.com/2016/06/climate-feebacks-start-to-kick-in-more.html

 High Temperatures In Arctic
http://arctic-news.blogspot.com/2016/06/high-temperatures-in-arctic.html

 East Siberian Heat Wave
http://arctic-news.blogspot.com/2015/07/east-siberian-heat-wave.html

 Wildfires in Russia's Far East
http://arctic-news.blogspot.com/2016/08/wildfires-in-russias-far-east.html




Monday, June 1, 2015

Heat Wave Forecast For Russia Early June 2015


Following heat waves in Alaska and the north of Canada, the Arctic looks set to be hit by heat waves along the north coast of Russia in early June, 2015. The image below shows temperature anomalies at the top end of the scale for a large area of Russia forecast for June 6, 2015.


Meanwhile, the heat wave in India continues. It killed more than 2,100 people, reports Reuters, adding that the heat wave also killed more than 17 million chickens in May. The number of people killed by the heat wave is now approaching the 2,541 people killed by the 1998 heat wave in India, which is listed as the record number of deaths due to extreme temperatures in India by the Emergency Events Database.

Further records listed by the database are the well over 70,000 people killed by the 2003 heat wave in Europe and 55,736 people killed by the 2010 heat wave in Russia alone.

On above temperature forecast (left image, top right), temperatures over a large area of India will be approaching the top end of the scale, i.e. 50°C or 120°F. While such temperatures are not unusual in India around this time of year, the length of the heat wave is extraordinary. The heat wave that is about to hit Russia comes with even higher temperature anomalies. Even though temperatures in Russia are unlikely to reach the peaks that hit India, the anomalies are at the top end of the scale, i.e. 20°C or 36°F.

The image below shows a forecast for June 6, 2015, with high temperatures highlighted at four locations (green circles).


Below is a forecast for the jet stream as at June 7, 2015.

The animation below runs the time of the top image (June 6, 2015, 0900 UTC) to the above image (June 7, 2015, 1200 UTC), showing forecasts of the jet stream moving over the Arctic Ocean, with its meandering shape holding warm air that extends from Russia deep into the Arctic Ocean.


Below is another view of the situation.
Jet stream on June 6, 2015, 0900 UTC, i.e. the date and time that corresponds with the top image.
Clicking on this link will bring you to an animated version that also shows the wind direction, highlighting the speed (I clocked winds of up to 148 km/h, or 92 mph) of the jet stream as it moves warm air from Russia into the Arctic Ocean, sped up by cyclonic wind around Svalbard.

This is the 'open doors' feedback at work, i.e. feedback #4 on the feedbacks page, where accelerated warming in the Arctic causes the jet stream to meander more, which allows warm air to enter the Arctic more easily, in a self-reinforcing spiral that further accelerates warming in the Arctic.

The implications of temperatures that are so much higher than they used to be are huge for the Arctic. These high temperatures are heating up the sea ice from above, while rivers further feed warm water into the Arctic Ocean, heating up the sea ice from below.

Furthermore, such high temperatures set the scene for wildfires that can emit huge amounts of pollutants, among which dust and black carbon that, when settling on the sea ice, can cause large albedo falls.

The image below shows Russian rivers that end up in the Arctic Ocean, while the image also shows sea surface temperature anomalies as high as 8.2°C or 14.76°F (at the green circle, near Svalbard).



The big danger is that the combined impact of these feedbacks will accelerate warming in the Arctic to a point where huge amounts of methane will erupt abruptly from the seafloor of the Arctic Ocean.
The image below shows that methane levels as high as 2,566 ppb were recorded on May 31, 2015, while high methane levels are visible over the East Siberian Arctic Shelf.


Below is part of a comment on the situation by Albert Kallio:
As the soils warm up the bacteria in them and the insulating capacities of snow themselves tend to lead snow cover melting faster the warmer the soil it rests on becomes. (Thus the falling snow melts very rapidly on British soil surface if compared to Finland or Siberia where the underlying ground is much colder, even if occasionally the summers have similar or even higher temperatures).

The large snow cover over the mid latitude land masses is a strong negative feedback for the heat intake from the sun if the season 2015 is compared with the season 2012, but the massive sea ice and polar air mass out-transportation equally strongly weakens formation of new sea ice around the North Pole (and along the edges of the Arctic Ocean) as the air above the Arctic Ocean remains warm. The pile up of thin coastal ice also increases vertical upturning of sea water and this could have detrimental effects for the frozen seabed that is storing methane clathrates. The sunlight intake of the sea areas where sea ice has already disappeared corresponds largely with the 2012 season.

The inevitable snow melting around the Arctic Ocean will also transport record volumes of warmed melt water from the south to the Arctic Ocean. The available heat in the Arctic may also be later enhanced by the high sea water temperatures that prevail along the eastern and western coasts of North America, as well as El Nino event increasing temporarily air and sea surface temperatures. This leads to more depressions around Japan and Korea from where the warm air, storms and rains migrate towards Alaska and pull cold air away from Arctic over Russia, while pushing warm air through the Baring Strait area and Alaska to the Arctic Ocean region.

Forecasting seasonal out comes is likely to be increasingly difficult to make due to increasing number of variables in the seasonal melting processes and the resulting lack of historic precedents when the oceans and Arctic has been as warm as today. Thus the interplay of the opposing forces makes increasingly chaotic outcomes, in which the overall trend will always be for less ice and snow at the end of the season. Because of these reasons - including many others not explicitly mentioned here - the overall outcome for the blue ocean, or the ice-free Arctic Ocean, will be inevitable.

Whether the loss of sea ice happens this summer, or next, or one after that, the problem isn't going to go away and more needs to be done to geoengineer to save Arctic ice and wildlife dependent on summer sea ice.
John Davies responds:
Albert Kallio is absolutely right in saying that warmer temperatures are leading to a blue ocean event though the problem remains in which year this will happen. Additionally Methane is being released from the bottom of the ocean leading to increased Methane concentrations and all that means for a destabilising global climate. Frustratingly, the higher temperatures and increasing Methane concentrations are not yet quite sufficient for us to persuade the scientific community and the public that Armageddon is on the way. Hence it is not yet possible to be in a position to persuade the world community of the urgent need for Geo-engineering to save the Arctic and Global climate. However we may reach this situation in the near future and that will be the only time when it might be possible to save the global climate and prevent Armageddon.

The situation is dire and calls for comprehensive and effective action, as discussed at the Climate Plan page.



This image shows Russian rivers that end up in the Arctic Ocean, while it also shows sea surface temperature anomalies...
Posted by Sam Carana on Monday, June 1, 2015

Friday, September 14, 2012

Russia: 74 million acres burned through August 2012

NASA image, acquired September 11, 2012

From NASA Earth Observatory
http://earthobservatory.nasa.gov/IOTD/view.php?id=79161

The summer of 2012 has proven to be the most severe wildfire season Russia has faced in a decade. Unlike 2010, when severe fires raged in western Russia, most of the fires in 2012 have burned through taiga in remote parts of eastern and central Siberia.

On September 11, 2012, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite captured this image of fires burning in Tomsk, a region of south central Siberia where severe wildfires have burned throughout the summer. Thick smoke billowed from numerous wildfires near the Ob River and mixed with haze and clouds that arrived from the southwest. Red outlines indicate hot spots where MODIS detected the unusually warm surface temperatures associated with fires.

More than 17,000 wildfires had burned more than 30 million hectares (74 million acres) through August 2012, according to researchers at the Sukachev Institute of Forest in the Russian Academy of Sciences. In comparison, 20 million hectares burned last year, which was roughly the average between 2000 and 2008, according to an analysis of MODIS data published in 2010.

Another way to gauge the severity of a wildfire season is to consider the smoke emissions. Fires emit a range of gases and particles into the atmosphere that can be detected by ground-based, aircraft, and satellite instruments. The two most common emissions are carbon dioxide and water vapor; however, incomplete combustion also generates carbon monoxide, an odorless and poisonous gas. In fact, fires are the source of about half of all carbon monoxide in the atmosphere.

Though ground and aircraft sensors provide the most accurate measurements of carbon monoxide for a localized area, satellites offer the best way to monitor wildfire emissions over broad regions, particularly in remote areas where there are fewer ground-based instruments. Christine Wiedinmyer, a scientist at the National Center for Atmospheric Research, has developed a model that ingests MODIS observations of fires and combines them with other information about vegetation (such as the percentage of tree cover and the type of forest) to calculate the quantity of emissions.

In September 2012, Wiedinmyer used her model to calculate Russian fire emissions for every year dating back to 2002. She found that the amount of carbon monoxide produced in 2012 was significantly more than what was produced in 2010 and the second most in a decade. Through August 31, the model showed that Russian wildfires had released an estimated 48 teragrams of carbon monoxide since the beginning of 2012. By comparison, the model estimated fires yielded just 22 teragrams of carbon monoxide in all of 2010.

Only one year—2003—had higher overall emissions. In that year, when severe fires burned in eastern Russia, wildfires produced an estimated 72 teragrams of carbon monoxide.

References
- Wiedinmyer, C. (2011). The Fire Inventory from NCAR (FINN): a High Resolution Global Model to Estimate the Emissions from Open Burning. Geoscience Model Development.
- Vivhar, A. (2010, July 13). Wildfires in Russia in 2008-2008: Estimates of Burn Areas Using Satellite MODIS MCD45. Remote Sensing Letters.
- Langmann, B. (2009, July 13). Vegetation Fire Emissions and Their Impact on Air Pollution and Climate. Atmospheric Environment.

Further Reading
- Russian Government. (2012, August 6). Dmitry Medvedev on a Working Visit to the Tomsk Region Holds a Meeting on the Situation in the Constituent Entities of the Russian Federation Suffering from Abnormally High Temperatures in 2012.Accessed September 12, 2012.
- Russian Government. (2012, August 6). Dmitry Medvedev Holds a Meeting With Tomsk Region Governor Sergei Zhvachkin. Accessed September 12, 2012.
- Ranson, J. (2012, July). Siberia 2012: A Slow and Smoky Arrival. Notes from the Field.

NASA image courtesy Jeff Schmaltz, LANCE MODIS Rapid Response Team, Goddard Space Flight Center. Caption by Adam Voiland, with information from Christine Wiedinmyer, Jon Ranson, and Vyacheslav Kharuk. Instrument: Aqua - MODIS

Friday, June 22, 2012

Fires are raging again across Russia

NASA satellite image, acquired April 24, 2012 
Back in April, thousands of hectares were burning when NASA captured above image of fires in a rural area north of Omsk, a city in south central Russia near the Kazakhstan border, according to the NASA report accompanying the image.

In May 6, 2012, the Voice of Russia reported some 11000 hectares (about 42.4 square miles) of forests in Siberia to be on fire.

Lena River, Siberia - Wikipedia
Earlier this month, eight Russian paratroopers died fighting a massive forest fire in southern Siberia, reports UPI.

Russia has now declared a state of emergency in several eastern regions, due to hundreds of wildfires, reports NASA.

Smoke from fires burning in Siberia can travel across the Pacific Ocean and into North America. A NASA analysis of satellite images shows that aerosols from fires took six days to reach America's shores. In certain cases they saw smoke that actually circles the globe, describes NASA.

These fires are causing a lot of emissions, including soot that can be deposited on the ice in the Arctic, resulting in more sunlight to be absorbed which will speed up the melt.

Furthermore, high temperatures in Siberia will warm up the water in rivers, causing warm water to flow into the Arctic, as illustrated by above Wikipedia image highlighting the Lena River and the August 3, 2010, satellite image below, showing warm river water heat up the Laptev Sea (degrees Celsius).



The image below was edited from a report by NOAA’s National Climatic Data Center, describing that the globally-averaged temperature for May 2012 marked the second warmest May since record keeping began in 1880.

NOAA image, temperature anomalies for May 2012
The image below was edited from a recent NASA report describing a total of 198 fires burning across Russia. As the inset shows, the fires on the main image are part of an area where further fires are raging.

NASA satellite image, acquired June 18, 2012
Below are two maps from the NOAA Climate Prediction Center, showing temperature anomalies in Southern Russia for the week from June 10th to 16th, 2012, of over 7 degrees Celsius (12.6 degrees Fahrenheit), with temperatures in areas around the Caspian Sea reaching over 40 degrees Celsius (104 degrees Fahrenheit).

Perhaps even more worrying than high temperatures in Southern Russia are high temperature anomalies in Northern Siberia, some of which were in the 16-18 degrees Celsius range for the week from June 10-16th, 2012 (see NOAA image below).
Satellite image June 15, 2012 from DMI - http://ocean.dmi.dk/arctic/satellite/index.uk.php

Source: mapsofworld.com via Sam on Pinterest