Showing posts with label Nathan Currier. Show all posts
Showing posts with label Nathan Currier. Show all posts

Monday, September 22, 2014

350,000 Marchers = 50 Parts Per Million

People's Climate March, New York, September 21, 2014, photo by Cindy Snodgrass

by Nathan Currier

How big a deal was the march in Manhattan yesterday? One of the organizers was 350.org, a group started by Bill McKibben based on a paper by climate scientist James Hansen which stated that we should aim for about 350 parts per million (ppm) CO2. We are currently at about 400ppm, so we need to move "only" about 50ppm in the opposite direction from our rapid growth, which hit a frightening 3ppm clip last year.

It will take a huge effort, and few alive today will live to see it (short of large-scale engineering), but it is interesting to ponder the minute change this represents in the air -- a shift of just 5 one-thousandths of one percent (.005 percent) of the atmosphere! That is one of the fascinating things in climate science, how such a minute change in our atmosphere could potentially have such an impact on the energy balance of our whole planet.

Keep this in mind if you are trying to contemplate how big a deal it is that some 350,000 people came out into the streets of Manhattan, the capital of capitalism, the cultural heart of the nation where manufactured denial has most stymied action. That's because this happens to be exactly the same proportion of the 7 billion members of humanity, 5 one-thousandths of one percent, as that 50ppm is a shift in the composition of the air. Further, some have estimated the real number of marchers as 400,000, and if the global estimates swell equally, then globally about the same proportion were marching as the CO2 growth since industrialization is a shift in atmospheric composition. In a way, all those marching were just a trace, and as soon as we dissipated into streets and subways afterwards, quickly outnumbered by people going about their everyday lives, that seemed obvious, but in another way, how monumental the right little trace can become!

And speaking of powerful little traces, methane is even far less concentrated in the air than CO2, about 220 times less so, but there was really some methane floating around the Manhattan air yesterday! No, I don't mean all those leaky pipes in the city that have led local tests to sometimes register incredibly high ambient readings of the greenhouse gas. I mean that among the marchers anti-fracking signs often seemed to outnumber all other "sub-theme" signs. This is a fascinating phenomenon, as some of us have felt that, since we all ultimately must live in the here and now, and since one cannot impact the climate we have here and now very effectively through CO2 mitigation, yet one can only gain practical political traction by dealing with that here and now, so one of the best ways to gauge seriousness in getting movement going on climate would be to watch for meaningful action on methane. In a sense, if you want people to start climbing up a very steep ladder, you need to give them a nice low first step, and that first climate step would be methane. As Robert Watson, the previous Chair of the United Nation's Intergovernmental Panel on Climate Change put it succinctly, rapidly cutting methane, "would demonstrate to the world that we can do something to quickly slow climate change. We need to get moving to cool the planet's temperature. Methane is the most effective place for us to start."

The Manhattan climate march also provided a fitting example of how getting the big slow march of change rolling can be frustrating: for those in the back it took two hours to start any movement at all, and then another two hours to reach Columbus Circle, its ostensible starting point. Similarly inevitable drags on climate mitigation are making rapid methane action all the more important. And uncertainties in near-term climate change, with a rising potential for high-impact lower-probability events to cause abrupt heating (like non-human methane emissions in the arctic taking off more quickly than models predict), means that ignoring the near-term climate for too long could ultimately prove fatal to all our best intentions. So it's fascinating to see an interest in methane growing from the grass roots, even if it is still largely (and erroneously) confined to the fracking issue at this point. Let's hope that the interest in this merest little trace gas of our air -- since industrialization it has risen by about 1.1 ppm, a shift of about 1.1 ten-thousandth of 1 percent of the atmosphere! -- sparks soon. The group 1250 was initially intended to provide a kind of autonomous offshoot to McKibben's 350, in order to help generate that spark, but McKibben himself soon said that he "had his hands full with CO2" and did not at the time send along to his followers the group's initial petition drive, which then quickly languished. But if methane interest does reach that critical concentration, and that spark is provided, you know what happens next: that's when climate action goes boom.

Above text was earlier posted by Nathan Currier at the HuffingtonPost 

Below follow further photos by Cindy Snowgrass of the People's Climate March.





















Friday, May 10, 2013

1250 - New group calls for action on methane

A new group, named 1250, calls for governments around the world to take action on methane.

Just like 350 parts per million has become a popular target for carbon dioxide, the group similarly advocates a target for methane, aiming for a reduction of methane to 1250 parts per billion (ppb).

On several occasions in April, 2013, the hourly average carbon dioxide concentration in the atmosphere of Mouna Loa, Hawaii, surpassed 400 parts per million (ppm). On May 9, 2013, the daily mean concentration of carbon dioxide in the atmosphere of Mauna Loa also surpassed 400 ppm. The National Oceanic and Atmospheric Administration (NOAA) comments that before the Industrial Revolution in the 19th century, global average carbon dioxide was about 280 ppm. During the last 800,000 years, carbon dioxide fluctuated between about 180 ppm during ice ages and 280 ppm during interglacial warm periods. Today’s rate of increase is more than 100 times faster than the increase that occurred when the last ice age ended.

On May 9, 2013, at another place on Earth, another significant event took place. Methane levels above Antarctica reached a peak of 2249 ppb, highlighting the need for action on methane.

The group 1250 advocates a similar target for methane, i.e. a reduction of methane to 1250 parts per billion.

“Methane is far more potent than carbon dioxide as a greenhouse gas, making it important to reduce levels of methane in the atmosphere,” explains founder Nathan Currier; “1250 is not just an advocacy group for methane cuts, however. Rather, it is a group focusing on near-term climate as a whole, and on practical pathways to constructing a ‘climate bridge’ towards a stable and sustainable future.”

The launch of the group is accompanied by the release of the chart below showing the very high methane levels that have been recorded over Antarctica recently. The chart was prepared by Sam Carana, who also is a founding member of 1250.


These very high methane emissions occur on the heights of East Antarctica. Antarctica is covered in a thick layer of ice. It appears that these very high emissions are caused by methane from hydrates that is escaping in the form of free gas bubbling up through the ice sheet.

The danger is that such emissions will escalate, not only over Antarctica, but also on the Qinghai-Tibet Plateau and in the Arctic. For more on this, see the methane-hydrates blog.

The group 1250 was set up specifically to address to need for a comprehensive approach to the challenges posed by climate change. The group now invites other groups to a dialogue regarding the details.

The group has a website at http://1250now.org/ and encourages people to join its mailing list and sign its petition.

Monday, October 29, 2012

Climate Change Sandy Says to US: 'Take That, Idiots!'

By Nathan Currier


Superstorm Sandy shows signature of human-induced climate change 

Nathan Currier, senior climate advisor for Public Policy Virginia

After the second presidential debate, moderator Candy Crowley said, "Climate change -- I had that question, all you climate change people. We just -- you know, again, we knew that the economy was still the main thing, so you knew you kind of wanted to go with the economy." And the media's been talking about low information voters?

Now, along comes Sandy, who says to Candy, "Okay, then, take that!" See, Sandy doesn't get into debating these things, either. Now, let's see what Sandy's bill ends up being -- anyone taking bets? -- then let's sit down and talk some economy. In fact, there's an idea: Maybe a new American pastime could be organized 'disaster gambling,' with states collecting revenue as everyone bets on the tab for each new upcoming climate change disaster in their respective states?

Perhaps some still take issue with the suggestion that a superstorm like this is caused by our human-engendered climate change. But cigarette packages say things like, "cigarettes cause fatal lung disease." This, of course, is just shorthand, a monumental simplification, because in fact causation in complex systems is always a vastly complicated affair, and tobacco companies spent lots of money blowing smoke in the face of all that complexity: but the likelihood of getting lung disease is so greatly increased by smoking that eventually they gave up and we all agreed to go 'low-info' by just saying cigarettes cause fatal lung disease. As I'll demonstrate, in much the same way, we might as well keep it simple and just say this superstorm is caused by our human-made climate change.

I've been writing on the arctic crisis, and in a recent long list of immediate physical changes from loss of summer arctic sea ice, I listed (as #12) its potential impacts on weather at lower latitudes. It so happens that it is just at this time of year that this has the clearest line of causation, since lots of heat and moisture enter the atmosphere from the open waters that had been ice covered, and latent heat is released in the refreezing process, which progresses rapidly as the arctic cools down right around now. As Jennifer Francis of Rutgers University described in a recent paper: "This warming is clearly observable during autumn in near-surface air temperature anomalies in proximity to the areas of ice loss."

And this in turn becomes very important for large-scale atmospheric circulation. For example, Dr. Francis has used the metaphor of a river going down a steep incline, which runs straight, versus a river that runs along a flat plain, which tends to meander. Likewise the jet stream, since the normal energy gradient between arctic air and that of lower latitudes has become more relaxed in tandem with ice extent drops, is tending to meander more, and hence move more slowly as well. As the Francis paper said, "Previous studies support this idea: weaker zonal-mean, upper-level wind* is associated with increased atmospheric blocking events in the northern hemisphere." [*she means high west-east moving winds]

Let's look back again at this superstorm, and you'll see that important features of what you're about to experience stem from the arctic situation I've been discussing. First, arctic air is coming down to hook up with Sandy from the dip of the jet stream. Francis writes (from personal communication),
"The huge ice loss this summer, and subsequent enhanced warming of the Arctic (see attached figure), may be playing an important role in the evolution of Sandy by enhancing the amplitude of waves in the jet stream."

At the same time, high pressure over Greenland, and the extremely negative state of the North Atlantic Oscillation, is creating a blocking event that is impacting the path of Sandy herself, sending her back west over the U.S. Again, Dr. Francis (in personal communication):
"In this case, the effects could be causing strengthening of the block, elongating the block northward, and/or increasing its duration -- and this block is what's driving Sandy on such an unusual track westward into the mid-Atlantic coast."

Now, let's add to all that the underlying and obvious thing -- that Sandy is only surviving as a hurricane so far north, almost in November, because there are record high sea surface temperatures off the U.S. East coast right now. And while the third storm component, the one coming in from the west, might seem less remarkable, that is also something that generally becomes more probable with global warming, as our atmosphere can hold more water vapor as it warms and the evaporation rate is also increased by the warming. Thus, all major components of this superstorm show the signature of human-induced climate change to varying degrees, and without global warming the chance of the three occurring together like this would have a probability of about zero. So, let's make it simple, and just say climate change caused this storm.

I'm in New York City, just as much in the path of Sandy as so many others are, but come on, you do just have to sit back and love it, appreciate the full irony of it all, with Sandy striking right at those most sensitive loins of our American democracy, threatening to interrupt our sacred electoral process, after that process blocked climate change out, and now an atmospheric blocking pattern, created by that very climate change, pushes Sandy back on us. In a time when climate silence trumps climate science, when the candidates seem terrified to mention the 'C-word,' Candy, I hope you enjoy meeting Sandy. Maybe if the election gets as messed up as 2000, you three can even find time to meet up again, and go over a little issue you couldn't quite find time to fit in before? In my next piece I'll get back back to discussing what we should do right away, and hopefully it will at least be a bit clearer that this is serious business.

[First posted at the Huffington Post; posted with author's permission]

Wednesday, October 24, 2012

Saving the Arctic Ice (#2)

By Nathan Currier

Greenpeace, Greenwashing and Geoengineering

Nathan Currier, senior climate advisor for Public Policy Virginia

I've been discussing the Greenpeace "Save the Arctic" campaign in light of the reality there, where we will likely reach near-zero summer arctic sea ice in just the next few years. Before exploring, in the next post, direct climate interventions that could really help save the arctic, we now must look at all our other options -- just as, in a medical crisis, one eliminates other options before opting for surgery.

Of course, one option is to blithely say, "Look, the ice can come back later," and therefore do nothing to impede the arrival of an ice-free arctic ocean. At the recent Greenpeace New York meeting, this seemed to be the tacitly assumed option. Now, I am quite aware of modeling studies demonstrating sea ice loss itself to be readily reversible. Andrew Revkin of the New York Times asked James Hansen at the meeting about the Eemian interglacial (~130,000-115,000 yrs ago), its ice loss and recovery -- seemingly keen to highlight this comforting reversibility. But this reversibility depends on environmental conditions. One minor detail that wasn't mentioned was that CO2 was then around pre-industrial levels (280ppm), hardly soaring up around 400ppm as now, a level possibly not seen on Earth for 15 million years, so one should hardly expect the planet to give an Eemian-style response now, either in the long-term or next year (for a variety of reasons aside from CO2 levels, in fact).

What about green energy, solar panels and the like, the kinds of things proposed at the Greenpeace meeting? Anyone contemplating emissions strategy ought to keep the UNEP graph (Shindell et al, 2011) in my first post up on their walls: Even pretty large CO2 source reductions won't bring relief from warming until about 2040 (and could bring near-term warming). By that time, the increased insolation to the arctic ocean might have gone so far as to give an ice-free arctic for a considerably larger chunk of the year, with really drastic effects. Is that a plan for "saving" the arctic?

The only way through emissions to have an impact on what is going on there right now is through non-CO2 reductions like black carbon and methane. And aside from that, there's nothing left except direct intervention -- which could cover a wide variety of options, some of them being what I'll call "localized geoengineering," and will discuss next time.

Now, Hansen has been the primary advocate of the concept of using non-CO2 reductions to help bridge the time gap of getting reduced warming from CO2 reductions, so my one question for Hansen at the meeting was whether he thought that could still be used alone to confront the arctic crisis. Hansen's answer was frank and accurate. As Hansen said, and I hope Greenpeace, Bill McKibben and all the others present heard, "If you need a rescue package, to some degree it inherently is geoengineering."

He didn't say that non-CO2 reductions wouldn't still be helpful (they are 100 percent necessary right away, just as massive CO2 reductions to near-zero by mid-century are necessary), but he certainly didn't say that they could halt the loss of the sea ice now alone, either -- indeed, I believe that the numbers show that they can't. It has now become clear that emissions reductions alone can no longer save the arctic ice. This is a big deal, and it needs to sink in.

Greenpeace's campaign aims to make the arctic a sanctuary, by which they primarily mean keeping out the fossil industry. Hansen himself has many papers stating that easily recoverable fossil sources inevitably will get used. The arctic's resources are obviously getting more easily recoverable by the season. Keeping the fossil industry away without cooling it is probably impossible -- and, at a certain level, might even be destructive. What if Greenpeace succeeded, but the arctic were left to melt? Picture some natural disaster, akin to the Macando well disaster, but happening all on its own. No, I don't mean an oil spill -- I mean a bunch of methane bubbling up from the seabed and reaching the atmosphere in large ongoing belches. This kind of thing is likely to start at some point if we let the sea ice disappear, as Hansen himself discussed at the meeting -- and it won't stop like an oil spill, but rather will likely become an ongoing process. Then we will actually need the fossil industry's expertise to go in there and help trap as much as possible. Believe me, I am not saying this to invite the fossil industry in. I am saying this because we must somehow keep the arctic cool. Lastly, ships and refineries both emit black carbon, which has an extremely strong but complex to quantify effect on local warming, and ice and snow-covered places are the most vulnerable to its effects because it settles on them and changes their reflectivity. So, even without fossil extraction, just if arctic ship traffic picks up dramatically, this could greatly accelerate ice (and snow) losses, helping ensure that this theoretical reversibility remains just that, something we'll never see. I'm sure Greenpeace means well, but currently their campaign most resembles those full-page greenwashing fantasies from Shell and PB, "Creating Your Clean Energy Future," and so on. At present, it's a sham.

The unquestioned reliance upon ice loss reversibility at the Greenpeace meeting might have been correct from a purely physical viewpoint alone, but was highly pernicious all the same, because it masks that we are about to quietly walk through the most monumental climate threshold we have yet crossed, and will then almost certainly discover, for a whole array of reasons -- all those minor physical mechanisms I elaborated last time, or the issues regarding the fossil industry I have just mentioned -- that it's difficult to turn around. Folks, what I am trying to say is: You can't let this happen, and yet you definitely can no longer prevent this happening just through emissions alone. That means that some form of direct climate intervention will be necessary there.

The clincher is this: When Hansen mentioned at the meeting that we could reverse ice loss, he also added, "And the truth is, we have to do that."

That is, he said, in order to avoid other major tipping points that clearly aren't reversible (ice sheets, methane hydrates). So the only remaining question is precisely when it must be reversed. London-based group AMEG, of which I am a member, takes the position: right away. Think of what this all means: It's completely impossible to achieve that reversal through emissions for many decades, even in the most optimistic scenario for large-scale emissions reductions -- and it would be far too dangerous to leave this unattended for that amount of time. So you will end up needing geoengineering in any case, just to achieve the reversal. Now, if you will quickly need to undo something that's about to happen, and potentially you might have great trouble undoing it at all later -- and the means will need to be the same in each instance -- then, isn't it far, far better to prevent that thing from happening, rather than trying to reverse it later?

Bill McKibben spoke with mild resignation about losing the sea ice, as though it were a pity, adding that we might "learn from it." But he's been profoundly ill-advised on the science, I'm afraid. If we don't fight this, we'll be "learning" like players of Russian roulette learn. And each decade left untreated might be like adding a bullet to the round.

Instead, we urgently need for Bill to understand this situation, and to start a "1250.org" (a 1250ppb target for methane) right away to complement his 350.org (Hansen's CO2 ppm target), and get his people back in the streets. Greenpeace must meet again with those scientists -- many more of them -- but with "time translators" present, so that Director Naidoo understands why Jim Hansen calls geoengineering a rescue package.

Trying to save the arctic is currently the most vital thing in the world, the front lines of the climate war, so let's all applaud Greenpeace for taking up the cause. Now they just have to bite the bullet, and recognize it's a fantasy unless two things happen right away, together at once:

1. A number of complementary direct arctic interventions (I'll discuss these soon).

2. Complete restructuring of the programs designed to reduce non-CO2 emissions (a long list of acronym-laden things like the M2M, GMF, GMI, CCAC), so that they really work -- and make this a public rallying cry, a global "1250" movement to help save ourselves.

[First posted at the Huffington Post; posted with author's permission]

Wednesday, October 10, 2012

Saving the Arctic Ice (#1)

By Nathan Currier

Greenpeace, Greenwashing and Geoengineering

Nathan Currier, senior climate advisor for Public Policy Virginia

There was much media attention a couple of weeks ago when this year's sea ice extent minimum broke all records: it was down almost 50 percent from the 1979-2000 average. Little attention, though, accompanied a possibly even more significant figure, released a few days ago: those who run the PIOMAS sea ice volume model at the Polar Research Centershowed the 2012 sea ice volume minimum was down almost 50 percent not from decades ago -- but from 2007! That's right: the volume of arctic sea ice this September minimum was probably about half of what it was, just back in 2007. This figure should deeply trouble any reasonable human being, as it strongly suggests reaching an ice-free arctic sea ice minimum within half a decade, and, since there is little dispute that some summer sea ice will persist to the north and west of Greenland for much longer, the first "near-ice-free" point will likely arrive in just the next few years, as sea ice expert Peter Wadhams has pointed out, and the London-based policy group and think tank Ameg has maintained.

How should we respond? Greenpeace recently started a "Save the Arctic" campaign. That's great -- but you can only save the arctic by saving its ice. And, unfortunately, it is now clear that this can no longer be achieved through emissions reductions alone. It's too late for that. Greenpeace held ameeting on the polar emergency in New York City, by chance on the same day the record extent minimum was called, and while on the surface it seemed pretty ordinary, it was at heart very odd. Nobody suggested any change of approach, any specific re-strategizing, to respond to the accelerating situation. The word emergency was a common currency passing all lips, but in fact it was unclear whether people were really speaking the same language, especially as concerns that most precious thing in emergencies -- time. And there seemed to be no translator in the room, saying "this is the timescale of this, that's the timescale of that."

The meeting's two scientists, Wieslaw Maslowski (on ice) and James Hansen (general climate), themselves focusing on somewhat different time scales, were followed by the 'social/political' panel discussing what we should do: the panel discussed green energy, solar power, how we shouldn't move towards nuclear, that kind of stuff. But Jim Hansen had said in answer to a question (mine), "We are going to lose that sea ice," and also said that to save it, "You could do some quick things." As I'll discuss in my next post, Hansen meant geoengineering. Greenpeace Director Kumi Naidoo later couldn't even remember the word -- geoengineering. But if he's going to save the arctic, I'm afraid he's going to need to know it.

A big issue in whether to consider something an important 'threshold' is its reversibility, and we will discuss the reversibility of this one further in the next episode. At the meeting, since Maslowski focused on sea ice modeling failures, and Hansen on the whole climate picture, many of the potential immediate physical impacts of allowing this coming ice loss remained poorly or not at all elaborated -- although they are important for Greenpeace, and everyone else, to understand, I feel. Hansen showed a slide of three major tipping points which he said place us in a climate 'emergency,' because one can lose control around tipping points. One was methane hydrate, for example. But what Hansen didn't show were what I might dub the 'minor tipping points,' far more immediate changes stemming from this coming loss, which could make it hard to turn around, and could lead us straight to those more major ones Hansen fears, in a slippery slope.

Keep in mind that what we're talking about here is losing almost as much summer ice cover in just the next few years as we have over the last few decades, and that these are all circularly interrelated reinforcing mechanisms. Sorry, if it seems a bit mind-numbing for some readers, but here's my list:

1. Greatly increased arctic water vapor, increasing arctic warming (water vapor is a potent greenhouse gas) but also fundamentally altering arctic hydrology and hence weather patterns.

2. Immediately and fundamentally altered arctic atmospheric chemistry, causing increased arctic methane lifetime, among other basic changes.

3. Certain increase in acceleration of arctic warming, from increased solar energy entering the arctic ocean (this engenders 1.) and the release of latent heat into the atmosphere during autumn's rapid re-freezing.

4. Consequent increased potential for large arctic storms like the Great Arctic Cyclone this summer.

5. Consequent increased deep convection events (mixing to bottom) of arctic ocean, particularly important over the shallow water of the shelves, where lower layers can now often be methane-saturated.

6. Consequently an increase of seabed methane emissions -- including from seabed permafrost, shallow methane hydrate, and from thawing of either or both of these and increased gas migration pathways allowing free gas from underneath the hydrates to outgas.

(For full PowerPoint PDF, scroll down to Topic/Title Methane Release from Eastern Siberian Shelf.)

7. This increase in seabed permafrost thawing leads to a subsequent increased risk that a random seismic event could suddenly release large amounts of methane from the above combination of thawing sources, or from other thawed arctic carbon stores (see PowerPoint above).

8. Increased risk of general degradation of shallow methane hydrates leading to slope failure and consequent methane release.

9. Certain increase in chronic emissions of methane (and CO2) from thawing land permafrost, peat, etc. with the general added warming mentioned above.

10. The increased arctic methane lifetime (2.) is indistinguishable from an increase in its arctic abundance.

11. Increasing continued rate of ice (and snow) loss as the ice-free-period subsequently lengthens, from all the above, particularly significant as the insolation increases earlier in the season to around the solstice in June (discussion here, scroll down to An Ice-free Solstice).

And here are some immediate potential global impacts to chew on:

12. Recent research suggests that ice (and snow cover) loss is at least one causative factor in recentextreme weather -- drought, flood, fires, etc. -- and if so this could quickly be amplified.

13. Consequently, recent global impacts on food security could increase proportionally.

14. Economic losses from each of those (12., 13) would probably increase proportionally, and potentially could amplify into global economic recession or even depression.

15. If there's large-scale (multi gigaton-scale) methane release soon, this would of course fundamentally alter the whole path of global warming (see my Twilight posts #1,#2), with vast consequences.

16. If the ice-free period expands significantly, altered arctic tropospheric oxidation could rapidly start to impact high latitude urban areas, making cities with large populations rapidly become more difficult to live in (good discussion here at GISS, where Hansen is himself director).

No one said a word at the Greenpeace meeting, seemingly dismissing it as a major threshold at all. No one ever said, "Let's fight this." But I am suggesting that you should see skull and crossbones hanging above this threshold crossing. Like playing around high voltage wires or train tracks, allowing this threshold to be crossed will add considerable risk. And I'm suggesting that it will be crossed in just the next few years, unless we do something about it.

As I'll discuss next time, it might prove much harder to reverse than many assume within the climate world. Therefore, as Energy Secretary Steven Chu said about allowing an eventual runaway arctic permafrost carbon feedback, we must all say loudly now about this initial step onto that vast and treacherous slippery slope: "We cannot go there!" And if we don't want to go there, there's now no longer any question -- geoengineering will have to be part of the remedy.

[First posted at the Huffington Post; posted with author's permission]

Wednesday, September 12, 2012

An accounting is now due

By Nathan Currier

Arctic Crisis: Far From Sight,
the Top of the World's Problems

Nathan Currier, senior climate advisor for Public Policy Virginia

As this year's sea ice extent bottoms out, it's high time that more people recognize we're in a global crisis -- the Arctic crisis. I'm sorry if this sounds “alarmist”, but the Arctic, fundamental to the stability of our weather patterns, climate and agriculture, is rapidly coming apart. In the end, of course, this will just be a sub-plot to the bigger drama, the climate crisis, but by naming this the arctic crisis, I am suggesting that it needs to be treated independently, right away. It is the heart of the near-term climate issue, and its outcome could greatly alter the outcome of the larger story, which will be the saga of the century no matter what we do.

A crisis above all means this: a compression of time. In a medical crisis, for example, we expect that there will initially be the need to regain stability through some immediate means, and then other courses of treatment will be added subsequently to address the underlying problems. If the initial steps are not taken quickly enough, the whole trajectory can be different, rendering something quite manageable more dire, potentially even fatal. Because the arctic, which has received the brunt of warming, seems poised to pass a profound state shift in the very near future (in fact it's already underway), and because it offers such vital 'services' to the planet, one could say that the urgency of the larger climate crisis is for the time being mostly contained within this arctic crisis.

But before looking at what to do, or even describing what's at stake, there's another order of business to turn to. An accounting is now due. Today I want to look back at the most authoritative recent opinions suggesting that this isn't a crisis, and see how they've been holding up. In our pre-election season of fact-checking, let's call this the 'Arctic crisis debate' fact-checking 101. But since no one else has really been referring to an Arctic crisis, what we'll be looking at are some prominent statements from 2012 concerning the two great interrelated features of arctic stability: the state of its cryosphere, and the state of its carbon stocks. In particular, the sea ice and methane.

An accounting
is now due! 

When I last wrote, it was after a flurry of methane articles, including the front page New York Times article last December on the danger of increasing arctic methane emissions, followed by David Archer's curious Much Ado about Methane piece in RealClimate, the leading climate science blog. That article put strangeness into high gear by essentially discounting the value of near-term climate altogether. But Much Ado about Methane was valuable, too, in that Archer unwittingly demonstrated, with all his authority, just how far from 'Nothing' reasonably likely arctic methane releases could be. Archer provided a graph in his follow-up showing the radiative impact of a 10Gt release, only about 20% of what leading researchers of the Eastern Siberian Shelf (ESAS) think could potentially come from that region alone in the relatively near future. [Very little methane hydrate need be involved, incidentally: imagine some seismic event there, where a little shallow hydrate, a mere .05% of the hydrate there, gets released, destabilizing just .5% of the permafrost cap along with it, which gets metabolized to methane, and all this creates increased gas migration pathways for just 1% of the free gas from below -- that's 10Gt.] Radiative forcing, the measure scientists use to describe global warming, would jump globally to about 300% of its current level of increase since industrialization, and this would begin to express itself in the climate system almost right away. Much ado, indeed: that methane wouldn't be nothing.

In my last piece, I said I would quickly follow up with another one discussing what should be done to avoid such dangers, but have since remained silent. That's for a variety of reasons, one of them being a growing involvement with a group based in the UK called the Arctic Methane Emergency Group (AMEG), focused on just this question. And almost as soon as this began, RealClimate published a piece on arctic sea ice predictions, in which AMEG -- which has projected that summer sea ice could approach an ice-free minimum just a few years from now -- seemed a primary target.

Called Arctic Sea Ice Volume: PIOMAS, Prediction and the Perils of Extrapolation, it was written by a guest, Axel Schweiger (with Ron Lindsay and Cecilia Bitz), part of the team that runs the PIOMAS sea ice model at the Polar Science Center. The 'perils' it discussed were those of AMEG's use (or misuse) of their PIOMAS model, and some of us were actually flattered that our ragtag army of citizen scientists, along with a few major climate figures willing to brave academic censure for taking positions outside the status quo, like renowned sea ice expert Peter Wadhams, were receiving cannonballs lobbed from the heart of the climate establishment.

Now, it's almost a half year later, the sea ice minimum is upon us, and the ice has been doing just what AMEG predicted. As Neven Acropolis, who runs the Sea Ice Blog, wrote last week, he's particularly at a loss for words because the 2007 record has been shattered without this summer's arctic temperatures being particularly conducive to such large ice loss, which perhaps suggests something about the extraordinary underlying nature of what is taking place.

Meanwhile, AMEG had already presented its case, both in writing and orally, before a panel of the UK Parliament, on both sea ice and methane release, back at the beginning of the year. AMEG's testimony was rebutted by Julia Slingo, Chief Scientist for the UK Met Office. Now, how has this Met Office testimony held up since?

Unlike RealClimate, the Met Office chief scientist dismissed PIOMAS modeling altogether, saying that she expected better data, fitting their Hadley Center climate models, to come in soon. That data hasn't come. Far from it. Instead, just last month, the media was filled with news pieces about how the European Space Agency's new CryoSat-2, a satellite designed to read ice volume, showed far greater volume losses than expected -- much in line with PIOMAS modeling, and supportive of AMEG's position. Near the opening of her testimony, Prof. Slingo said that the 2007 melting event was really an advecting of ice, coming from extreme weather over the arctic, and not really a melting event per se. Of course, we have just noted how that 2007 record has now been widely surpassed, without such weather (nor with losses coming primarily from advection).

And when it came to methane, and the danger of releases from the arctic seabed, the UK Met Office's chief scientist said: “I think there is a lack of clarity in thinking about how that heating at the upper level of the ocean can get down, and how rapidly it can get down into the layers of the ocean.”

The Great Arctic Cyclone of 2012 has perhaps provided her with a little more clarity. Beyond that, the Chief Scientist's statement was embarrassing: after all, even those most convinced that there is little danger of large immediate methane releases do not doubt the well established and drastic warming of the sea bottom precisely in the most methane-rich areas (see this paper), and Lena river discharge also greatly impacts the seabed in some of this same region, providing yet another mechanism for seabed warming. Prof. Slingo said: At the moment, our estimates are that the increases in sea floor temperatures that have been observed have at the most been about one-tenth of a degree, except in one or two regions, like the West Spitsbergen Current.

Clearly, Prof. Slingo doesn't seem to have studied the ESAS, where anomolies of 5ºC at the seabed have been recorded, where almost all of it has warmed some 20 times more than she says (and is still currently warming, ten times more than she suggests per decade), where significant areas of permafrost cap are thawing or already thawed, and where methane is starting to be released (see my own last post on all these points). Unlike the phony “Climategate” scandal, this is a true embarrassment for climate science. And if such “expert” testimony helps the arctic climate to pass through some invisible gate without our society lifting a finger to stop it, it will also turn out to have been one of the greatest tragedies of modern times.

So, how now, for the ice and methane? Schweiger's Perils of Extrapolation piece clearly stated how PIOMAS shows September sea ice volumes having dropped by a breathtaking 75% over just the last few decades (1979-2011). It might even seem simple to deduce that ice-free minima would be arriving quite soon, given this. But it is, I would agree, a vastly complex situation. Fully coupled models - those that do not, like PIOMAS, leave out the atmosphere, the weather, etc., but that try to create a realistic world that can be run into the future -- almost all suggest an eventual dampening effect on the underlying feedbacks leading to ice loss once it is mostly gone, thus leading to a long 'tail' of one or more decades in which a small amount of thinner summer ice remains, rather than an imminent disappearance, as both AMEG's Peter Wadhams and Wieslaw Maslowski, whose work Gore cited in his 2007 Nobel speech, have suggested.

That dampening, however, isn't happening. One almost feels sorry for Gavin Schmidt at RealClimate these days. After their latest sea ice update, he repeated in its comment thread how there is no reason to extrapolate PIOMAS into the future using an exponential curve (which shows a collapse just a few years from now). RealClimate wants to deal with the real underlying physical mechanisms involved, not just take some simple line that best fits the ice's past behavior and then extrapolate that line into the future. But, darn! The newest PIOMAS data have just been released last week, and, again, that exponential curve is being eerily followed by the real world's sea ice! In fact, Wieslaw Maslowski has also developed a new model recently, a fully coupled model free from 'perilous extrapolations,' which shows much the same thing as his prior research -- that a summer sea ice collapse is likely in the coming years, not decades.

As you can see, the reasons for thinking that there isn't an arctic crisis are about as firm as cotton candy. Next you'll need to learn the more solid reasons for suspecting that there is one. Then, after that, the big questions -- What real climate perils could this entail? What should we be doing about it right now? -- are what one needs to turn to next.

[First posted at the Huffington Post; posted with author's permission]