Showing posts with label ESAS. Show all posts
Showing posts with label ESAS. Show all posts

Thursday, June 18, 2020

2020 Siberian Heatwave continues


Very high temperatures hit Northern Europe and Eastern Siberia near the Arctic Ocean on June 18, 2020. This is a continuation of the heatwave that hit Siberia in May 2020.

The image below, from an earlier post, shows temperature anomalies that were forecast to be at the high end of the scale over Siberia on May 22, 2020, 06:00 UTC, i.e. 30°C or 54°F higher than 1979-2000. At the same time, cold temperatures were forecast for much of eastern Europe.


What enables such a strong heatwave to develop is that the Jet Stream is getting more wavy as the temperature difference between the North Pole and the Equator is narrowing, causing both hot air to move up into the Arctic (red arrow) and cold air to descend out of the Arctic (blue arrow).

On June 19, 2020, at 03:00 UTC, a temperature of 33.2°C or 91.8°F was recorded in Siberia near the Arctic Ocean (green circle).


The image below shows a temperature forecast of 33.5°C or 92.2°F in Siberia near the Arctic Ocean on June 20, 2020, at 03:00 UTC (green circle).


The image below is a forecast for June 23, 2020, showing how a distorted Jet Stream enables cold air to move down into Russia, while at the same time enabling hot air to move north over Scandinavia and Siberia, near the Arctic Ocean.


The image below is a forecast for June 25, 2020, showing the coast of Siberia near the Arctic Ocean getting hit by temperature anomalies at the top end of scale, i.e. 30°C or 54°F higher than 1979-2000.


The image on the right is an update, showing how wavy the Jet Stream turned out to be on June 25, 2020.

This facilitates hot air getting carried north over Western Europe, East Siberia and through the Bering Strait, while cold air is moving south over the European part of Russia. Blocking patterns that prolong such a situation go hand in hand with a more wavy Jet Stream.

Record High Temperature in Arctic

The image below shows that temperatures in Siberia were as high as 40°C or 104°F at 5 cm above the ground on June 21, 2020, at 3 pm, the Ventusky.com map shows.


This indicates how much the soil of what once was permafrost is heating up. At 2 m above ground level, i.e. the default height for air temperature measurements, it was 30°C or 86°F, as the image below shows. The location marked by the star is at 71°28' North latitude and 142°59' East longitude, and at and altitude of 13 m.


The day before, Verkhoyansk in Siberia reached a temperature of 38°C or 100.4°F on June 20, 2020, a record high for the Arctic. Verkhoyansk is located at 67°55′ North latitude.

Both locations are well north of the Arctic Circle that - at 66°30′ N - constitutes the southern limit of the area within which, for one day or more each year, the Sun does not set (about June 21) or rise (about December 21).

High Ocean Temperatures

The heatwave is heating up the sea surface of the East Siberian Arctic Shelf (ESAS), as illustrated by above image. The ESAS is quite shallow, making that heat can quickly reach the seafloor.

Additionally, the heatwave is heating up rivers that carry large amounts of hot water into the Arctic Ocean.

The image on the right shows sea surface temperatures in the Bering Strait as high as 18.9°C or 66.02°F on June 22, 2020.

The nullschool.net website shows that sea surface temperatures in the Bering Strait were as high as 16.1°C or 60.9°F on June 20, 2020, in the Bering Strait (in Norton Sound, Alaska), i.e. 15.1°C or 27.2°F hotter than 1981-2011.


In summary, the Arctic Ocean is heating up in a number of ways:

- Sea currents are moving hot water from the Pacific Ocean into the Arctic Ocean. Similarly, sea currents are moving hot water from the Atlantic Ocean into the Arctic Ocean.

- The Siberian heatwave is heating up the sea surface of the ESAS.

- The heatwave is heating up rivers that carry large amounts of hot water into the Arctic Ocean.

- Numerous feedbacks can speed up the temperature rise, such as changes to the jet stream that can prolong heatwaves and make them more intense.

The rising temperatures result in record low Arctic sea ice volume, as illustrated by the image on the right and as also discussed in an earlier post.

Heat threatens to destabilize methane hydrates

As discussed in earlier posts such as this one, this heat threatens to destabilize methane hydrates contained in sediments at the seafloor of the Arctic Ocean.


As the panel on the left shows, sea surface temperatures in the Bering Strait were as much as 15.1°C or 27.2°F hotter than 1981-2011 on June 20, 2020 (in Norton Sound, Alaska, at the green circle).

The bathymetry map in the right panel of above image shows how shallow seas in the Arctic Ocean can be. The water over the ESAS is quite shallow, making that the water can warm up very quickly during summer heat peaks and heat can reach the seafloor, which comes with the risk that heat will penetrate cracks in sediments at the seafloor. Melting of ice in such cracks can lead to abrupt destabilization of methane hydrates contained in sediments.

Large abrupt methane releases will quickly deplete the oxygen in shallow waters, making it harder for microbes to break down the methane, while methane rising through waters that are shallow can enter the atmosphere very quickly.

The situation is extremely dangerous, given the vast amounts of methane present in sediments in the ESAS, given the high global warming potential (GWP) of methane following release and given that over the Arctic there is very little hydroxyl in the air to break down the methane.

[ from earlier post ]

Ominously, the MetOp-1 satellite recorded a peak methane level of 2847 parts per billion on the afternoon of June 24, 2020, at 469 mb.


The next day, on the afternoon of June 25, 2020, MetOp-1 recorded a mean methane level of 1903 parts per billion at 293 mb. The 469 mb pressure level on above image corresponds with altitude of 6,041 m or 19,820 feet on the conversion table below. The 293 mb mean on the image below corresponds with a much higher altitude, i.e. 9,318 m or 30,570 feet on the conversion table below.


Methane reaching the Stratosphere

The MetOp satellites typically record the highest annual mean methane level in September. The image below, from an earlier post, shows that on the afternoon of September 30, 2019, the MetOp-1 satellite recorded the highest mean methane level, i.e. 1914 parts per billion, at 293 mb.


Above image shows that methane levels have risen most at higher altitude over the years. As discussed in an earlier post, methane eruptions from the Arctic Ocean can be missed by measuring stations that are located on land and that often take measurements at low altitude, thus missing the methane that rises in plumes from the Arctic Ocean. Since seafloor methane is rising in plumes, it hardly shows up on satellite images at lower altitude either, as the methane is very concentrated inside the area of the plume, while little or no increase in methane levels is taking place outside the plume. Since the plume will cover less than half the area of one pixel, such a plume doesn't show up well at low altitudes on satellite images.

Over the poles, the Troposphere doesn't reach the heights it does over the tropics. At higher altitudes, methane will follow the Tropopause, i.e. the methane will rise in altitude while moving closer to the Equator.

Methane rises from the Arctic Ocean concentrated in plumes, pushing away the aerosols and gases that slow down the rise of methane elsewhere, which enables methane erupting from the Arctic Ocean to rise straight up fast and reach the stratosphere.

The rise of methane at these high altitudes is very worrying. Once methane reaches the stratosphere, it can remain there for a long time. The IPCC in 2013 (AR5) gave methane a lifetime of 12.4 years. The IPCC in 2001 (TAR) gave stratospheric methane a lifetime of 120 years, adding that less than 7% of methane did reach the stratosphere. 

Further Feedbacks

Furthermore, the Siberian heatwave is also threatening to trigger forest fires that can cause huge amounts of emissions, including black carbon that can settle on the snow and ice cover, further speeding up its demise and causing albedo changes that result in a lot more heat getting absorbed in the Arctic, instead of getting reflected back into space as was previously the case. This is illustrated by the image below showing forest fires in East Siberia on June 19, 2020.


Finally, more intense forest fires threaten to cause organic carbon compounds to enter the stratosphere and damage the ozone layer, as discussed in an earlier post.

The situation is dire and calls for immediate, comprehensive and effective action as described in the Climate Plan.


Links

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Very High Greenhouse Gas Levels
https://arctic-news.blogspot.com/2020/05/very-high-greenhouse-gas-levels.html

• April 2020 temperatures very high
https://arctic-news.blogspot.com/2020/05/april-2020-temperatures-very-high.html

• Methane Erupting From Arctic Ocean Seafloor
https://arctic-news.blogspot.com/2017/03/methane-erupting-from-arctic-ocean-seafloor.html

• When Will We Die?
https://arctic-news.blogspot.com/2019/06/when-will-we-die.html

• Could Humans Go Extinct Within Years?
https://arctic-news.blogspot.com/2020/01/could-humans-go-extinct-within-years.html

• Fast Path to Extinction
https://arctic-news.blogspot.com/2020/06/fast-path-to-extinction.html

• Arctic records its hottest temperature ever
https://www.cbsnews.com/news/arctic-records-its-hottest-temperature-ever-2020-06-20/




Monday, June 10, 2019

When Will We Die?


A rise of more than 5°C could happen within a decade, possibly by 2026. Humans will likely go extinct with a 3°C rise and most life on Earth will disappear with a 5°C rise. In the light of this, we should act with integrity.

When will we die?

The outlook for people living now is that they will die before the end of the century. After all, even in more developed regions, people statistically die at an age below 75 years, as the image on the right illustrates.

The image calls up questions regarding possible shortening of life expectancy due to global heating.

A 2018 study by Strona & Bradshaw indicates that most life on Earth will disappear with a 5°C rise (see box on the right).

The first question therefore is whether and how fast such a rise could eventuate.

Furthermore, global heating projections for the year 2100 may seem rather irrelevant to many people, as they do not expect to be alive by the year 2100.

A second question therefore is what makes most sense, focusing on the year 2100, or on how much temperatures could rise over the next decade.

Clouds tipping point

A recent study points at a tipping point of 1,200 ppm CO₂e when marine stratus clouds start to disappear, resulting in an additional global heating of eight degrees Celsius (8°C or 14.4°F).

In other words, such a rise from clouds feedback would clearly suffice to cause extinction of most life on Earth.

Could this tipping point be crossed soon?

At its high-end, the A1F1 scenario used by the IPCC reaches a CO₂e level of 1550 ppm by the year 2100 (see screenshot below).

As discussed, the year 2100 is rather distant. The question is, could this 1,200 ppm CO₂e tipping point be crossed earlier, say, within one decade?

On May 15, 2019, scripps.ucsd.edu recorded a carbon dioxide level of 415.7 ppm at Mauna Loa, Hawaii. NOAA recorded a methane level of 1.867 ppm for December 2018. As shown at the FAQ page, methane is 150 times as potent as a greenhouse gas over the next ten years compared to carbon dioxide. Accordingly, this 1.867 ppm of methane causes global heating of 280.05 ppm CO₂e.

Seafloor methane

Imagine a burst of methane erupting from the seafloor of the Arctic Ocean that would add an amount of methane to the atmosphere equal to twice the methane that is already there. Twice the 1.867 ppm of methane is 3.734 ppm, which at 150 times the potency of carbon dioxide translates into a CO₂e of 560.1 ppm.

Adding this to the current levels of carbon dioxide and methane results in a level of 1255.85 ppm CO₂e, well exceeding the 1,200 ppm CO₂e tipping point and thus triggering the extra 8°C rise.



Above image was created with content from a recent paper by Natalia Shakhova et al. It shows that the outlook is much more grim than many people realize.


Above image illustrates the danger, as an ominous sign of what's on the way. Methane levels as high as 2.975 ppm were recorded on June 11, 2019, at 469 mb. A peak this high is likely to have originated from the seafloor.


Above image shows a solid-colored magenta area over the ESAS that afternoon, further indicating that large amounts of methane did erupt earlier that day from destabilizing sediments in the ESAS.

Koalas declared functionally extinct

The Australian Koala Foundation has declared Koalas "functionally extinct". While there still are some 80,000 Koalas left, it is unlikely that Koalas will be able to escape full extinction for long.

Climate change-driven droughts and heat waves are causing dehydration and heat stress, leading to organ failure and premature death.

A rapid temperature rise could make virtually all species on Earth go extinct. As the above-mentioned study points out, even the most robust lifeforms on Earth will likely disappear with a 5°C rise, as species on which they depend will die.

Near Term Human Extinction

For mammals, which depend on a lot of other species, extinction is likely to come earlier.  When looking at near-term human extinction, a 3°C rise from preindustrial will likely suffice to cause extinction.

In 2019, the global temperature could already be 1.85°C above preindustrial and a rapid temperature rise could take place over the next few years.

A lot of good action is possible, as described in the Climate Plan, which offers the greatest amount of flexibility in local implementation, within the constraints of the need to act on climate change as acknowledged, e.g. at the Paris Agreement.

Nonetheless, humans likely are already functionally extinct, as is most life on Earth. This may come as a surprise to many people, but that shouldn't stop people from doing the right thing.

The above image reflects the joint CO₂e impact of carbon dioxide and methane. In addition, there is the impact of further greenhouse gases, such as nitrous oxide and CFCs, as described in a recent post. There are more warming elements, such as albedo loss associated with the decline of the snow and ice cover. These warming elements could jointly push up the temperature rise to some 10°C above preindustrial, while the clouds feedback could add a further 8°C on top of that.

Sulfates do have a cooling effect, but this effect may fall away as society grinds to a halt and stops co-emitting sulfates alongside other emissions in the process of burning fuel, as Guy McPherson has pointed out repeatedly, e.g. in this recent post.

In the video below, recorded at the University of Alaska-Fairbanks on 4 April 2019, Guy McPherson explains how loss of habitat can lead to extinction of species and how global heating can lead to extinction of virtually all life on Earth.


Added below is a video edited by Tim Bob of Guy McPherson talking in Juneau, Alaska, in April, 2019.



In the video below, Examples of Rapid Extinction, Guy McPherson gives examples of species that went extinct rapidly in the past, warning that to rule out rapid extinction of humans would be foolish.


The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.


Links

• United Nations, world population prospects, 2017, Life expectancy
https://www.un.org/en/development/desa/population/publications/pdf/popfacts/PopFacts_2017-9.pdf
https://www.un.org/development/desa/publications/world-population-prospects-the-2017-revision.html

• Intergovernmental Panel on Climate Change (IPCC) AR4 (2007), Working Group I: The Physical Science Basis
https://archive.ipcc.ch/publications_and_data/ar4/wg1/en/spmsspm-projections-of.html

• Co-extinctions annihilate planetary life during extreme environmental change, by Giovanni Strona and Corey Bradshaw (2018)
https://www.nature.com/articles/s41598-018-35068-1

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Possible climate transitions from breakup of stratocumulus decks under greenhouse warming, by Tapio Schneider et al.
https://www.nature.com/articles/s41561-019-0310-1

• FAQ #13: What is the global warming potential of methane?
https://arctic-news.blogspot.com/p/faq.html#13

• Methane hydrates
https://methane-hydrates.blogspot.com/2013/04/methane-hydrates.html

• Methane, measured by the Infrared Atmospheric Sounding Interferometer (IASI) residing on the MetOp polar orbiting satellites
https://www.ospo.noaa.gov/Products/atmosphere/soundings/iasi

• A rise of 18°C or 32.4°F by 2026?
https://arctic-news.blogspot.com/2019/02/a-rise-of-18c-or-324f-by-2026.html

• Greenhouse Gas Levels Keep Accelerating
https://arctic-news.blogspot.com/2019/05/greenhouse-gas-levels-keep-accelerating.html

• Stronger Extinction Alert
https://arctic-news.blogspot.com/2019/03/stronger-extinction-alert.html

• Understanding the Permafrost–Hydrate System and Associated Methane Releases in the East Siberian Arctic Shelf, by Natalia Shakhova, Igor Semiletov and Evgeny Chuvilin
https://www.mdpi.com/2076-3263/9/6/251

• Guy McPherson at the University of Alaska-Fairbanks, April 2019
https://guymcpherson.com/2019/04/the-first-of-two-presentations-at-the-university-of-alaska-fairbanks/

• Guy McPherson in Juneau, Alaska, April 2019
https://guymcpherson.com/2019/05/presentation-in-juneau-alaska

• Seven Distinct Paths to Loss of Habitat for Humans, by Guy McPherson
https://weeklyhubris.com/seven-distinct-paths-to-loss-of-habitat-for-humans


Koalas

Koala habitat 1788 versus 2018
From: savethekoala.com
https://www.savethekoala.com/our-work/act-or-axe

• A report claims koalas are ‘functionally extinct’ – but what does that mean?
https://theconversation.com/a-report-claims-koalas-are-functionally-extinct-but-what-does-that-mean-116665

• Australian Koala Foundation calls on the new Prime Minister to protect the Koala
https://www.savethekoala.com/sites/savethekoala.com/files/uploads/AKF_press_release_10_may_2019.pdf

• Koalas become 'Functionally Extinct' in Australia with just 80,000 left
https://www.ecowatch.com/koalas-functionally-extinct-australia-2637183484.html

• Koalas declared “functionally extinct”
https://inhabitat.com/koalas-declared-functionally-extinct

• Why the Heck Do So Many Koalas Have Chlamydia?
https://www.livescience.com/62517-how-koalas-get-chlamydia.html



Monday, June 1, 2015

Heat Wave Forecast For Russia Early June 2015


Following heat waves in Alaska and the north of Canada, the Arctic looks set to be hit by heat waves along the north coast of Russia in early June, 2015. The image below shows temperature anomalies at the top end of the scale for a large area of Russia forecast for June 6, 2015.


Meanwhile, the heat wave in India continues. It killed more than 2,100 people, reports Reuters, adding that the heat wave also killed more than 17 million chickens in May. The number of people killed by the heat wave is now approaching the 2,541 people killed by the 1998 heat wave in India, which is listed as the record number of deaths due to extreme temperatures in India by the Emergency Events Database.

Further records listed by the database are the well over 70,000 people killed by the 2003 heat wave in Europe and 55,736 people killed by the 2010 heat wave in Russia alone.

On above temperature forecast (left image, top right), temperatures over a large area of India will be approaching the top end of the scale, i.e. 50°C or 120°F. While such temperatures are not unusual in India around this time of year, the length of the heat wave is extraordinary. The heat wave that is about to hit Russia comes with even higher temperature anomalies. Even though temperatures in Russia are unlikely to reach the peaks that hit India, the anomalies are at the top end of the scale, i.e. 20°C or 36°F.

The image below shows a forecast for June 6, 2015, with high temperatures highlighted at four locations (green circles).


Below is a forecast for the jet stream as at June 7, 2015.

The animation below runs the time of the top image (June 6, 2015, 0900 UTC) to the above image (June 7, 2015, 1200 UTC), showing forecasts of the jet stream moving over the Arctic Ocean, with its meandering shape holding warm air that extends from Russia deep into the Arctic Ocean.


Below is another view of the situation.
Jet stream on June 6, 2015, 0900 UTC, i.e. the date and time that corresponds with the top image.
Clicking on this link will bring you to an animated version that also shows the wind direction, highlighting the speed (I clocked winds of up to 148 km/h, or 92 mph) of the jet stream as it moves warm air from Russia into the Arctic Ocean, sped up by cyclonic wind around Svalbard.

This is the 'open doors' feedback at work, i.e. feedback #4 on the feedbacks page, where accelerated warming in the Arctic causes the jet stream to meander more, which allows warm air to enter the Arctic more easily, in a self-reinforcing spiral that further accelerates warming in the Arctic.

The implications of temperatures that are so much higher than they used to be are huge for the Arctic. These high temperatures are heating up the sea ice from above, while rivers further feed warm water into the Arctic Ocean, heating up the sea ice from below.

Furthermore, such high temperatures set the scene for wildfires that can emit huge amounts of pollutants, among which dust and black carbon that, when settling on the sea ice, can cause large albedo falls.

The image below shows Russian rivers that end up in the Arctic Ocean, while the image also shows sea surface temperature anomalies as high as 8.2°C or 14.76°F (at the green circle, near Svalbard).



The big danger is that the combined impact of these feedbacks will accelerate warming in the Arctic to a point where huge amounts of methane will erupt abruptly from the seafloor of the Arctic Ocean.
The image below shows that methane levels as high as 2,566 ppb were recorded on May 31, 2015, while high methane levels are visible over the East Siberian Arctic Shelf.


Below is part of a comment on the situation by Albert Kallio:
As the soils warm up the bacteria in them and the insulating capacities of snow themselves tend to lead snow cover melting faster the warmer the soil it rests on becomes. (Thus the falling snow melts very rapidly on British soil surface if compared to Finland or Siberia where the underlying ground is much colder, even if occasionally the summers have similar or even higher temperatures).

The large snow cover over the mid latitude land masses is a strong negative feedback for the heat intake from the sun if the season 2015 is compared with the season 2012, but the massive sea ice and polar air mass out-transportation equally strongly weakens formation of new sea ice around the North Pole (and along the edges of the Arctic Ocean) as the air above the Arctic Ocean remains warm. The pile up of thin coastal ice also increases vertical upturning of sea water and this could have detrimental effects for the frozen seabed that is storing methane clathrates. The sunlight intake of the sea areas where sea ice has already disappeared corresponds largely with the 2012 season.

The inevitable snow melting around the Arctic Ocean will also transport record volumes of warmed melt water from the south to the Arctic Ocean. The available heat in the Arctic may also be later enhanced by the high sea water temperatures that prevail along the eastern and western coasts of North America, as well as El Nino event increasing temporarily air and sea surface temperatures. This leads to more depressions around Japan and Korea from where the warm air, storms and rains migrate towards Alaska and pull cold air away from Arctic over Russia, while pushing warm air through the Baring Strait area and Alaska to the Arctic Ocean region.

Forecasting seasonal out comes is likely to be increasingly difficult to make due to increasing number of variables in the seasonal melting processes and the resulting lack of historic precedents when the oceans and Arctic has been as warm as today. Thus the interplay of the opposing forces makes increasingly chaotic outcomes, in which the overall trend will always be for less ice and snow at the end of the season. Because of these reasons - including many others not explicitly mentioned here - the overall outcome for the blue ocean, or the ice-free Arctic Ocean, will be inevitable.

Whether the loss of sea ice happens this summer, or next, or one after that, the problem isn't going to go away and more needs to be done to geoengineer to save Arctic ice and wildlife dependent on summer sea ice.
John Davies responds:
Albert Kallio is absolutely right in saying that warmer temperatures are leading to a blue ocean event though the problem remains in which year this will happen. Additionally Methane is being released from the bottom of the ocean leading to increased Methane concentrations and all that means for a destabilising global climate. Frustratingly, the higher temperatures and increasing Methane concentrations are not yet quite sufficient for us to persuade the scientific community and the public that Armageddon is on the way. Hence it is not yet possible to be in a position to persuade the world community of the urgent need for Geo-engineering to save the Arctic and Global climate. However we may reach this situation in the near future and that will be the only time when it might be possible to save the global climate and prevent Armageddon.

The situation is dire and calls for comprehensive and effective action, as discussed at the Climate Plan page.



This image shows Russian rivers that end up in the Arctic Ocean, while it also shows sea surface temperature anomalies...
Posted by Sam Carana on Monday, June 1, 2015

Sunday, November 2, 2014

Methane Erupting From East Siberian Arctic Shelf

Methane is erupting in huge amounts from the seafloor of the Arctic Ocean, as illustrated by the images below, showing methane over the East Siberian Arctic Shelf on October 31, 2014.

The top image on the right shows methane at an altitude of 19,820 feet (6,041 m), on October 31, 2014, pm, as captured by the MetOp1 satellite.

The middle image shows the location of the seas north of Siberia, and shows methane over the Arctic Ocean close to sea level, for reference.

The bottom image is an animation, starting at an altitude close to sea level and rising over 25 frames to an altitude of 19,820 feet (6,041 m).

As altitude increases, the methane can be seen emerging from the Laptev Sea at first, then spreading over further parts of the Arctic Ocean.

The yellow color indicates that methane is present at levels of 1950 ppb or higher.

High CO2 levels over Arctic Ocean

As in the previous post, an image has been added (below) showing recent carbon dioxide levels. Close to ground level (or rather sea level), mean CO2 level increased to 402 ppm on November 1, 2014 am, as measured by the MetOp-1 satellite.


The image below shows a comparison between CO2 (left) and methane (right).

[ Image added later, Ed. Click on image to enlarge ]
Above images indicate that large amounts of methane are broken down at higher latitudes on the Northern Hemisphere, especially over the Arctic Ocean.

Large methane eruptions from the seafloor of Arctic Ocean continue

The two images below [added later, ed.] further confirm the huge size of the methane erupting from the seafloor of the Arctic Ocean. The image directly below shows that levels as high as 2362 ppb were recorded on November 5, 2014 p.m.by the MetOp-1 satellite at an altitude of 14,385 ft (4,384 m) altitude. The image also shows that the methane is predominantly visible over the Arctic Ocean, further confirming that this is indeed the cause of the continued high methane levels.


The recent methane eruptions from the seafloor of the Arctic Ocean also appear to be pushing up methane levels at Mauna Loa, Hawaii, as measured by NOAA on November 6, 2014, as illustrated by the combination image below showing daily averages (left) and hourly averages (right).


Methane eruptions from Arctic Ocean seafloor look set to continue for months to come

As oceans keep warming, the Gulf Stream
will keep moving ocean heat into the Arctic Ocean, and ever more methane threatens to erupt from the seafloor of the Arctic Ocean.

The image on the right shows the huge sea surface temperature anomalies off the coast of North America and in the Arctic. Heat in the North Atlantic will take some time to travel to the Arctic Ocean, so this heat has yet to arrive there and contribute to cause further methane eruptions.

Nations are ignoring the growing dangers and keep each seeking a bigger share of a 'carbon budget', but in reality there is no carbon budget to divide. Instead, there is a huge debt built up by a joint failure of nations to act on pollution.

Increased methane eruptions from the seafloor of the Arctic Ocean threaten to further accelerate warming in the Arctic, in turn resulting in ever more methane being released, as illustrated in the image below, from an earlier post.

Methane in historic perspective

The image below shows that global methane levels have risen from 723 ppb in 1755 to 1839 ppb in 2014, a rise of more than 254%. Growth did flatten down for a few years in the early 2000s, but the overall rise does not appear to slow down.

The right-end of this graph is shown in greater detail on the image below, which also has a trendline extended to the year 2021, against a background of methane levels measured by the MetOp-1 satellite on November 2, 2014, p.m.

Note that the image used as background in the plot area has different axis labels, i.e. latitude for the vertical axis and longitude for the horizontal axis. The image below gives the levels associated with the colors on the background image, with yellow indicating levels of 1950 parts per billion (ppb) and higher.


Remember that the level of 723 ppb in 1755 was not a paleo-historic low, but instead was the high peak of a Milankovitch Cycle. The image below further illustrates this point.


And so does the image below, by Reg Morrison.


Comprehensive and effective action needed

The situation is dire and calls for comprehensive and effective action. The Climate Plan seeks emission cuts, removal of pollution from soils, oceans and atmosphere, and further action, as illustrated by the image below, from an earlier post.




Saturday, December 21, 2013

Act now on methane

by Malcolm Light

  This is an extract. The full paper including figures and tables is at:  
https://sites.google.com/site/runawayglobalwarming

Methane concentrations in the Arctic are higher than elsewhere in the world, as shown on figure 1. below (NASA image).


Methane is entering the atmosphere at high latitudes and spreading across the globe from there.


What is causing methane to be released in large quantities in the Arctic?

The Gulf Stream, pictured on figure 3. below, is warming up more than usual due to global warming. Specifically, pollution clouds pouring eastwards from the coast of Canada and the United States are the main culprit in heating up the Gulf Stream.

Figure 3. The Gulf Stream
In July 2013, water off the coast of North America reached 'Record Warmest' temperatures and proceeded to travel along the Gulf Stream to the Arctic Ocean, where it is now warming up the seabed. Figure 4. below further shows that above-average temperatures were recorded in July 2013 along the entire path of the Gulf Stream into the Arctic Ocean. 
Figure 4. NOAA: part of the Atlantic Ocean off the coast of North America reached record warmest temperatures in July 2013
The mean speed of the Gulf Stream is 4 miles per hour (6.4 km/hour or 1.78 metres/second), but the water slows down as it travels north. In the much wider North Atlantic Current, which is its north eastern extension, the current flows 3.5 times slower (about 0.51 metres/second), while the West Spitzbergen Current (WSC on figure 5. below) flows at about 0.35 metres/second (5 times slower).


The West Spitzbergen Current dives under the Arctic ice pack west of Svalbard, continuing as the Yermak Branch (YB on above map) into the Nansen Basin, while the Norwegian Current runs along the southern continental shelf of the Arctic Ocean, its hottest core zone at 300 metres depth destabilizing the methane hydrates en route to where the Eurasian Basin meets the Laptev Sea, a region of extreme methane hydrate destabilization and methane emissions. Figure 6. below, from an earlier post by Malcolm Light, shows how warm water flows into the Arctic Ocean and warms up methane hydrates and free gas held in sediments under the Arctic Ocean.


Sediments underneath the Arctic Ocean hold vast amounts of methane. Just one part of the Arctic Ocean alone, the East Siberian Arctic Shelf (ESAS, see figure 7. below), holds up to 1700 Gt of methane. A sudden release of just 3% of this amount could add over 50 Gt of methane to the atmosphere, and experts consider such an amount to be ready for release at any time.

Figure 7.
As above figure 7. shows, the total methane burden in the atmosphere now is 5 Gt. The 3 Gt that has been added since the 1750s accounts for almost half of all global warming. The amount of carbon stored in hydrates globally was in 1992 estimated to be 10,000 Gt (USGS), while a more recent estimate gives a figure of 63,400 Gt (Klauda & Sandler, 2005). The ESAS alone holds up to 1700 Gt of methane in the form of methane hydrates and free gas contained in sediments, of which 50 Gt is ready for abrupt release at any time, and Whiteman et al. calculate that an extra 50 Gt of methane would cause $60 trillion in damage. By comparison, the size of the world economy in 2012 was about $70 trillion. 

Smaller releases of methane in the Arctic come with the same risk; their huge local warming impact threatens to further destabilize sediments under the Arctic Ocean and trigger further methane releases, as illustrated by figure 8. below.
Figure 8.
Figure 9. below, from an earlier post by Malcolm Light, shows that, besides the shallow methane hydrate regions in the ESAS, the Arctic Ocean slope and deep water regions contain giant volumes of methane hydrate deposits (methane frozen within the ice).
If only a few percent of this methane hydrate becomes destabilized, it will release enough methane into the atmosphere to cause a Permian Age-type massive extinction event. Recent methane emission maps show that, besides the emissions from the ESAS, huge amounts of methane are being released from other parts of the Arctic Ocean.

We now know that the subsea methane hydrate is destabilizing at a fast-increasing pace and the pattern of destabilization indicates that it is mainly caused by the increasingly hot "Gulf Stream" waters entering the Arctic west of Svalbard and through the Barents Sea. These "Gulf Stream" waters do a complete circuit in the Arctic, even under a complete floating ice cover, and will destabilize the methane hydrates they come in contact with before making an exit along the edges of Greenland. Methane is now also emerging from the waters of the Greenland coastline, where the southward-bound "Gulf Stream" waters exit the Arctic Ocean along the edges of Greenland.

Historically, methane has caused delayed temperature anomalies of some 20°C, according to ice core analysis data, i.e. much higher than anomalies caused by carbon dioxide. Methane has a very high warming potential compared to carbon dioxide. Over a decade, methane's global warming potential is more than 100 times as much as carbon dioxide, while methane's local warming potential can be more than 1000 times as much. As a result, giant zones of circulating warm air in the Arctic have temperature anomalies in excess of 20°C.

Figure 10. [ click on image to enlarge ]
These hot clouds, resulting from many feedbacks including this Arctic atmospheric methane build-up, show that methane's delayed temperature anomaly of 20°C has already caught up in the Arctic and is going to progressively spread around the world resulting in runaway global warming.

Figure 11. [ click on image to enlarge ]
Above figure 11. (by Sam Carana) and figure 12. below (by Malcolm Light) indicate that the critical mean atmospheric temperature anomaly of 8°C will be reached between 2035 and 2050. At this temperature we can expect total deglaciation and extinction, according IPCC AR4 (2007).


By 2012, the mean atmospheric temperature had increased by some 0.8°C by human induced global warming. This year however Australia has seen an anomalous 0.22°C temperature increase. The new Australian temperature gradient implies that in ten years the atmosphere will be 2.2°C hotter and in 30 to 40 years, 6.6 to 8.8°C hotter which is consistent with the Arctic methane emission temperature increase curves of Carana and Light.

The reason for this sudden temperature increase in Australia this year is due to the fast building pall of methane in the Northern Hemisphere caused by global warming and destabilization of the subsea Arctic methane hydrates and the Arctic surface methane hydrate permafrosts.

At the moment, the entire Arctic is covered by a widespread methane cloud, but it is very concentrated (> 1950 ppb) over the Eurasian Basin and Laptev Sea where the subsea methane hydrates are being destabilized at increasing rates by heated Atlantic (Gulf Stream) waters. The area of the Eurasian Basin is similar to that of the East Siberian Arctic Shelf (ESAS) where Shakova et al. (1999) have shown that some 50 billion tons of methane could be released at any moment during the next 50 years from destabilization of subsea ESAS methane hydrates.

Figure 13.  Methane over the Arctic Ocean on December 3, 2013        [ click on image to enlarge ]
At the moment, water saturated with methane is traveling underneath the ice carried by exit currents and emerging at locations where the sea ice is still less than one meter thick, such as in Baffin Bay and in Hudson Bay, as also shown on the animation below.

[ this animation is a 1.5MB file and may take some time to fully load ]
This massive volume of methane entering the atmosphere will produce catastrophic consequences for the global climate system. Furthermore global warming is now destabilizing methane hydrates in the Eurasian Basin even more than on the ESAS. The release of an additional 50 billion tons of methane or more from the Eurasian Basin over the next 50 years will further compound the catastrophe represented by the destabilization of methane hydrates on the ESAS. Essentially we have passed the methane hydrate tipping point and are now accelerating into extinction as the methane hydrate "Clathrate Gun" has begun firing increasingly large volleys of methane into the Arctic atmosphere.

The growth of the mean atmospheric temperature using the curves on figure 12 indicate that the mean atmospheric temperature anomaly will exceed 1.5°C in 15 years and 2°C in 20 years, at which time storm systems will be very extreme with droughts, flooding, sea level rise and the loss of Pacific islands. When the mean atmospheric temperature anomaly reaches 8°C some 39 years in the future, there will be total deglaciation and a major extinction event that will culminate in a Permian-type extinction of all life on Earth.

If we do not stop the massive increases of Arctic methane emissions into the atmosphere the oceans will begin to boil off by 2080, when the mean temperature anomaly exceeds 115 to 120°C and the temperatures will be like those on Venus by 2100 (see figure 12).

The present end of the financial crisis and recovery of the U.S. economy will take us down the same fossil fuel driven road to catastrophe that the U.S. has followed before, when they refused to sign the original Kyoto Protocols. Unless the United States and Canada reduce their extreme carbon footprints (per unit population), they will end up being found guilty of ecocide and genocide, as the number of countries destroyed by the catastrophic weather systems continues to increase.

The United States and Canada seek to expand their economies by increasingly frenetic extraction of fossil fuels, using the most environmentally destructive methods possible (fracking and shale oil), while the population's total addiction to inefficient gas transport is leading our planet into suicide. We are like maniacal lemmings leaping to their deaths over a global warming cliff. What a final and futile legacy it will be for the leader of the free world to be remembered only in the log of some passing alien ship recording the loss of the Earth’s atmosphere and hydrosphere after 2080 due to human greed and absolute energy ineptitude.

The U.S. Government and Canada must ban all environmentally destructive methods of fossil fuel extraction such as fracking, extracting shale oil and coal and widespread construction of the now found to be faulty hydrocarbon pipeline systems. All Federal Government subsidies to fossil fuel corporations, for fossil fuel discovery and extraction must be immediately eliminated and the money spent solely on renewable energy development, which will provide many jobs to the unemployed. All long and short range (high consumption) fossil fuel-powered transport must be electrified or converted to hydrogen and where the range is too large, electric vehicles (including electric trains and ships) must be used instead of fossil fuel-powered trucks or aviation means of transport. All the major work for this conversion (including railway construction) can provide a new and growing set of jobs for the unemployed. Nuclear power stations must continue to be used and should be converted to the safe thorium energy system until the transition is complete.

The U.S. has to put itself on a war footing, but rather than fighting other military forces, it should recall its military forces from various places across the world and set them to work on the massive shift to renewable energy that the country needs to undertake if it wishes to survive the fast approaching catastrophe. The threat now comes from Mother Nature, who has infinite power at her disposal and intends to take no prisoners when she will strike back hard over a very short, absolutely brutal, 30-to-40-year period which has already begun. I cannot emphasise more, how serious humanity’s predicament is and what we should try to do to prevent our certain final destruction and extinction in 30 to 40 years if we continue down the present path we are following.

Figure 14. 
Above action plan (figure 14.) includes efforts to move to a sustainable economy (part 1.) and efforts to reflect and divert heat away from the Arctic (part 2.). Furthermore, it includes action on methane escaping from hydrates in the Arctic (part 3.), as described at the Arctic methane management page. Two types of methane management are further discussed below.

Arctic Methane Permanent Storage

In the ANGELS Proposal, subsea Arctic methane is extracted, stored and sold as LNG for distribution as fuel, to produce fertilizer, etc. Permanent storage underground, however, is more preferable.
Figure 15. 
As described by Sam Carana in an earlier post, Prof. Kenneth Yanda, at the University of California, Irvine, has shown that methane can be stored in propane - methane hydrates that are stable at temperatures of ca 15°C and low pressure (25 pounds per square inch - 1.66 atmospheres), very close to the ambient temperature and pressure conditions.

Figure 16. 
Figure 17. Methane capture in zeolite SBN. Blue represents
adsorption sites, which are optimal for methane (CH4)
uptake. Each site is connected to three other sites (yellow
arrow) at optimal interaction distance.  Credit: LLNL News
Hydrates can be produced that contain larger cages for other gases and smaller cages for methane.

Methane can be converted into propane and other gases with UV light and the final goal would be long-term storage of these gases in the form of hydrates in deep waters such as those north of Alaska, suggests Sam Carana, adding that carbon dioxide can also then be sequestered in the hydrates, after its removal from the atmosphere.

Unlike carbon dioxide, methane is completely non-polar and reacts very weakly with most materials.

Three zeolite types (SBN, ZON and FER) have been found to absorb methane at high to moderate rates (Figure 17, from Lawrence Livermore National Laboratory (LLNL) and UC Berkley, 2013).

These materials can help limit escape of fugutive gases from extraction, transport and distribution of methane.

Lucy and Alamo Projects

The Lucy project seeks to decompose methane in the atmosphere.

In a new modified version of the Lucy Project, hydroxyls can also be generated by a polarized 13.56 MHZ beam intersecting the sea surface over the region where a massive methane torch (plume) is entering the atmosphere, so that the additional hydroxyl will react with the rising methane breaking a large part of it down. The polarized 13.56 MHZ radio waves will decompose atmospheric humidity, mist, fog, ocean spray, and the surface of the waves themselves in the Arctic Ocean into nascent hydrogen and hydroxyl (figure 18).

The newly determined atmospheric temperature gradient indicates that the mean global atmospheric temperature will reach 1.5°C in 15 years and 2°C in 20 years (Figure 14). Consequently we only have 15 years to get an efficient methane destruction radio - laser system designed, tested and installed (Lucy and Alamo (HAARP) Projects, figure 18) before the accelerating methane eruptions take us into uncontrollable runaway global warming. This will give a leeway of 5 years before the critical 2°C temperature anomaly will have been exceeded and we will be looking at catastrophic storm systems, a fast rate of sea level rise and coastal zone flooding with its extremely deleterious effects on world populations and global stability.

Figure 18.