Showing posts with label Alaska. Show all posts
Showing posts with label Alaska. Show all posts

Monday, July 8, 2019

Alaska On Fire

Fires are raging over Alaska. The satellite image below shows the situation on July 8, 2019.


The satellite image below shows the situation on July 9, 2019.


The image below shows carbon monoxide levels as high as 43,443 ppb over Alaska on July 8, 2019.


Carbon dioxide levels were as high as 561 ppm over that same spot in Alaska on July 8, 2019. Carbon dioxide levels were as high as 888 ppm on July 10, 2019, as the image below shows.


The image below shows a forecast for July 10, 2019, with temperatures forecast to be as high as 35.5°C or 95.8°F.


What causes such extreme weather events to occur?

The Arctic has been heating up faster than the rest of the world, due to self-reinforcing feedback loops such as the decline of the snow and ice cover in the Arctic, which results in less sunlight getting reflected back into space and more sunlight instead getting absorbed in the Arctic.

As the image on the right shows, sea surface temperatures in the Bering Sea were as high as 19.8°C or 67.64°F on June 21, 2019.

As the image underneath shows, sea surface temperatures in the Bering Sea were as high as 21.6°C or 70.88°F on July 15, 2019.

Warm water from rivers flowing into the Bering Strait have contributed to some of the high temperatures of the water near the coast of Alaska.

Furthermore, as the June 21, 2019, image below shows, sea surface temperature anomalies have also been high around Alaska further away from the coast.

Indeed, more than 90% of the extra energy caused by humans goes into oceans, and sea currents carry a lot of this extra heat toward the Arctic Ocean.

As a result, ocean temperatures have been high for some time around Alaska.

The image below shows sea surface temperature anomalies around Alaska on June 21, 2019.


Another feedback is that, as the Arctic heats up faster than the rest of the world, the jet stream becomes more wavy, making it easier for cold air to flow out of the Arctic to the south and for warm air from the south to enter the Arctic. These changes to the jet stream also cause stronger storms to occur in the Arctic and more water vapor to enter the atmosphere. All this further contributes to more heating to occur in the Arctic and more extreme weather events.

Heatwaves also cause more forest fires to occur in Alaska, and these forest fires are causing large amounts of soot to get deposited on mountains and on sea ice, thus further blackening the surface. More generally, the Arctic is getting more deposits of soot and dust, as well as stronger growth of algae, moss and microbes, all further speeding up the demise of the snow and ice cover in the Arctic.

The image below shows sea surface temperature anomalies around Alaska on July 11, 2019, with an anomaly of 7.7°C or 13.8°F compared to 1981-2011 showing up north of Alaska in the Arctic Ocean. The light blue areas indicate sea surface that is colder, due to heavy melting of the sea ice in those areas.


The image below shows a deformed jet stream (forecast for July 9, 2019) that enables hot air from the south to move over Alaska.


from an earlier post (2014)  
Heatwaves and forest fires are symptoms of the rapid heating that is taking place in the Arctic. Self-reinforcing feedback loops further accelerate heating in the Arctic and just one of them, seafloor methane, threatens to cause runaway heating.

Just the existing carbon dioxide and methane, plus seafloor methane releases, would suffice to trigger the clouds feedback tipping point to be crossed that by itself could push up global temperatures by 8°C, within a matter of years, as the image below shows.


As described on above image and in an earlier post, huge amounts of methane could be released from destabilizing hydrates contained in sediments at the seafloor of the Arctic Ocean. Such releases could be triggered by strong winds causing an influx of warm, salty water into the Arctic ocean, as described in an earlier post and discussed in the 2017 video below.



The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.


Links

• Extreme weather
https://arctic-news.blogspot.com/p/extreme-weather.html

• Feedbacks in the Arctic
https://arctic-news.blogspot.com/p/feedbacks.html

• When Will We Die?
https://arctic-news.blogspot.com/2019/06/when-will-we-die.html

• Warning of mass extinction of species, including humans, within one decade
http://arctic-news.blogspot.com/2017/02/warning-of-mass-extinction-of-species-including-humans-within-one-decade.html

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html



Friday, May 13, 2016

Arctic Sea Ice gone by September 2016?


Arctic sea ice extent is very low, much lower than it was in other years at this time of year. On May 11, 2016, Arctic sea ice extent was 12.328 million square km, according to the National Snow and Ice Data Center (NSIDC), while JAXA's figure for extent on May 11, 2016, was only 11.57 million square km.

[ based in image from JAXA ]
JAXA figures show that Arctic sea ice extent on May 9, 2016, was 11.68 million square km, more than 18 days ahead on 2012 and 1.1 million square km smaller than it was on May 9, 2012.

The image on the right compares the Beaufort Sea and the northern part of Alaska between May 9, 2012 and May 9, 2016. As the image illustrates, there now is a lot less ice and snow cover than there was on 2012.

The situation looks set to deteriorate further over the coming months. The image below shows temperature forecast to reach anomalies as high as 5.19°C or 9.34°F for the Arctic as a whole (forecast for May 19, 2016, 0300 UTC), with temperature anomalies at the top end of the scale forecast for Alaska and eastern Siberia.


These temperature anomalies go hand in hand with a very wavy jet stream, as illustrated by the image on the right, showing loops extending all the way over the Arctic Ocean (in particular over the Beaufort Sea), taking along warm air in their path.

At the same time, the jet stream can extend far south at other places, making that cold air is moving south, out of the Arctic.

The result is a rapidly warming Arctic, which in turn makes the jet stream even more wavier, as one out of numerous feedbacks that are all  hitting the Arctic at the same time.

The image below compares sea ice thickness between May 13, 2012, and May 13, 2016.


The image on the right shows that sea surface temperatures near Svalbard were as high as 55°F (12.8°C) on May 11, 2016, an anomaly of 21.2°F (11.8°C) from 1981-2011. In other words, the temperature of the sea surface was 1°C in that spot from 1981 to 2011, and now this spot is 11.8°C warmer.

The image below compares sea surface temperature anomalies from 1961-1990 between May 12, 2015, and May 12, 2016.

Sea surface temperatures in the Arctic Ocean are higher than they used to be, in particular in the Bering Strait, the Beaufort Sea, in Baffin Bay and the Kara Sea.

[ click on images to enlarge ]
In summary, Arctic sea ice is in a very bad shape, while ocean heat is very high and rising. Greenhouse gas levels are at record high levels, as discussed in an earlier post and as further illustrated by the image below.

The image below shows that, over the past 365 days, warming over the Arctic have been much stronger than over the rest of the world. Air temperature anomalies of more than 2.5°C (4.5°F) show up over most of the Arctic Ocean. Furthermore, as discussed above, high temperatures are forecast to hit the Arctic over the next week.


From November 2015 to April 2016, global temperatures over land and oceans were 1.48°C (or 2.664°F) higher than in 1890-1910 (left map of the image below). On land, it was 1.99°C (or 3.582°F) warmer (right map of the image below).
[ also see comments ]
Since some 0.3°C (0.54°F) greenhouse warming had already taken place by the year 1900, warming was well above the 1.5°C (or 2.7°F) guardrail the Paris Agreement had pledged wouldn't be crossed.

Given the above, chances are that the sea ice will be largely gone by September 2016.

The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.

Thursday, May 28, 2015

Arctic Sea Ice in Uncharted Territory

On May 27, 2015, Arctic sea ice extent was merely 11.973 million square kilometers, a record low for the time of the year since satellite started measurements in 1979.


This fall in sea ice extent follows heat waves in Alaska and the north of Canada, as illustrated by the image below.

Temperature in Alaska on the afternoon of May 23, 2015, when a temperature of 91°F (32.78°C) was recorded in Eagle
High temperatures extended over the Beaufort Sea and Chukchi Sea. The image below shows the difference in sea surface temperatures between May 13, 2015, and May 23, 2015.


The large amounts of meltwater flowing into Beaufort Sea and the Chukchi Sea is illustrated by the image below, showing the difference in sea surface salinity between May 17, 2015, and May 24, 2015.


Sea ice has retreated dramatically in the Chukchi Sea and the Beaufort Sea, and in Baffin Bay, with high sea surface temperature showing up where rivers flow into the Arctic Ocean and where the Gulf Stream carries warm water from the Atlantic Ocean into the Arctic Ocean.

The size-reduced navy.mil animations below show the fall in sea surface salinity (left) and the fall in sea ice thickness (right) in the Beaufort Sea, from May 3, 2015, to June 2, 2015 (run May 27, 2015).

Sea surface salinity Beaufort Sea
Sea ice thickness Beaufort Sea
   
The image below shows sea surface temperature anomalies on May 27, 2015.


For reference, the animation below, from the Naval Research Laboratory, shows sea ice thickness over a 30-day period, including a forecast up to June 4, 2015.


Update: here's an image showing Arctic sea ice extent up to May 28, 2015, highlighting that sea ice extent is now well outside 2 standard deviations.



The situation is dire and calls for comprehensive and effective action as discussed at the Climate Plan.



Arctic Sea Ice in Uncharted Territory Sea ice has retreated dramatically in the Chukchi Sea and the Beaufort Sea, and...
Posted by Sam Carana on Thursday, May 28, 2015

Monday, May 25, 2015

Sleeping Giant in the Arctic



Huge amounts of carbon are contained in sediments, soils and vegetation in the Arctic. Rising temperatures in the Arctic threaten to cause much of this carbon to be released to the atmosphere.

On May 23, 2015, temperatures in Alaska were as high as 91°F (32.78°C), as illustrated by the image below.

[ image credit: US National Weather Service Alaska ]
High temperatures were reached at the city of Eagle, located on the southern bank of the Yukon River, at an elevation of 853 ft (260 m). High temperatures at such a location will cause meltwater, aggravating the situation well beyond the local area.
A bank of permafrost thaws near the Kolyma
River in Siberia. Credit: University of Georgia

Carbon contained in soils will thus become increasingly exposed under the combined impact of rising temperatures and the associated growing amounts of meltwater. The meltwater can additionally cause erosion further downstream, thus making carbon at many locations become more prone to be consumed by microbes and released into the atmosphere in the form of carbon dioxide and methane.

A recent study found that, at a location where the Kolyma river in Siberia carved into the permafrost and exposed the carbon, microbes converted 60% of the carbon into carbon dioxide in two weeks time.

Gary Houser, who recently launched the movie Sleeping Giant in the Arctic, elaborates on the threat of emissions from thawing permafrost:
This immense release would likely feed on itself, raising temperatures that continue melting more and more permafrost in a vicious, frightening, and unstoppable cycle. A tipping point could well be crossed, at which time human intervention is no longer possible. Temperatures across the planet could soar, setting in motion catastrophic levels of drought and food shortage. All life support systems on earth and life forms themselves could be placed under severe stress.

The colossal scale of the danger - and the observation of those factors lining up that could trigger it - demand that humanity exercise the precautionary principle. All political decision-making related to carbon emissions must be based on the understanding that a catastrophic consequence is looming, and the window of time for prevention quickly diminishing.
SLEEPING GIANT IN THE ARCTIC:
Can Thawing Permafrost Cause Runaway Global Heating?
by Gary Houser



Sources: 

US National Weather Service Alaska

University of Georgia

Sleeping Giant in the Arctic


Sleeping Giant in the Arctic http://arctic-news.blogspot.com/2015/05/sleeping-giant-in-the-arctic.html

Posted by Sam Carana on Monday, May 25, 2015

Thursday, May 21, 2015

Arctic Sea Ice At Historic Low

On May 20, 2015, Arctic sea ice extent was only 12.425 million square km, a record low for the time of the year since satellite measurements began in 1979.


As the Arctic Sea Ice is at a historic low, Alaska faces temperatures as high as 31°C (87.8°F), as illustrated by the image below.



How is it possible for temperatures to get so high at locations so close to the North Pole?

Typhoon Dolphin
Dr. Michael Ventrice, Operational Scientist at The Weather Channel Professional Division points at two typhoons, Noul and Dolphin, that recently hit the western Pacific Ocean.

These typhoons do have some impact. Importantly, global warming is increasing the strength of cyclones. In other words, a greater impact of cyclones on the jet stream can be expected as a feedback of global warming.

Furthermore, global warming is directly changing the path followed by the North Polar Jet Stream, from a relatively straight path at a latitude of 60°N to a wildly meandering path that at some places merges with the Subtropical Jet Stream and reaching speeds as high as 267 km/h (166 mph) and that at other places moves high into the Arctic and reaches speeds as high as 170 km/h (106 mph).



On above image, part of the jet stream even moves right across the pole. Such changes to the jet stream constitute one out of numerous feedbacks of global warming, as discussed at the feedbacks page. Decline of the snow cover and sea ice in the Arctic is another such feedback.

As discussed in earlier posts, heat waves at high latitudes cause thawing of frozen soil and melting of glaciers and snow cover, This results in large amounts of water draining into rivers that end up in the Arctic Ocean. At the same time, heat waves also raise the temperature of the water in these rivers. The larger amounts of warmer water result in additional sea ice decline and warming of the Arctic Ocean seabed.

Such heat waves also set the scene for wildfires that emit not only greenhouse gases such as carbon dioxide and methane, but also pollutants such as carbon monoxide (that depletes hydroxyl that could otherwise break down methane) and black carbon (that when settling on ice causes it to absorb more sunlight).


Above image shows how much warmer the water in the Arctic Ocean is compared to what it used to be, with high anomalies where rivers flow into the Arctic Ocean and where the Gulf Stream carries warm water from the Atlantic Ocean into the Arctic Ocean.

The situation looks set to get worse, as the frequency and intensity of heat waves in North America and Siberia increases as temperature at high latitudes are rising rapidly. Furthermore, warm water is lining up along the path of the Gulf Stream, with sea surface temperature anomalies as high as 10.3°C (18.54°F) recorded off the coast of North America on May 20, 2015, as illustrated by the image below.

Green circle shows a 10.3°C (18.54°F) sea surface temperature anomaly from daily average (1981-2011)

Meanwhile, a very high methane reading was recorded at Barrow, Alaska (hourly average, in situ measurement), as illustrated by the image below.


The big danger is that the combined impact of these feedbacks will accelerate warming in the Arctic to a point where huge amounts of methane will erupt abruptly from the seafloor of the Arctic Ocean.

The situation is dire and calls for comprehensive and effective action, as discussed at the Climate Plan page.



As the Arctic Sea Ice is at a historic low, Alaska faces temperatures as high as 31°C (87.8°F). From the post: Arctic...
Posted by Sam Carana on Thursday, May 21, 2015

Saturday, August 30, 2014

Ring Of Ice



Prominence of earthquakes in North America and around Greenland has prompted a team of researchers led by Arctic-news blog editor Sam Carana to coin the phrase “Ring Of Ice” to describe what they see happening in the Arctic.

“Melting of ice in north Canada and on Greenland is causing pressure changes, resulting in seismic activity”, explains Sam Carana.

Heavy seismic activity is ocurring along the faultlines that constitute the border of the North American Plate, similar to the the heavy activity along the Ring Of Fire around the Pacific Ocean.

Seismic activity roughly follows the borders of the North American Plate, which includes Greenland. However, where the major fault bends away to the west following the Aleutian Islands, seismic activity continues north through Alaska along a line that extends over the North Pole toward Svalbard.

This northward path through Alaska is illustrated by the earthquakes on the image below.


“Earthquakes are prominent along the entire border of the North American Plate”, Sam Carana adds, “but they increasingly appear to be taking this shortcut through Alaska and the underlying cause of this is melting of ice in north Canada and on Greenland”.

“This Ring Of Ice spells danger, just like the name Ring Of Fire indicates danger”, Sam Carana concludes. “The name Ring Of Fire warns about possible volcanoes, earthquakes, landslides and tsunamis. The Ring Of Ice seems even more dangerous, since seismic activity could destabilize methane hydrates contained in sediments under the Arctic Ocean, and could trigger huge methane eruptions. The fault line running from Greenland to Siberia is the most dangerous area on Earth in that respect”.

From the earlier post High Methane Levels over Laptev Sea







Tuesday, February 4, 2014

As continental U.S. freezes, Alaska gets record high temperatures

While much of the continental United States endured several cold snaps in January 2014, record-breaking warmth gripped Alaska. Spring-like conditions set rivers rising and avalanches tumbling. NASA Eartobservatory illustrates the above words with the two images below.


Above map depicts land surface temperature anomalies in Alaska for January 23–30, 2014. Based on data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite, the map shows how 2014 temperatures compared to the 2001–2010 average for the same week. Areas with warmer than average temperatures are shown in red; near-normal temperatures are white; and areas that were cooler than the base period are blue. Gray indicates oceans or areas where clouds blocked the satellite from collecting usable data.

A persistent ridge of high pressure off the Pacific Coast fueled the warm spell, shunting warm air and rainstorms to Alaska instead of California, where they normally end up. The last half of January was one of the warmest winter periods in Alaska’s history, with temperatures as much as 40°F (22°C) above normal on some days in the central and western portions of the state, according to Weather Underground’s Christopher Bart. The all-time warmest January temperature ever observed in Alaska was tied on January 27 when the temperature peaked at 62°F (16.7°C) at Port Alsworth. Numerous other locations—including Nome, Denali Park Headquarters, Palmer, Homer, Alyseka, Seward, Talkeetna, and Kotzebue—all set January records.

The combination of heat and rain has caused Alaska’s rivers to swell and brighten with sediment, creating satellite views reminiscent of spring and summer runoff. On January 25, 2014, the Aqua satellite collected this image of sediment flowing into the Gulf of Alaska from numerous rivers along the state’s southeastern coast.

All of the heat, moisture, and melting snow has elevated the risk of avalanches. A series of extremely large avalanches in late January sent snow and debris crashing onto the Richardson Highway, blocking the road and cutting the port town of Valdez off from highway access. The avalanches dumped a mound of snow 100 feet (30 meters) tall and up to 1,500 feet (460 meters) long on the highway.


Below are two videos with forecasts for the period from February 4, 2014, to February 11, 2014. The top video shows temperature forecasts and the bottom video shows temperature anomaly forecasts.

Thursday, June 27, 2013

The Threat of Wildfires in the North

NASA/NOAA image based on Suomi NPP satellite data from April 2012 to April 2013, with grid added
A new map has been issued by NOAA/NASA. The map shows that most vegetation grows in two bands, i.e. the Tropical Band (between latitudes 15°N and 15°S) and the Northern Band in between 45°N and 75°N, i.e. in North America, Europe and Siberia. On above image, the map is roughly overlayed with a grid to indicate latitude and longitude co-ordinates.


Vegetation in the Northern Band extends beyond the Arctic Circle (latitude 66° 33′ 44″ or 66.5622°, in blue on above image from Arcticsystem.no) into the Arctic, covering sparsely-populated areas such in Siberia, Alaska and the northern parts of Canada and Scandinavia. Further into the Arctic, there are huge areas with bush and shrubland that have taken thousands of years to develop, and once burnt, it can take a long time for vegetation to return, due to the short growing season and harsh conditions in the Arctic.



Above map with soil carbon content further shows that the top 100 cm of soil in the northern circumpolar region furthermore contains huge amounts of carbon.

May 16 2013 Drought 90 days Arctic
Global warming increases the risk of wildfires. This is especially applicable to the Arctic, where temperatures have been rising faster than anywhere else on Earth. Anomalies can be very high in specific cases, as illustrated by the temperature map below. High temperatures and drought combine to increase the threat of wildfires (see above image showing drought severity).

June 25, 2013 from Wunderground.com - Moscow broke its more than 100-year-old record for the hottest June 27
Zyryanka, Siberia, recently recorded a high of 37.4°C (99.3°F), against normal high temperatures of 20°C to 21°C for this time of year. Heat wave conditions were also recorded in Alaska recently, with temperatures as high as 96°F (36°C).

On June 19, 2013, NASA captured this image of smoke from wildfires burning in western Alaska. The smoke was moving west over Norton Sound. (The center of the image is roughly 163° West and 62° North.) Red outlines indicate hot spots with unusually warm surface temperatures associated with fire. NASA image by Jeff Schmaltz, LANCE/EOSDIS Rapid Response. Caption by Adam Voiland. - also see this post with NASA satellite image of Alaska.
Siberian wildfires June 21, from RobertScribbler 
from methanetracker.org

Wildfires raged in Russia in 2010. Flames ravaged 1.25 million hectares (4,826 mi²) of land including 2,092 hectares of peat moor.

Damage from the fires is estimated to be $15 billion, in a report in the Guardian.

Cost of fire-fighting efforts and agricultural losses alone are estimated at over $2bn, reports Munich Re, adding that Moscow's inhabitants suffered under a dense cloud of smoke which enveloped the city. In addition to toxic gases, it also contained considerable amounts of particulate matter. Mortality increased significantly: the number of deaths in July and August was 56,000 higher than in the same months in 2009. 


[From: Abrupt Local Warming, May 16, 2012]

Wildfires in the North threaten to cause large emissions of greenhouse gases and soot, which can settle on snow and ice in the Arctic and the Himalayan Plateau, with the resulting albedo changes causing a lot more sunlight to be absorbed, instead of reflected as was the case earlier. This in turn adds to the problem. Additionally, rising temperatures in the Arctic threaten to cause release of huge amounts of methane from sediments below the Arctic Ocean. This situation threatens to escalate into runway global warming in a matter of years, as illustrated by the image below.

How much will temperatures rise?
In conclusion, the risk is unacceptable and calls for a comprehensive and effective action plan that executes multiple lines of action in parallel, such as the 3-part Climate Action Plan below. Part 1 calls for a sustainable economy, i.e. dramatic reductions of pollutants on land, in oceans and in the atmosphere. Part 2 calls for heat management. Part 3 calls for methane management and further measures.


The Climate Action Plan set out in above diagram can be initiated immediately in any country, without the need for an international agreement to be reached first. This can avoid delays associated with complicated negotiations and on-going verification of implementation and progress in other nations.

In nations with both federal and state governments, such as the United States of America, the Climate Action Plan could be implemented as follows:
  • The President directs federal departments and agencies to reduce their emissions for each type of pollutant annually by a set percentage, say, CO2 and CH4 by 10%, and HFCs, N2O and soot by higher percentages.
  • The President demands states to each make the same cuts. 
  • The President directs the federal Environmental Protection Agency (EPA) to monitor implementation of states and to act step in where a state looks set to fail to miss one or more targets, by imposing (federal) fees on applicable polluting products sold in the respective state, with revenues used for federal benefits.
Such federal benefits could include building interstate High-Speed Rail tracks, adaptation and conservation measures, management of national parks, R&D into batteries, ways to vegetate deserts and other land use measurements, all at the discretion of the EPA. The fees can be roughly calculated as the average of fees that other states impose in successful efforts to meet their targets.

This way, the decision how to reduce targets is largely delegated to state level, while states can similarly delegate decisions to local communities. While feebates, preferably implemented locally, are recommended as the most effective way to reach targets, each state and even each local community can largely decide how to implement things, provided that each of the targets are reached.

Similar targets could be adopted elsewhere in the world, and each nation could similarly delegate responsibilities to local communities. Additionally, it makes sense to agree internationally to impose extra fees on international commercial aviation, with revenues used to develop ways to cool the Arctic.

- Climate Plan