Monday, October 21, 2019

Which policy can help EVs most?

In many countries, it has been proven hard to implement policies that help electric vehicle (EVs). In France, fuel taxes have triggered huge protests. In Ecuador, huge protests followed a steep rise in fuel prices, as a result of a decision to end gasoline and diesel subsidies.

An analysis conducted by Arctic-news compares eight policies on two criteria, i.e. how effective they are from a policy perspective and how popular the policies will likely be. As the image below shows, many policies are little or no better at helping EVs than continuing with business as usual (BAU).


“Tightening fuel economy standards may aim to reduce fuel use,” says Sam Carana, editor of Arctic-news, “but the Jevons paradox shows that this may lead to people buying more powerful cars, drive longer distances, etc. Moreover, it does little to help EVs, in fact, it may make it cheaper for people to keep driving fossil fuel-powered cars.

Sam Carana adds: “Subsidies for EVs aren't popular with pedestrians and cyclists, or with people who use public transport to go to work. These are often the poorest people and they feel that money that is spent on subsidies for EVs comes at the expense of social services for the poor. Subsidies are unlikely to gain popular support. Similarly, when subsidies for EVs take the form of tax deductions given to EV buyers, this mainly benefits those who can afford to buy EVs. Additionally, this reduces overall tax revenue, leaving less money for social services.”

“Taxes aren't much better, they may make driving a polluting car more expensive, but as long as people keep driving polluting cars, it won't help EVs and it won't help much with the climate crisis either. Higher taxes on fuel and cars haven't made EVs much more common in Europe than they are in the U.S., where such taxes are lower. The worst form of tax is 'Cap & Trade', as it enables people to keep driving polluting cars by paying for emission cuts elsewhere. Even if those cuts are indeed made elsewhere, they aren't made locally. Tax and Dividend seeks to get popular support by promising people part of the revenue, but this means the money isn't used to fight pollution and it may even be counterproductive, by helping people to keep driving fossil fuel-powered cars. Simple carbon taxes therefore seem more effective, while they may also be more popular with the poor, since more of the revenues can be spent on social services.”

Sam Carana: “Local feebates are the best way to go. It makes sense to add fees to the price of fuel, and - in order to most effectively facilitate the necessary transition to EVs - the revenues are best used to support EVs locally, which also helps such polices gain popular support locally.”

The analysis also looks at a wider set of local feebates, such as fees on sales of fossil fuel-powered cars, with the revenues used to fund rebates on local sales of EVs. Fees on facilities that sell or process fuel could also raise revenues that could be used to fund rebates on, say, EV chargers.  Furthermore, differentiation in fees on car registration, on car parking and on toll roads could all help make EVs more attractive.


In conclusion, a wide set of local feebates can most effectively facilitate the necessary changes and can best gain local support. The climate crisis urgently needs comprehensive and effective action, as described in the Climate Plan, which recommends implementation of local feebates to facilitate the necessary changes.

An associated issue is the Urban Heat Island effect, as illustrated by the image on the right. Buildings, roads and cars can significantly increase temperatures and pollution including ozone at surface level.

One way to reduce temperatures, pollution and road congestion is by using electric vertical take-off and landing (VTOL) air taxis.

Lilium plans to start offering air taxi services from 2025. While using about the same amount of electricity as an EV traveling over roads, the Lilium Jet travels as fast as 300 km/h and has a radius of 300 km.”

Sam Carana adds: “In practice, most trips are less than 10 km. A fleet of 10,000 Lilium Jets could cater for all trips otherwise made by cars in an area where one million people live.”

In theory, this could remove virtually all cars from a city, resulting in less need for roads, bridges, tunnels, parking spaces, garages, driveways, airports, etc. These air taxis can use the roofs of large buildings for landing and take off, or dedicated areas in parks or custom-built places along the shore (see image below).


This also means there will be less need for resources, infrastructure and space to manufacture, sell and service vehicles. As a result, urban centers could use the spaces gained for more trees, parks, footpaths and bike-ways, while becoming more compact, enabling people to live closer together and closer to workplaces, shops, restaurants, educational and medical facilities, etc. As cities become more compact, the average trip within a city will become shorter in distance and take up less time.



Local councils should be keen to help make this happen, for a number of reasons. A fleet of air taxis can help combat road congestion, global heating, including the Urban Heat Island effect, and pollution by cars. At first glance, creating places for 10,000 air taxis to land and take off may look like a big job, but many businesses will be keen to accommodate air taxis. Moreover, it is very attractive when considering that 10,000 air taxis can replace the need for up to a million vehicles, as well as the need to build and maintain the associated roads, bridges, tunnels, parking spaces, garages, etc. It can also double the amount of land available for parks, houses and other buildings. Lilium plans to start offering commercial services from 2025, so it's time to start planning now and create places for air taxis to land and take off where they will be needed.

The video below, 'The Urban Green', was posted by WWF International on March 17, 2016.




Links

• Climate Plan (page)
https://arctic-news.blogspot.com/p/climateplan.html

• Climate Plan (post)
https://arctic-news.blogspot.com/2019/06/climate-plan.html

• Climate Plan (group)
https://www.facebook.com/groups/climateplan

• Feebates
https://arctic-news.blogspot.com/p/feebates.html

• Who are the gilets jaunes and what do they want?
https://www.theguardian.com/world/2018/dec/03/who-are-the-gilets-jaunes-and-what-do-they-want

• Ecuador's Morena scraps fuel subsidy cuts in big win for indigenous groups
https://www.reuters.com/article/us-ecuador-protests/ecuadors-moreno-scraps-fuel-subsidy-cuts-in-big-win-for-indigenous-groups-idUSKBN1WT265

• Ecuador’s Government Crisis, Explained
https://www.washingtonpost.com/business/energy/ecuadors-government-crisis-explained/2019/10/08/d54f19f2-ea17-11e9-a329-7378fbfa1b63_story.html

• Ecuador: Society's Reaction to IMF Austerity Package 


Monday, October 14, 2019

Arctic Ocean October 2019


Above image shows temperatures north of 80°N. The red line on the image shows the 2019 daily mean temperature up to Oct 13, 2019. The temperature is now well above the 1958-2002 mean (green line). The image also shows the freezing point of fresh water (273.15K, 0°C or 32°F, blue line).

The freezing point for salt water is lower, at around -2°C, or 28.4°F, or 271.2°K. In other words, a rise in the salt content of the water alone can make ice melt, i.e. even when the temperature of the water doesn't rise.


Above combination image shows forecasts for October 26, 2019. The left panel shows that air temperatures (2 m) are forecast to be 5.4°C higher over the Arctic than 1979-2000. Parts of the Arctic Ocean where there is no sea ice are forecast to be especially hot, since this is where heat gets transferred from the Arctic Ocean to the atmosphere. Anomalies are as high as 30°C, the top end of the scale. Temperature anomalies are in line with changes to the Jet Stream, as illustrated by the forecast in the right panel.


As above image shows, there was very little sea ice north of Greenland on October 11, 2019. Arctic sea ice extent is very low. As the image below shows, Arctic sea ice extent was 4.88 million km² on October 13, 2019, the lowest on record for the time of year.

[ click on image to enlarge ]

As the image below shows, the heat rising from the Arctic Ocean is such that sea ice extent is hardly growing.


The image below shows Arctic sea ice extent for the years, 1980,1990, 2010, 2012 and 2019, for the period as indicated.



The image below indicates that Arctic sea ice volume has been at record low levels for the time of year for some time.

Rising temperatures of water in the Arctic Ocean cause the sea ice to melt away from below. The image below, created with NOAA 2007-2019 June-September sea surface temperature data, shows heating of the sea surface on the Northern Hemisphere, with an ominous trend added.


The image indicates that a critical tipping point was crossed this year, with the disappearance of the thick sea ice that hangs underneath the surface.


This indicates that the buffer has gone that has until now been consuming ocean heat as part of the melting process. As long as there is sea ice in the water, this sea ice will keep absorbing heat as it melts, so the temperature will not rise at the sea surface. The amount of energy absorbed by melting ice is as much as it takes to heat an equivalent mass of water from zero to 80°C.

[ click on image to enlarge ]
The situation is so precarious because hot, salty water keeps flowing into the Arctic Ocean, at a time of year when the sea ice is growing in extent and sealing off the surface of the Arctic Ocean, thus reducing the heat that can get transferred to the atmosphere.

How hot is that water flowing into the Arctic Ocean? The image on the right shows sea surface temperature anomalies. On October 13, 2019, the sea surface near Svalbard at the green circle was 18.3°C or 65°F, i.e. 14.7°C or 26.4°F hotter than 1981-2011.

This is an indication of how hot the water is underneath the sea surface. At the sea surface, water gets colder due to evaporation and rain, resulting in a lid of fresh water at the surface sealing off hot and salty water underneath.

This hot and salty water moves underneath the sea surface in line with the deeper parts of the ocean, to emerge at this area near Svalbard (marker in the image below), as the water at this area becomes more shallow, making the sea current push the water to the surface.


Back in 2011, a study by Micha Ruhl et al. pointed at huge methane releases from clathrates during the end-Triassic mass extinction event, as discussed in an earlier post. The danger is that, in the absence of thick sea ice, hot water with a high salt content will reach the seafloor of the Arctic Ocean, making it easier for ice in cracks in sediments at the seafloor to melt, resulting in huge methane releases.

[ from an earlier post ]
Ominously, methane levels as high as 2961 parts per billion were recorded by the MetOp-2 satellite on October 24, 2019, in the afternoon at 469 mb.


The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.


Links

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Critical Tipping Point Crossed In July 2019
https://arctic-news.blogspot.com/2019/09/critical-tipping-point-crossed-in-july-2019.html

• Most Important Message Ever
https://arctic-news.blogspot.com/2019/07/most-important-message-ever.html

• Arctic Ocean overheating
https://arctic-news.blogspot.com/2019/09/arctic-ocean-overheating.html

• How extreme will it get?
https://arctic-news.blogspot.com/2012/07/how-extreme-will-it-get.html

• Warning Signs
https://arctic-news.blogspot.com/2018/03/warning-signs.html